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Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects 1% of the
population. CS-semi5 is a semisynthetic chondroitin sulfate. In this study, CS-semi5 was
shown to have positive effects on a model of collagen-induced arthritis (CIA). CS-semi5
treatment had obvious effects on weight loss and paw swelling in CIAmice. Post-treatment
analysis revealed that CS-semi5 alleviated three main pathologies (i.e., synovial
inflammation, cartilage erosion and bone loss) in a dose-dependent manner. Further
study showed that CS-semi5 could effectively reduce TNF-α and IL-1β production in
activated macrophages via the NF-κB pathway. CS-semi5 also blocked RANKL-trigged
osteoclast differentiation from macrophages. Therefore, CS-semi5 may effectively
ameliorate synovial inflammation, cartilage erosion and bone loss in RA through NF-κB
deactivation.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease that affects 1% of the
population (Firestein, 2003). The typical pathology of RA includes synovial inflammation (Bottini
and Firestein, 2013), inflammatory cell infiltration, cartilage destruction and bone erosion (McInnes
and Schett, 2011). Currently, a plethora of treatment options focus on pain reduction and remission
instead of treating the disease holistically (Singh et al., 2016). However, approved biological therapies
are not available for all patients, and these treatments typically lose responsiveness after a short
period (Smolen et al., 2017), leading many studies to investigate the prevention of RA development.

Evidence suggests that in RA, both inflammation and joint destruction are involved in
macrophages activation (Kinne et al., 2007). RA severity progression is accompanied by
aggregation of activated macrophages and secretion of inflammatory cytokines (Mulherin et al.,
1996; Tak et al., 1997). Macrophage, other leukocyte subsets or stromal cells all play role in driving
RA. Among these cells macrophage may be act as an initiator (Pope, 2002; Schuerwegh et al., 2003;
Kim et al., 2005; Alves et al., 2016). In response to the endogenous molecules or the drugs, polarized
macrophages including M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages play a key
role in mediating the immune/inflammatory reaction in RA (Tardito et al., 2019). It has been
reported that synovial macrophages play a critical role in activating fibroblasts and producing both
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pro-inflammatory cytokines and destructive enzymes (Li et al.,
2012). The relationship between macrophages and RA is
mediated by multiple regulators, including mitogen-activated
protein kinases (MAPKs) and nuclear factor-κB (NF-κB). The
NF-κB pathway can be activated by interleukin-1β (IL-1β), tumor
necrosis factor (TNF) and toll-like receptor (TLR) signaling and,
in turn, activates transcription of IL-1β, TNF-α, IL-6 and IL-8
(Miagkov et al., 1998). The aforementioned pathways play pivotal
roles in mediating inflammatory responses in RA and are
extensively involved in RA progression (Yang et al., 2020).
Therefore, blockade of NF-κB or MAPKs could be an effective
treatment strategy for controlling aggressive inflammation
associated with RA.

Chondroitin sulfate (CS) is a type of glycosaminoglycan that
attaches to proteins to form proteoglycans (Volpi, 2019). CS can
be found in the joint cartilage of animals and is primarily
commercially obtained from shark and cow cartilage (Volpi,
2019). Previous research has suggested that CS promotes
articular functions and reduces moderate pain (Uebelhart,
2008). However, the homogeneity of natural CS
polysaccharides has hindered efforts to precisely characterize
their biological functions, and large amounts of these
molecules cannot easily be obtained due to the challenges
inherent to oligosaccharide synthesis (Clegg et al., 2006). In
our previous study, we described a semi-synthesis method
capable of more easily generating larger amounts of
polysaccharides with less heterogeneity (Yang et al., 2019).

In this paper, we first investigated the therapeutic effect of CS-
semi5 on RA by using a bovine type II collagen-induced animal
model. Then, we explored the mechanisms by which CS-semi5
inhibits macrophage inflammation to slow the progression of
invasion and destruction in RA.

MATERIALS AND METHODS

Synthesis of CS-semi5
CS-semi5 was synthesized in the Institute of Materia Medica,
Chinese Academy of Medical Sciences (Yang et al., 2019). To a
solution of 26.8 g of CS-A in 400 ml of DMSOwas added 40.0 g of
Sulphur trioxide trimethyl amine complex at room temperature.
The mixture was heated to 60 C and stirred at 60 C for 24 h. The
reaction solution was allowed to cool to room temperature,
2000 ml of EtOH was added. The predicated was formed and
filtered. The filtered cake was dissolved in 100 ml of water, and
adjusted pH to 12.5 ml of EtOH was added, the predicated was
formed again, filtered to give crude CS-semi 5 as a brown solid.
The crude CS-semi5 was dissolved into 100 ml of water, the
solution was dialyzed against distilled water for 2 days and the
dialysate was lyophilized to give the CS-semi5 (10.2 g) as off-
white powder.

