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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of coronavirus
disease 2019 (COVID-19), caused the outbreak escalated to pandemic. Reports suggested
that near 1–3% of COVID-19 cases have a fatal outcome. Angiotensin-converting enzyme
inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are widely used in hypertension,
heart failure and chronic kidney disease. These drugs have been reported to upregulate
angiotensin converting enzyme 2 (ACE2) which produces Ang (1–7), the main counter-
regulatory mediator of angiotensin II. This enzyme is also known as the receptor of SARS-
CoV-2 promoting the cellular uptake of the virus in the airways, however, ACE2 itself proved to
be protective in several experimental models of lung injury. The present study aimed to
systematically review the relationship between ACEI/ARB administration and ACE2
expression in experimental models. After a comprehensive search and selection, 27 animal
studies investigating ACE2 expression in the context of ACEI and ARB were identified. The
majority of these papers reported increased ACE2 levels in response to ACEI/ARB treatment.
This result should be interpreted in the light of the dual role of ACE2 being a promoter of viral
entry to cells and a protective factor against oxidative damage in the lungs.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the pathogen of coronavirus disease 2019 (COVID-19), was first
reported to cause human infection in Wuhan, China, in
December 2019 (Tan et al., 2020). Since then, the outbreak
escalated to be a pandemic, causing devastation on all
continents. At the time of writing this review, there are more
than 40,000,000 confirmed cases and over 1,100,000 reported
deaths (WHO, 2020). Reports suggested that 1–3% of COVID-19
cases have a fatal outcome which prompted physicians and
healthcare professionals to seek prognostic factors. Advanced
age and cardiovascular comorbidities were confirmed to be
associated with a severe form of the disease (Zhang et al.,
2020) and angiotensin-converting enzyme inhibitors (ACEIs),
and angiotensin receptor blockers (ARBs) widely used in the
treatment of cardiovascular diseases were implicated as well
(Diaz, 2020). The reason for the latter is that the angiotensin-
converting enzyme 2 (ACE2), known to be the receptor of both
SARS-CoV-1 and SARS-CoV-2 (Li et al., 2003; Hoffmann et al.,
2020; Zhou et al., 2020), might be overexpressed in patients taking
ACEIs or ARBs potentially promoting the cellular uptake of the
coronavirus in the airways.

According to the classical view, angiotensin II (Ang II or Ang
(1–8)), produced by the angiotensin-converting enzyme (ACE), is
the major element of the renin–angiotensin system (RAS) owing
to its diverse effects predominantly mediated by the angiotensin
type 1 (AT1) receptor including vasoconstriction, a detrimental
remodeling as well as oxidative stress in various tissues. ACE2, a
homolog of ACE, converts Ang II to Ang (1–7) which acts on the
Mas receptor and has opposite effects to those of Ang II including
vasodilator, antioxidant, and anti-inflammatory actions. Thus,
the overall impact of the RAS is determined by the actual balance
between the ACE–Ang II and ACE2–Ang (1–7) counterparts of
the system (Arendse et al., 2019).

Reviewing data from clinical studies analyzing the relationship
between ACEI/ARB use and outcome of COVID-19 or ACE2
expression in humans led to the conclusion that heterogeneity
and quality of these clinical studies preclude writing a reliable and
conclusive review on this topic; this view is supported by some
recent reports (Grover and Oberoi, 2020; Liu et al., 2020). Instead,
the primary aim of the present systematic review was to examine
the relationship between ACEI/ARB administration and ACE2
expression based on data from animal experiments. Although
some previous reviews set a goal to summarize such animal data,
they did not cover this aspect in depth because clinical studies
were included as well (Kreutz et al., 2020; Sriram and Insel, 2020).
Therefore, our present study can be considered the first
comprehensive review on this topic which attempted also to
highlight the molecular mechanisms explaining ACE2 expression
changes.