Animals
Male DBA/1 J mice (18–20 g) were purchased from Beijing
HFK Bioscience Co. Inc (Beijing, China, permit
No.11400700300231). Animals were kept in controlled
conditions (25°C, 60% humidity) with a 12 h light/dark

cycle. Experiments were performed in accordance with the
Guide for the Care and Use of Laboratory Animals (NIH
publication 85–23, revised 1985). All animal procedures
were carried out according to the Experimental Animal
Welfare and Ethics Committee of the Institute of Materia
Medica, Chinese Academy of Medical Sciences, China.

Reagents and Antibodies
Bovine type II collagen, complete Freund’s adjuvant and
incomplete Freund’s adjuvant were purchased from
Chondrex (Redmond, WA, United States). Glacial acetic acid
and 0.9% sodium chloride were purchased from Sinopharm
Chemical Reagent Beijing Co., Ltd (Beijing, China). Formalin
was purchased from Beijing Lablead Biotech Co., Ltd., (Beijing,
China). Serum separator microtainer tubes were purchased
from BioSharp (Hefei, China). Dulbecco’s modified Eagle’s
medium (DMEM), phosphate buffered saline (PBS), radio
immunoprecipitation assay (RIPA) lysis buffer, protease
inhibitor, phosphatase inhibitor and tartrate-resistant acid
phosphatasethe (TRAP) staining kit were purchased from
Solarbio Science and Technology, Co., Ltd (Beijing, China).
Fetal bovine serum (FBS), penicillin and streptomycin were
purchased from Gibco Life Technologies (Carlsbad, CA,
United States). Enzyme-linked immunosorbent assay (ELISA)
kits and recombinant murine receptor activator of nuclear
factor-κB ligand (RANKL) were purchased from PeproTech
(Rocky Hill, NJ, United States). Lipopolysaccharide (LPS) was
purchased from Sigma Chemical Co. (St. Louis, MO,
United States). TRIzol was purchased from Invitrogen
(Carlsbad, CA, United States). cDNA reverse transcript kit
and SYBR green-based quantitative real-time PCR reagents
were purchased from Tiangen Biotech Co. Ltd (Beijing,
China). Nuclear protein extraction kit was purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) reagents and polyvinylidene fluoride (PVDF)
membranes were purchased from Millipore Corp (Bedford,
MA, United States). Bovine serum albumin (BSA) was
purchased from Roche (Basel, Switzerland). Tris-based saline-
Tween 20 (TBST) was purchased from Beijing Applygen
Technologies, Inc (Beijing, China). FITC-conjugated
secondary antibody, horseradish peroxidase (HRP)-
conjugated goat anti-rabbit antibody, and HRP goat anti-
mouse secondary antibody were purchased from ZSGB-Bio
(Beijing, China). Enhanced chemiluminescence (ECL) reagent
was purchased from Tanon (Beijing, China). Triton X-100 was
purchased from Sigma-Aldrich (St. Louis, MO, United States).
Goat serum and NF-κB-luc were purchased from Beyotime
Institute of Biotechnology (Haimen, China). Fluorescent dye
4, 6-diamidino-2-phenylindole dihydrochloride, lipofectamine
2000 reagent and Alexa Fluor-546 rhodamine-phalloidin were
purchased from Invitrogen (Carlsbad, CA, United States). Dual
luciferase Reporter Assay System was purchased from TransGen
(Beijing, China).

Antibodies against IKK, phospho-IKK, IκBα, phospho-IκBα,
NFκB p65, and phospho-NF-κB p65 were purchased from Cell
Signaling Technology (Beverly, MA, United States). Antibodies
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against IL-1β, TNF-α, CD68 and monocyte chemotactic protein 1
(MCP-1) were purchased from Proteintech Group, Inc (Chicago,
IL, United States). Antibodies against GAPDH, LaminB1 and
β-tubulin were purchased from Abcam (Cambridge,
United Kingdom).

Induction of Collagen-Induced Arthritis
Model and CS-semi5 Treatment
Bovine type II collagen was dissolved in 0.05 M glacial acetic acid
at a final concentration of 2 mg/ml overnight at 4°C. The
concentration of heat-killed M. Tuberculosis H37RA (non-

FIGURE 1 | CS-semi5 inhibits the development and progression of collagen-induced arthritis (CIA). (A) Schematic diagram of CIA model establishment. (B) Body
weight growth rate was measured weekly. (C) The severity of arthritis swelling was evaluated by mean clinical scores weekly after second immunization. (D) Hind paw
swelling was photographed on day 49. n � 7. #p < 0.05 and ##p < 0.01 compared with Control group; *p < 0.05 and **p < 0.01 compared with Model group.
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viable) in Complete Freund’s adjuvant was 4 mg/ml. The solution
was fully emulsified in an equal volume of complete Freund’s
adjuvant with an electric homogenizer in an ice-water bath. Mice
were injected subcutaneously with 100 μl emulsion at the base of
the tail to induce CIA. The solution was made with incomplete
Freund’s adjuvant at a final concentration of 2 mg/ml overnight
at 4°C. The same volume of emulsion was injected in the same
way on day 21 after the first injection (Figure 1A).

Mice were randomly divided into six groups with seven mice
per group: Control group, Model group,Methotrexate group, three
doses of CS-semi5 (50 mg/kg, 100 mg/kg and 200 mg/kg, i.e., CS-
semi5-L group, CS-semi5-M group and CS-semi5-H group). Mice
in the Control group were normal mice only treated with 0.9%
sodium chloride via intragastric administration. Except Control
group, all mice were induced with Bovine type II collagen. Mice in
the Model group were only induced Bovine type II collagen and
orally daily treated with 0.9% sodium chloride. Mice in the
Methotrexate group were intragastrically administrated with
1 mg/kg methotrexate weekly for 28 days following the second
immunization. CS-semi5 was dissolved in 0.9% sodium chloride
and administered orally (50 mg/kg, 100 mg/kg and 200 mg/kg,
respectively) daily for 28 days following the second immunization.

Following day 21 after booster immunization, clinical arthritis
was assessed by two independent examiners blinded to
experiments according to the following criteria: grade 0,
normal; grade 1, mild, but definite redness and swelling of the
ankle or wrist, or apparent redness and swelling limited to
individual digits, regardless of the number of affected digits;
grade 2, moderate redness and swelling of ankle or wrist; grade
3, severe redness and swelling of the entire paw including digits;
grade 4, maximally inflamed limb with involvement of multiple
joints (Sumariwalla et al., 2002). Each paw was graded from 0 to 4,
and themaximumpossible score for eachmouse was 16. On day 49
after the second immunization, mice were sacrificed. Ankle joints,
hind paws and surrounding tissues were obtained from all mice
and fixed in 10% formalin. Mouse serum was obtained via cardiac
puncture and centrifugated in serum separator microtainer tubes.

Micro-Computed Tomography Analysis
Micro-CT (Siemens Inveon, Germany) scans of the right hind
paws were performed at the Institute of Laboratory Animal
Science, Chinese Academy of Medical Sciences, Beijing (China).
Inveon Research Workplace III software (Germany) was used to
reconstruct cross-sectional images into a three-dimensional-
structure and to quantitatively determine the degree of bone
loss based on bone mineral density (BMD, mg/cm3). Two
millimeters below the center of the epiphyseal line with 100
slices was selected as the region of interest (ROI) for the analysis.

Histopathological Examination
Hind paws fixed in formalin were decalcified for two months and
embedded in paraffin blocks. Paraffin tissue sections (5 µm thick)
were subjected to hematoxylin and eosin (H&E) staining,
Safranin O/fast green staining, and toluidine blue and tartrate-
resistant acid phosphatase (TRAP) staining.

Samples subjected to H&E staining were analyzed using light
microscope (IX71, Olympus) to assess pathological changes of the

ankle joints. Histologic scores were evaluated on the basis of
synovial inflammation, cartilage destruction and bone erosion
(Li et al., 2013a). The histologic score was determined by two
independent examiners, in accordance with published standards:
1) inflammatory cell infiltration: score 0, no inflammatory cell
infiltration; score 1, mild infiltration; score 2, moderate infiltration;
score 3, severe infiltration. 2) synovial hyperplasia: score 0, no
hyperplasia; score 1, mild synovial hyperplasia; score 2, moderate
synovial hyperplasia; score 3, severe synovial hyperplasia. 3)
destruction of articular cartilage: score 0, no destruction; score
1, mild cartilage destruction; score 2, moderate cartilage
destruction; score 3, severe cartilage destruction accompanied
with loss or crush of the cartilage. 4) destruction of bone: score
0, no destruction; score 1, mild destruction; score 2, moderate
destruction; score 3, severe destruction and large areas of bone loss.
The total score of each mouse was calculated. The number of
synovial lining layers was counted to provide a semi-quantitative
assessment of the degree of three features assessed (from 0, absent
to 3, strong): enlargement of lining cell layer, cellular density of
synovial stroma, leukocytic infiltrate, and then total score was
summed up (Chaplan et al., 1994).

Samples subjected to Safranin-O/Fast-green staining were
analyzed to evaluate cartilage loss. An Osteoarthritis Research
Society International (OARSI) score was assigned to each
Safranin-O/Fast-green-stained section according to the OARSI
score system: 0 Normal; 0.5 Loss of Safranin-O without structural
changes; 1 Small fibrillations without loss of cartilage; 2 Vertical
clefts down to the layer immediately below the superficial layer
and some loss of surface lamina; 3 Vertical clefts/erosion to the
calcified cartilage extending to <25% of the articular surface; 4
Vertical clefts/erosion to the calcified cartilage extending to
25–50% of the articular surface; 5 Vertical clefts/erosion to the
calcified cartilage extending to 50–75% of the articular surface; 6
Vertical clefts/erosion to the calcified cartilage extending >75% of
the articular surface (Glasson et al., 2010). Articular cartilage
areas were dyed red and quantified by tracing regions positive for
Safranin-O staining with Image J Software (NIH, United States)
(Little et al., 2009).