THEORETICAL BACKGROUND

The RAS outlined in Figure 1A regulates arterial vascular
responses, water and sodium homeostasis and it contributes to

various pathological processes as well. Decreased renal blood flow
or diminished NaCl reabsorption at the macula densa of the
tubular system leads to renin release into the circulation (Davis
and Freeman, 1976). Renin acts on the serum globulin
angiotensinogen (AGT), cleaving the decapeptide Ang I also
known as Ang (1–10) (Leonard et al., 1956). ACE, a zinc
metalloprotease, which is expressed by vascular endothelial
cells and epithelial cells of the kidney and the lung converts
Ang I to the potent vasoconstrictor angiotensin II (Ang II; Ang
(1–8)). It elicits physiological and pathophysiological actions
mainly through the AT1 receptor which is widely expressed in
the cardiovascular system. Activation of AT1 receptors leads to
systemic vasoconstriction (fast pressor response) and aldosterone
secretion with consequent salt and water retention (slow pressor
response). Upon sustained overactivity of the RAS, Ang II acting
on AT1 receptors contributes to diverse pathological processes
including oxidative stress, inflammation and thrombosis (Husain
et al., 2015; Düsing, 2016; Gromotowicz-Poplawska et al., 2016;
Silva et al., 2017). In addition, remodeling in the organs of the
cardiovascular system develops as well: in the blood vessels the
amount of connective tissue is increased at the expense of
contractile elements whereas the wall of the cardiac ventricles
undergoes a hypertrophic transformation (Azevedo et al., 2016).
Both in the vessels and the heart extracellular matrix production
is increased. These alterations are partly mediated by
hemodynamic effects of Ang II (vasoconstriction, increased
afterload), partly by induction of specific proto-oncogenes (e.g.
c-fos, c-jun) that regulate expression of various growth factors
(e.g., fibroblast growth factor, platelet-derived growth factor,
transforming growth factor-β). RAS is regulated by negative
feedback with Ang II inhibiting the transcription as well as
secretion of renin by direct action on the juxtaglomerular
apparatus (Naftilan and Oparil, 1978).

Ang II can also cause vasodilatation acting on the angiotensin
II type 2 (AT2) receptor (Ferrario, 2006). A likely mechanism of
this effect is the formation of nitric oxide (NO) involving the
phosphatidylinositol 3-kinase/AKT/endothelial NO synthase
pathway (Santos et al., 2019). Although the AT2 receptor
mediates numerous beneficial effects against acute and chronic
cardiovascular disorders as well as fibrosis, inflammation,
neurodegeneration and apoptosis (Namsolleck et al., 2014;
Steckelings et al., 2017), its expression level is low in healthy
adults making its role negligible, however, it is upregulated in
various disease states such as atherosclerosis (Pernomian and da
Silva, 2015). It is worth mentioning that under AT1 receptor
blockade the Ang II level is increased due to lack of negative
feedback on renin secretion. The elevated plasma levels of Ang II
may evoke more significant effects on the AT2 receptor in spite of
the low receptor density.