Samples subjected to TRAP staining were observed, and a light
microscope was used to identify osteoclasts. TRAP-positive
regions were dyed red and quantitatively analyzed using Image
J Software (NIH, United States) (Li et al., 2013b).

Immunohistochemical Assays
Joint samples were incubated with specific antibodies for murine
CD68, NF-κB p65 and MCP-1 according to standard
immunohistochemical protocols. Pathological changes were dyed
brown. Pathological changes detected by immunohistochemistry
were analyzed quantitatively using Image J Software (NIH,
United States).

Cell Culture
The cell line (RAW264.7) was purchased from American Type
Culture Collection (ATCC, Manassas, VA, United States) and
cultured in DMEM supplemented with 10% (vol/vol) FBS at 37°C
under 5% CO2 and 95% humidity. Cells were used between
passage 3 and 5.
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In vitro Osteoclast Genesis Assays
To generate osteoclasts, RAW264.7 cells (1×104 cells/well into 96-
well plate) were cultured with 50 ng/ml of RANKL and treated
with CS-semi5 at a concentration of 1 μmol/L. After 7 days, cells
were fixed in 4% paraformaldehyde for 10 min, and TRAP
staining was carried out for osteoclast detection according to
the manufacturer’s instructions.

Enzyme-Linked Immunosorbent Assay
RAW264.7 cells were seeded into 96-well culture plates at 4×104
cells/well. After overnight culture, cells were incubated with LPS
(1 μg/ml) and CS-semi5 (0.01, 0.1 and 1 μmol/L) for 24 h.
Supernatant was subsequently collected for ELISA analysis.

Concentrations of TNF-α and IL-1β were measured using
ELISA kits according to the manufacturer’s instructions.
Standard curves were generated based on non-linear regression
analysis of known concentrations of TNF-α and IL-1β (Prism,
GraphPad Inc., San Diego, CA, United States).

Western Blot Analysis
RAW264.7 cells were seeded into a 6-well culture plate at 4×105
cells/well. Cells were incubated as described in 2.9 and lysis to
extract protein. Nuclear proteins were extracted according to the
manufacturer’s instructions for detection of NF-κB p65.

Proteins were subjected to 10% SDS-PAGE and transferred to
a PVDF membrane after separation. After being blocked with 5%
BSA in TBST at room temperature for 1 h, membranes were
incubated with primary antibodies against TNF-α, mature IL-1β,
IKK, p-IKK, IκBα, p-IκBα, NF-κB p65, p-NF-κB p65, β-tubulin,
GAPDH and LaminB1 overnight at 4°C. Membranes were
washed with TBST and then incubated with secondary
antibodies at room temperature for 1 h. Membranes were
washed with TBST again, and ECL signal was detected using
the Tanon 2000 Imaging system (Beijing, China). Blot images
were quantified by densitometry using ImageJ Software (NIH,
United States).

Immunofluorescence
RAW264.7 cells were seeded at 5×104 cells/well on glass
coverslips in plates and fixed using 4% paraformaldehyde for
30 min at room temperature. Fixed cells were permeabilized for
1 h using 0.2% triton X-100 in PBS containing 10% goat serum,
then stained with NF-κB p65 antibody (diluted 1:400) at
overnight 4°C. Cells were then washed with PBS and
incubated with FITC-conjugated second antibody for 1 h at
room temperature. After being washed in PBS, nuclei were
counterstained for 3 min with fluorescent dye 4, 6-diamidino-
2-phenylindole dihydrochloride. Stained cells were analyzed
using confocal laser scanning fluorescence microscopy (Leica
TCS SP5-II).

Luciferase Assay
After transfection with NF-κB and Renilla luciferase reporters
into 293T cells, CS-semi5 (0.01, 0.1, and 1 μM) was added to
complete DMEM medium containing 1 μg/ml of LPS for 24 h.
The double luciferase reporter assay was performed according to
the manufacturer’s protocol.

Statistical Analysis
GraphPad Prism version 8.0.2 was used to calculate the
significance among groups. Data were presented as mean ±
standard error of mean (SEM). Data were analyzed using one-
way analysis of variance followed by Tukey’s HSD post-hoc test. A
p-value <0.05 was considered as statistically significant difference.

RESULTS

CS-semi5 Suppresses Collagen-Induced
Weight Loss and Lowers Arthritis Scores
In this study, we used an animal model of CIA to evaluate the
therapeutic effects of CS-semi5 treatment. The scheme for collagen-
induced arthritis is shown in Figure 1A. Treatment and
measurement started on day 21 following the second
immunization and continued until day 49 (Figure 1A).
Pathological features associated with the CIA induction, such as
reduced body weight and increased clinical scores, were apparent
and observed to worsen over time in mice in the Model group after
the second immunization (Figures 1B,C). As shown in Figure 1B,
treatment with CS-semi5 (200mg/kg once daily) notably
decelerated body weight loss of mice from day 28 to day 49. A
similar reduction in clinical scores was observed for CS-semi5-H
and Methotrexate (Figure 1C). As shown in Figure 1D, hind paw
swelling was commonly observed formice in theModel group at the
terminus of the experiment. In contrast, mice in the CS-semi5
(50 mg/kg and 100mg/kg) groups showed a dose-dependent
alleviation of hind paw swelling. Similar changes were observed
for mice in the Methotrexate group (Figure 1D). These results
suggest that CS-semi5 effectively suppresses the progression of CIA.

CS-semi5 Limits Synovial Inflammation in
CIA Mice
To investigate the effects of CS-semi5 on CIA mice, we performed
histopathological analysis of joints. It has been established that
synovial inflammation and cartilage erosion are critical
pathological features of RA (Bottini and Firestein, 2013).
Neither synovial inflammation nor cartilage loss was observed
in normal mice (Figure 2A). RA-associated histopathological
features were observed in Model group, including synovial
lining hyperplasia, inflammatory infiltration and pannus
formation (indicated by red arrows). Black arrows indicate
invasive synovial phenotype, cartilage fracture and cartilage loss
observed in CIAmice. In contrast to Model group, mice in the CS-
semi5-L and CS-semi5-M groups showed a moderate reduction of
inflammation, and mice in the Methotrexate and CS-semi5-H
groups showed even more striking changes.

Pathological scores confirmed the presence of severe joint
erosion in Model group (Figure 2B). Pathological scores
indicated that CS-semi5 treatment (200 mg/kg) markedly
inhibited joint destruction and bone erosion. Prominent synovial
hyperplasia was analyzed via synovitis score (Figure 2C).
Immunohistochemical assay showed increased CD68+ expression
in Model mice compared to normal mice (Figure 2D), indicating a
greater number of recruited macrophages. The results showed that
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CS-semi5 dose-dependently inhibited macrophage infiltration in
joint and synovium compared to CIAmice, indicating a more anti-
inflammatory microenvironment in mice of CS-semi5 treatment.
Collagen induced an increase in the thickness of synovial lining
cells, whereas CS-semi5 treatment (200 mg/kg) alleviated both the
thickness of these lining cells and synovial inflammation. These
data suggest that CS-semi5 effectively relieves synovial injury and
joint inflammation in CIA mice.

CS-semi5 Prevents Cartilage Erosion in CIA
Mice
Because cartilage erosion is a characteristic feature of RA (Zeng
et al., 2016), we examined the capacity of CS-semi5 with respect

to cartilage repair. As expected, both cartilage loss and reduced
cartilage thickness were observed in Model group, with
hypertrophic chondrocytes in the deep cartilage zone also
observed in high-power views of Safranin-O/Fast-green
sections (Figure 3A). The administration of CS-semi5
significantly ameliorated cartilage degradation in a dose-
dependent manner, whereas methotrexate did not increase
cartilage thickness. Cartilage degradation was notable in mice
in the Model group, as evidenced by markedly increased OARSI
scores and reduced cartilage area. However, CS-semi5 dose-
dependently limited the progression of cartilage erosion
characteristic of the CIA (Figures 3B,C). These results
demonstrate that CS-semi5 can limit the development of
cartilage loss and repair cartilage erosion.

FIGURE 2 | CS-semi5 limits collagen-induced synovium inflammation and inflammatory infiltration in CIA mice. (A) Histologic images of talus bone and cartilage
surface of ankle joints stained with H&E (40×magnification). Red arrows indicate synovial lining hyperplasia, inflammatory infiltration and pannus formation, and black
arrows indicate invasive phenotype of the synovium. Bar indicates 50 μm. (B) Pathological scores were calculated. (C) The degree of synovitis was semi-quantified
based on the synovial lining layers. (D)Representative histologic sections of ankle joints following immunostaining with CD68. CD68+macrophages stained in dyed
brown. Scale bar represents 100 μm n � 7. ##p < 0.01 compared with Control group; *p < 0.05 and **p < 0.01 compared with Model group.
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CS-semi5 Attenuates Bone Loss and
Destruction Induced by CIA
To further explore the role of CS-semi5 in ameliorating bone
destruction, we analyzed bone mineral density Li et al., 2013a.
Joint destruction and bone loss were observed in Model group,
as indicated by blue and red arrows (Figure 4A). Micro-CT
imaging of the hind paws revealed that both methotrexate and
CS-semi5 dose-dependently alleviated joint destruction and bone
erosion. Digital quantification of bone mineral density further

corroborated the therapeutic effects of methotrexate and CS-
semi5 (Figure 4B). Other relevant indicators from micro-CT
analysis are shown in Supplementary Figure.