A key counter-regulatory element in the RAS system is ACE2,
discovered in 2000 (Donoghue et al., 2000; Tipnis et al., 2000),
which is a membrane-associated enzyme that converts Ang I to
Ang 1–9 and Ang II to Ang 1–7 (Figure 1). Ang 1–9 can also be
converted to Ang 1–7 by ACE or by other peptidases. Ang (1–7)
stimulates the G protein-coupled receptor termedMas which was
shown to inhibit Ang II-induced cardiovascular hypertrophy and
remodeling (Rice et al., 2006; Arendse et al., 2019). The
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FIGURE 1 | (A) Physiological and pathological functions of the RAS. Renin acts on angiotensinogen releasing angiotensin I (Ang I; Ang 1–10). Angiotensin
converting enzyme (ACE) transforms Ang I to angiotensin II (Ang II; Ang 1 –8). Ang II activates angiotensin II type 1 (AT1) receptor causing systemic vasoconstriction, salt
and water retention, hypertension, fibrosis, inflammation, remodeling and tissue damage. Ang II also acts on angiotensin II type 2 (AT2) receptor. The AT2 receptor
mediates several beneficial effects; however, its expression is quite low in adults. Angiotensin converting enzyme 2 (ACE2) converts Ang I to Ang (1 –9) and Ang II to
Ang (1 –7). Ang (1 –9) is converted to Ang (1 –7) and Ang (1 –7) to Ang (1 –5) by ACE. Ang (1 –7) and Ang (1 –9) are also ligands of AT2 receptors. Ang (1 –7) stimulates the
Mas receptor, counteracting the Ang II-induced AT1-mediated harmful effects. Activation of AT1 receptors exerts signal transduction mechanisms by ERK1/2 and p38
MAPK pathways inducing downregulation of ACE2 expression. ACE2 has also non-catalytic function acting as a functional receptor for SARS-CoV-2. (B). Modulatory
roles of ACEIs and ARBs on the RAS. ACEIs decrease the concentration of the main endogenous agonist of the AT1 receptor, Ang II; Ang (1 –8). Direct antagonism of the
AT1 receptor (by ARBs) or reduction of the agonist (Ang II) concentration (by ACEIs) increases ACE2 expression with a marked reversal of ERK1/2 and p38 MAPK
phosphorylation signaling pathway. Since ACE is responsible for the degradation of Ang (1 –7) to Ang (1 –5), ACEIs also increase Ang (1 –7) and Ang (1 –9) plasma levels.
These peptides are agonists at AT2 and Mas receptors and play an important role in counter-regulatory effects against AT1-mediated deleterious changes. On the other
hand, ACE2 overexpression by ACEIs or ARBs potentially promotes the uptake of SARS-CoV-2 into the cells.
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TABLE 1 | Animal studies with ACEI and/or ARB intervention analyzing ACE2 expression (sorted by pathological models or conditions).

Study Species, pathogenic
model or condition

ACE2 activity and/or
expression modified
by model or condition
without intervention

Intervention Tissue sample
(RNA and/or

protein)

ACE2 activity
and/or expression with

intervention
(vs comparator group)

Healthy
Ferrario et al. Healthy lewis rats (8–10 weeks, male) — Lisinopril and/or losartan Left ventricle *↑ (vs vehicle)
Cano et al. Healthy lewis rats (60 days, male) — Losartan Salivary glands (RNA

and protein)
-(vs healthy control)

Hamming et al. Healthy lewis rats (male, age not spec.) — Lisinopril Kidney (RNA and
protein)

-(vs healthy control)

Hypertension
Jessup et al. mRen2 rats (congenic hypertension) (8–10 weeks, male) N/A Lisinopril or losartan Heart, kidney (RNA and

protein)
*↑ (vs vehicle)

Whaley-Connell
et al.

mRen2 rats (congenic hypertension) (4–5 weeks, male) — Valsartan Kidney (RNA
and protein)

*↑ (vs mRen2 + vehicle)

Igase et al. Spontaneously hypertensive rats (SHR) (12 weeks, male) N/A Olmesartan Aorta (RNA and protein) *↑ (vs SHR + vehicle)
Agata et al. Stroke prone spontaneously hypertensive rats and

wistar-kyoto rats (SHR) (12 weeks, male)
*↓ (kidney) Olmesartan Heart, kidney (RNA

and protein)
*↑ (vs SHR + vehicle)

Takeda et al. Dahl salt-sensitive rats (DS) with high salt diet (4–5 weeks,
male)

**↓ Candesartan Heart (RNA and protein) *↑ (vs DS + vehicle)

Zhong et al. Spontaneously hypertensive and healthy wistar-kyoto rats
(SHR) (10 weeks, male)

**↓ Telmisartan Aorta (RNA and protein) *↑ (vs SHR + vehicle)

Yang et al. Spontaneously hypertensive and healthy wistar kyoto rats
(SHR) (4 weeks, sex not spec.)