In support of CS-semi5’s inhibitory effects on bone erosion,
additional evidence was obtained from TRAP staining
(Figure 4C). The region of TRAP-positive osteoclasts was
thick in Model group. CS-semi5 (50, 100, and 200 mg/kg)
attenuated osteoclast numbers in CIA mice in a dose-
dependent manner. Digital evaluation of the TRAP-positive
areas further confirmed these results (Figure 4D). These data

FIGURE 3 |CS-semi5 alleviates collagen-induced cartilage thickness reduction and cartilage loss in CIA mice. (A) Safranin O/fast green staining of ankle joints. Red
arrows indicate cartilage. Original magnification was 100×, and 200× magnification was used in high-power views. Bar respectively indicates 100 and 50 μm. (B) The
severity of cartilage loss was analyzed based on the OARSI score system. (C) Articular cartilage areas were quantified by tracing Safranin O-positive stained areas. n � 7.
##p < 0.01 compared with Control group; *p < 0.05 and **p < 0.01 compared with Model group.
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demonstrate CS-semi5 prevents collagen-induced bone
destruction and bone marrow erosion in CIA mice.

CS-semi5 Regulates Inflammatory
Mediators in CIA Mice
Inflammatory cytokines play key roles in the pathogenesis of RA
(Brennan et al., 1998). To investigate the effect of CS-semi5 on
inflammatory mediators and assess its therapeutic efficiency,
chemokine (MCP-1) and NF-κB expression in mice paws were
detected via immunohistochemical assay. The results showed that
CS-semi5 significantly inhibited MCP-1 and NF-κB expression in
CIA mice (Figures 5A,B).

In addition to these cytokines, TNF-α and IL-1β are also
considered fundamental, as they are known to induce production
of other inflammatory cytokines in RA (Mukaida et al., 1990).
Therefore, the effects of CS-semi5 on the expression of
proinflammatory cytokines (TNF-α and IL-1β) in the serum

were determined by ELISA. CS-semi5 treatment (200 mg/kg)
notably inhibited TNF-α and IL-1β expression in serum
(Figures 5C,D). These data suggest that CS-semi5 reduces
inflammation in CIA mice to exert an anti-CIA effect.

CS-semi5 Suppresses Macrophage
Activation and Differentiation in vitro
To build on our observations of the effects of CS-semi5 on CIAmice,
we next investigated the inhibitory effect in vitro. We confirmed via
Western-blot that CS-semi5 dose-dependently reduced TNF-α and
mature IL-1β protein expression in RAW264.7 (Figure 6A).
Consistent with a role in protein inhibition, CS-semi5 treatment
decreased mature IL-1β protein secretion in a dose-dependent
manner and reduced TNF-α protein secretion at high
concentrations (Figures 6B,C). These data show that CS-semi5
reduces production of proinflammatory cytokines inRAW264.7 cells.

To examine the effects of CS-semi5 on RANKL-induced
osteoclast genesis, we incubated RANKL-treated RAW264.7

FIGURE 4 | CS-semi5 attenuates bone destruction and bone marrow erosion in CIA mice. (A) Representative micro-CT 3D images of hind paws as recorded on
day 49. Red arrows indicate the ankle joint structure, and blue arrows indicate the joint space. (B) Bone marrow erosion was measured via digital quantification of bone
mineral density. (C)Osteoclasts of the ankle joints were stained with TRAP. Red areas indicate osteoclasts. Original magnification was 40×, and 100×magnification was
used in high-power views. Bar respectively indicates 100 and 50 μm. (D) TRAP-positive stainingwasmeasured by digital quantification. n � 7. ##p < 0.01 compared
with Control group; *p < 0.05 and **p < 0.01 compared with Model group.
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cells with 1 μmol/L CS-semi5. TRAP-positive cells containing
more than three nuclei were counted as osteoclasts. CS-semi5
treatment reduced the number of RANKL-induced osteoclasts
(Figure 6D). These data suggest that CS-semi5 inhibits RANKL-
induced osteoclast genesis.

CS-semi5 Inhibits Macrophage Activation
via the NF-κB Pathway
Increased NF-κB activation has been linked to the progression of
aggressive inflammation in RA (Makarov, 2001). Therefore, we
evaluated the effect of CS-semi5 on NF-κB activity. CS-semi5
dose-dependently inhibited phosphorylation of IKK, IκBα, and
NF-κB in RAW264.7 cells incubated with LPS (1 μg/ml)
(Figure 7A). Furthermore, LPS stimulation increased nuclear
translocation of NF-κB compared to normal control, while CS-
semi5 (1 μmol/L) significantly reduced levels of nuclear NF-κB

(Figure 7B). NF-κB suppression was further confirmed by
analyzing NF-κB luciferase activity (Figure 7C). The
production of total NF-κB p65 in the cell lysate solution was
not affected by CS-semi5 treatment (Figure 7D). We also
determined that CS-semi5-treated cells were characterized by
reduced p65 phosphorylation and nuclear accumulation
(Figure 7E). These results demonstrate that, in RAW264.7
cells, CS-semi5 reduces inflammatory disorders via the NF-κB
pathway.

DISCUSSION

RA greatly hinders the ability of many patients to participate
in daily activities, including household work, and reduces
health-related quality of life, leading to severe disability and
mortality (Solomon et al., 2003). The most commonly used

FIGURE 5 | CS-semi5 attenuates CIA-induced arthritis in vivo. (A) Histologic sections of ankle joints following immunostaining with MCP-1 and NF-κB antibodies
(40×magnification). (B) Positive staining wasmeasured by digital quantification. (C,D) Serum IL-1β and TNF-αwere assessed by ELISA. n � 7. ##p < 0.01 compared with
Control group; *p < 0.05 and **p < 0.01 compared with Model group.

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 6551019

Li et al. CS-semi5 Ameliorates RA Through NF-κB

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


medications in RA patients are disease-modifying anti-
rheumatic drugs (DMARDs), which are limited by
gastrointestinal toxicity. However, DMARDs do not relive
cartilage erosion, joint damage or bone loss in RA patients
(Lopez-Pedrera et al., 2020). Chondroitin sulfate (CS) and
glucosamine are glycosaminoglycans that are considered to
be symptomatic slow-acting drugs for osteoarthritis
(SYSADOA) (Henrotin et al., 2014). Moreover, CS is major
component of cartilage and displays many biological
characteristics, such as antitumor, anticoagulant, and anti-
inflammatory properties, biocompatibility, and immune-
regulatory properties (Lian et al., 2013; Ustyuzhanina et al.,
2017). The existence of marine animal sources of CS is
compatible with low toxicity and medicinal properties (Wang
et al., 2020). In addition, CS has also been reported in clinical
trials to show symptomatic efficacy in knee osteoarthritis
(Bruyere et al., 2008). It has been shown that CS can

improve articular function and ease joint swelling, pain and
effusion (Clegg et al., 2006). CS is sold in America as a dietary
supplement, whereas it has been registered as a medication in
Europe (Messina et al., 2019). In this study, we investigated the
effects of CS in an animal model of CIA and explored its
potential therapeutic effect on RA. Same with other
preclinical studies, we started the administration after the
second immunization before RA clinical symptoms
completely appeared (Huang et al., 2019; Sun et al., 2019).

It has been established that RA involves a complex interplay
between synovial inflammation, cartilage erosion and bone
destruction (McInnes and Schett, 2011). In RA, the synovium
can acquire aggressive phenotype, including synovial
inflammation, synovial hyperplasia and inflammatory cell
infiltration; it can also play a critical role in regulating
cartilage and bone loss by secreting proinflammatory cytokines
(Bottini and Firestein, 2013). Cartilage erosion is also a key trigger

FIGURE 6 | CS-semi5 downregulates TNF-α and IL-1β production and blocks osteoclast differentiation in RAW264.7 cells. (A) RAW264.7 cells were incubated
with or without LPS (1 μg/ml) for 24 h. Secretion of TNF-α and IL-1β proteins was evaluated by western blot assay. (B,C) Secretion of TNF-α and IL-1β proteins was
evaluated by ELISA. (D) RAW264.7 cells were cultured for 7 days with RANKL (50 ng/ml) or CS-semi5 (1 μmol/ml), then stained for TRAP activity. Bar indicates 50 μm
n � 3. #p < 0.05 and ##p < 0.01 compared with Control Group; *p < 0.05 and **p < 0.01 compared with LPS stimulation Group.
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of RA processes through the destruction of surface cartilage and
joint-space narrowing (McInnes and Schett, 2011). Another
notable feature of RA is bone destruction meditated by
excessive activation of osteoclasts (Boyle et al., 2003). The
activation and invasion of osteoclasts promotes prolonged
inflammation and erodes the periosteal surface adjacent to the
articular cartilage (Gravallese et al., 1998). Consistent with the
above description, CIA mice were characterized by aggressive
synovial inflammation, cartilage erosion and bone loss, ultimately
leading to weight loss and paw swelling (Figure 8). CS-semi5
treatment, however, was able to effectively limit the development

of RA and attenuate weight loss and paw swelling in CIA mice.
CS-semi5 dose-dependently alleviated three main RA pathologies
(i.e., synovial inflammation, cartilage erosion and bone loss), as
shown in Figures 1–4.