*↓ Enalapril Heart (RNA and protein) *↑ (vs SHR + vehicle, mRNA)/*↓
(vs SHR + vehicle, protein)

Myocarditis
Sukumaran et al. Lewis rats immunized with porcine cardiac myosin (8 weeks,

male)
— Telmisartan Heart (protein) *↑ (vs myocarditis + vehicle)

Sukumaran et al. *↓ Olmesartan Heart (RNA and protein) *↑ (vs myocarditis + vehicle)
Sukumaran et al. *↓ Telmisartan Heart (RNA and protein) *↑ (vs healthy + vehicle)

Diabetes mellitus
Graus-Nunes

et al.
C57BL/6 mice with diet-induced obesity model (3 months,
male)

*↓ Losartan or telmisartan Liver (RNA and protein) *↑ (vs high-fat diet only)

Lo et al. Akita mice with spontaneous type 1 diabetes or akita
angiotensinogen transgenic mice (11 weeks, male)

*↓ Losartan + perindopril Heart (RNA and protein) *↑ (vs healthy control)

Heart failure
Wang et al. C57BL/6 mice with cardiac remodeling after pressure

overload by transverse aortic constriction (8–10 weeks,
male)

*↓ Olmesartan or candesartan or
telmisartan or losartan or valsartan or
irbesartan

Heart (RNA and protein) *↓ (vs heart failure + saline
(cumulated))

Zhang et al. Sprague-dawley rats with cardiac remodeling after pressure
overload by transverse aortic constriction (male, age not
spec.)

*↓ Losartan or enalapril Left ventricle (RNA and
protein)

*↑ (vs heart failure + vehicle)

Smoking
Han SX et al. Sprague dawley rats, total body smoking model (twice a day)

(male, age not spec.)
*↓ Losartan Lung (protein) *↑ (vs smoking + vehicle)

Subtotal nephrectomy (STN)
Velkoska et al. Sprague dawley rats with STN (female, age not spec.) *↓ (kidney)/**↑ (plasma) Ramipril Plasma, kidney (RNA

and protein)
*↑ (kidney)/**↓ (plasma)

Burchill et al. Sprague dawley rats with STN (female, age not spec.) *↑ Ramipril Heart (RNA and protein) -(vs STN + vehicle)
Burrell et al. Sprague dawley rats with STN (age and sex not spec.) *↓ (kidney) Ramipril Plasma, heart, kidney

(RNA and protein)
-(vs STN + vehicle, heart)/*↑ (vs
STN + vehicle, kidney)

Myocardial infarction
(Continued on following page)
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downstream mechanism of the Ang (1–7)-activated Mas
receptor includes the phosphatidylinositol 3-kinase/AKT
pathway which induces endothelial NO synthase and the
consequent increase of NO production (Sampaio et al.,
2007). As mentioned above, the same mechanism of NO
formation can be induced by activation of AT2 receptors.
Ang (1–7) reduces the agonist-mediated increase in protein
synthesis and mitogen-activated protein kinase (MAPK)
signaling in cardiac myocytes, endothelial cells, smooth
muscle cells and renal proximal tubular cells (Gallagher
et al., 2008; Gopallawa and Uhal, 2016). Furthermore,
G-protein-independent signaling has been revealed for
the Mas receptor by interaction with postsynaptic
density 95 protein (Tirupula et al., 2015). Ang (1–7)
levels are increased after treatment with ARBs
suggesting that Ang (1–7) may participate in the
improvement of cardiac function. Furthermore, Ang
(1–7) treatment blocks the Ang II-stimulated
phosphorylation and activation of extracellular signal-
regulated kinase 1/2 (ERK1/2) (Tallant and Clark, 2003).
An alternative way for Ang (1–7) production is the
cleavage of Ang I by a neutral endopeptidase called
neprilysin (Yamamoto et al., 1992; Domenig et al.,
2016). ACE is the primary enzyme responsible for the
degradation of Ang (1–7) to Ang (1–5) (Chappell et al.,
1998) which further explains the increase in Ang (1–7) and
Ang (1–9) plasma levels associated with ACEIs. Ang (1–5),
similarly to Ang (1–7), possesses cardioprotective
properties by activating the Mas receptor with
consequent release of atrial natriuretic peptide (Arendse
et al., 2019). A further Ang (1–7) derivative is alamandine
which contains alanine instead of aspartate as the first
amino acid residue at position one (Lautner et al., 2013).
Alamandine acts at the Mas-related GPCR member D
(MrgD receptor) producing NO through the liver kinase
B1/AMP-activated protein kinase/endothelial NO synthase
pathway (Lautner et al., 2013). ACE2 activators, AT2