Previous reports showed that infiltration of activated
macrophages results in cartilage and bone destruction (McInnes
and Schett, 2017). In RA, activated macrophages accumulate in the
joint capsule and promote synovial inflammation and cartilage
erosion by secreting proinflammatory factors (Lee et al., 2017;
Wang et al., 2017; Weyand et al., 2017). Chemokine MCP-1, TNF-
α and IL-1β play critical roles in the pathology of RA, ultimately

FIGURE 7 |CS-semi5 inhibits activation of the NF-κB pathway. (A)RAW264.7 cells were treated with CS-semi5 (0.01, 0.1 or 1 μmol/L) for 24 h. IKK, IκBα, and NF-
κB phosphorylation was examined by western blot. (B) LPS-induced nuclear translocation of NF-κB p65was assessed by confocal laser fluorescencemicroscopy. Cells
were immuno-stained with an NF-κB p65 antibody (FITC, green), and nuclei were stained with DAPI in blue. Bar indicates 10 μm. (C) 293T cells were transfected with
NF-κB luciferase plasmid, then treated with CS-semi5 for 24 h. Luciferase activity was assayed. (D,E) RAW264.7 cells were stimulated with LPS and treated with
CS-semi5 (0.01, 0.1 or 1 μmol/L) for 24 h. NF-κB p65 in the cell lysis solution and in the nucleus were respectively determined by western blot. n � 3. #p < 0.05 and ##p <
0.01 compared with Control Group; *p < 0.05 and **p < 0.01 compared with LPS stimulation Group.
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leading to chronic inflammation and joint destruction (McInnes
and Schett, 2007; Gaffen et al., 2014; Sucur et al., 2017). In
particular, macrophage-produced TNF-α is a primary
therapeutic target in RA (Feldmann and Maini, 2008).
Macrophages, as osteoclast precursors, can differentiate into
osteoclasts in response to receptor activator of nuclear factor
(NF)-κB ligand (RANKL) (Walsh et al., 2006). Osteoclasts
secrete acid and lytic enzymes that degrade bone matrix,
causing bone resorption and lowering bone density (Clegg
et al., 2006). Therefore, we sought to investigate whether CS-
semi5 was able to alleviate inflammatory action and differentiation
in RAW264.7 cells. Consistent with our hypothesis, CS-semi5
exerted anti-RA therapeutic effects via the suppression of TNF-
α and IL-1β production in activated macrophages. In this article,
we mainly studied the anti-inflammatory effect of CS-semi5. In
future research, we will conduct further research based on other
stromal, cartilage and macrophage subpopulations.

NF-κB is a critical transcription factor that is extraordinarily
important in inflammation and immunity (Hayden and Ghosh,
2008; Vallabhapurapu and Karin, 2009). NF-κB has also been
studied as a key signaling factor involved in the development of
synovial inflammation and joint destruction (Miagkov et al.,
1998). Previous research has established that in RA,
macrophage-produced TNF-α and IL-1β are completely
dependent on NF-κB (Bondeson et al., 1999). Furthermore,
NF-κB-null mice failed to generate mature osteoclasts
(Franzoso et al., 1997). Receptor activator of nuclear factor
(NF)-κB ligand (RANKL) is a major osteoclastogenic
molecule. In addition, NF-κB signal is involved in osteoclast
activation and survival (Miyazaki et al., 2000). To investigate the
mechanism by which CS-semi5 affects regulation of macrophage

inflammation and differentiation, we evaluated the effect of CS-
semi5 on the NF-κB pathway. To this end, we found that CS-
semi5 downregulated LPS-induced phosphorylation of IKKα/β
and IκBα, inhibited p65 nuclear translocation and reduced
production of TNF-α and IL-1β (Figure 7). According to our
results in this study and other unpublished results, we think CS-
semi5 is a multi-targets compound and has effect on NF-κB and
monocytes. In future, more experiments will be needed to
elucidate the detailed mechanism how CS-semi5 inhibits NF-
κB or plays its role by connecting M1 or M2 macrophages and
monocytes together (Chou et al., 2005; Gopalakrishnan et al.,
2008; Henrotin and Lambert, 2013).

In this study, CS-semi5 andMethotrexate administration were
started after the second immunization before RA clinical
symptoms completely appeared, which was in accord with
many other researches. But because there are still no signs of
inflammation at day 21 in CIA model, true therapeutic effect of
CS-semi5 on RA would need more experiments to be assessed.

Collectively, CS-semi5 greatly limited synovial inflammation and
ameliorated cartilage erosion and bone loss in vivo in CIA mice
(Figure 8). CS-semi5 reduced TNF-α and IL-1β production by
activated macrophages. CS-semi5 also effectively inhibited the NF-
κB signaling pathway, including p65 nuclear translocation and
phosphorylation of p-IKKα/β and p-NF-κB, both in vivo and in vitro.

CONCLUSION

In summary, CS-semi5 was demonstrated to have positive effects
on RA via the NF-κB pathway. CS-semi5 has development
potential as a promising candidate for the treatment of RA.

FIGURE 8 | Schematic diagram summarizing the mechanisms by which CS-semi5 alleviates synovial inflammation, cartilage erosion and bone loss in RA. CS-
semi5 effectively inhibits the NF-κB signaling pathway, including p65 nuclear translocation and phosphorylation of p-IKKα/β and p-NF-κB, both in vivo and in vitro. CS-
semi5 also reduces TNF-α and IL-1β production by activated macrophages and blocks RANKL-trigged osteoclast differentiation of macrophages.
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