receptor agonists and Mas receptor agonists all opposing
the AT1 receptor-mediated harmful effects of RAS have
been investigated in preclinical models of drug
development (Tamargo et al., 2015). ACE2 is widely
expressed in the heart, kidney, testis, brain, intestine,
lung and endothelial cells. Like ACE, the glycosylated
ectodomain of ACE2 is cleaved by the disintegrin and
metalloprotease ADAM17 from the plasmamembrane and
released into the circulation (shedding). Typically, soluble
ACE2 cannot be measured in plasma of healthy
individuals, its detectable concentration in the serum
indicates an increased risk of cardiovascular disease
probably reflecting enhanced shedding of ACE2 induced
by elevated levels of AT II (Rice et al., 2006).

After binding of SARS-CoV-1/2 to ACE2 in the plasma
membrane of type II pneumocytes through its spike
protein, the virus–ACE2 complex is internalized by
endocytosis resulting in viral entry to the cell as well as
reduction of cell surface expression of ACE2 (Kuba et al.,
2005; Hoffmann et al., 2020). It must be emphasized thatT
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the transmembrane serine protease TMPRSS2 and possibly other
factor(s) are also needed for the viral entry (Matsuyama et al.,
2010; Hoffmann et al., 2020). Upon virus binding to ACE2,
ADAM17 cleaves the catalytically active ectodomain of ACE2
into the extracellular space (shedding) thereby further down-
regulating surface ACE2 in the infected cells (Inoue et al., 2007;
Haga et al., 2008). ADAM17 inhibition reduced virus replication
in vitro suggesting that shedding is involved in viral entry (Haga
et al., 2008). The soluble ACE2 may form a complex with virus
particles reducing infectivity (Li et al., 2003).

THE ROLE OF THE RAS IN ANIMAL
MODELS OF ACUTE LUNG INJURY

In three experimental models (acid aspiration, sepsis induced by
coecal ligation and perforation, endotoxin challenge) genetic
ablation of ACE2 in mice led to an aggravation of the
pathological condition (Imai et al., 2005). In the acid
aspiration model it has been revealed that an overactivity of
the ACE/Ang II/AT1 receptor pathway contributes to acute lung
injury whereas activation of ACE2 can counteract it. Several
subsequent studies using the lipopolysaccharide-induced acute
lung injury model provided further supporting data for the
protective role of ACE2 through activation of the Ang (1–7)/
Mas receptor pathway (Shi et al., 2013; Li et al., 2015; Li et al.,
2016; Chen et al., 2018; Liu et al., 2018; Ye and Liu, 2020).
Furthermore, the beneficial role of ACE2 was also demonstrated
in other forms of acute lung injury induced by bleomycin or
cigarette smoke (Rey-Parra et al., 2012; Wang et al., 2015; Yu
et al., 2016). ACE2 is the receptor for SARS-CoV-1 in the lung
allowing virus entry to cells and it is essential for virus replication
(Li et al., 2003; Kuba et al., 2005). SARS-CoV-1 infection or
administration of its spike protein resulted in reduced expression
of ACE2 in the lung along with worsening of lung function in
both normal and lung-injured mice. It increases Ang II levels that
acts through AT1 receptors causing/aggravating lung injury. An
overactivity of the ACE/Ang II/AT1 pathway relative to ACE2
was shown to contribute to acute lung injury inmice in other viral
infections (H5N1, H7N9, respiratory syncytial) as well (Yang
et al., 2014; Zou et al., 2014; Gu et al., 2016). All these results
support the view of “good ACE2, bad ACE” hypothesis regarding
acute lung injury (Nicholls and Peiris, 2005).

ANIMAL STUDIES EXAMINING THE
RELATIONSHIP BETWEEN ACEI/ARB
ADMINISTRATION AND ACE2
EXPRESSION

After a comprehensive search and selection, 27 animal studies
investigating ACE2 expression in the context of ACEI and
ARB were identified. Out of the 27 studies included, we
created 10 groups based on the pathological conditions or
experimental models (Table 1). (For details, see the
Supplementary Material).

Three studies assessed the influence of RAS inhibitors on
ACE2 expression under physiological conditions. Following 12-
days long oral administration, lisinopril or losartan elevated
ACE2 mRNA level in the heart of healthy rats but their
combination was ineffective (Ferrario et al., 2005). Regarding
cardiac ACE2 activity, losartan or the combined treatment led to
an increase but lisinopril had no effect. In accord, the cardiac Ang
(1–7) level was increased by either losartan or the combination. In
another study, a 3-weeks long lisinopril treatment inhibited renal
ACE but not ACE2 activity and increased plasma level of Ang
(1–7) (Hamming et al., 2008). In the third study, losartan failed to
change ACE2 levels in rat salivary glands (Cano et al., 2019).

Seven studies assessed the effects of RAS inhibitors on ACE2
levels in animal models of hypertension. Only 4 works examined
the effect of the disease itself on ACE2 expression: in 3 studies
reduced cardiac or aortic ACE2 expression was revealed along
with signs of cardiovascular remodeling compared to
normotensive control animals (Takeda et al., 2007; Zhong and
Ye, 2011; Yang et al., 2014). In the remaining one study, renal but
not cardiac ACE2 expression was decreased (Agata et al., 2006).
Four studies using spontaneously hypertensive rats provided
consonant results that ACEI or ARB treatment reduced blood
pressure, diminished cardiovascular remodeling and increased
cardiac or aortic ACE2 expression either partially or above levels
seen in normotensive rats (Igase et al., 2005; Agata et al., 2006;
Zhong and Ye, 2011; Yang et al., 2014). Also, olmesartan elevated
levels of Ang (1–7) in plasma and aorta (Igase et al., 2005). In
another study, the olmesartan-induced inhibition of remodeling
was reduced by an antagonist of Ang (1–7) (Agata et al., 2006). In
2 studies using a congenic model of hypertension (Ren-2), ACEI
or ARB treatment increased cardiac and renal ACE2 expression
(Jessup et al., 2006; Whaley-Connell et al., 2006). In Dahl salt-
sensitive hypertensive rats, cardiac remodeling and reduced
ACE2 expression were observed and candesartan treatment
inhibited both alterations (Takeda et al., 2007).

Three studies investigated the cardioprotective effects of
telmisartan and olmesartan against experimental autoimmune
myocarditis induced by immunization with porcine cardiac
myosin in rats (Sukumaran et al., 2011; Sukumaran et al.,
2012a; Sukumaran et al., 2012b). They found significantly
reduced myocardial ACE2 expression. ARB treatment
effectively suppressed myocardial protein and mRNA
expression of inflammatory markers [CD68, iNOS, NF-kB,
interleukin-1ß, interferon-α, monocyte chemotactic protein-1].
In contrast, myocardial protein levels of ACE2 and Mas receptor
were upregulated in the ARB-treated group.

In a high-fat diet-induced obesity model intrahepatic ACE2
gene expression was reduced (Graus-Nunes et al., 2019). Both
losartan and telmisartan significantly enhanced ACE2 mRNA
levels. Modulation of the intrahepatic RAS with a preference for
the ACE2/Mas axis over the ACE/AT1 axis after losartan or
telmisartan treatments caused beneficial hepatic and metabolic
effects such as reduced hepatic triacylglycerol and improved
glycemic control. Another study investigated the effects of
dual RAS blockade with ACEI and ARB on ACE2 expression,
hypertension and renal proximal tubular cell (RPTC) apoptosis in
type 1 diabetic Akita angiotensinogen (Agt)-transgenic (Tg) mice
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that specifically overexpress Agt in RPTCs (Lo et al., 2012). RAS
blockade with losartan or perindopril normalized renal ACE2
expression and urinary Ang (1–7) levels (both of which were
decreased in untreated Akita and Akita Agt-Tg) preventing
hypertension, albuminuria, tubulo-interstitial fibrosis and
tubular apoptosis. RAS blockade also prevented intrarenal RAS
activation, hypertension and nephropathy progression in diabetes
supporting the pivotal role of intrarenal ACE2 expression.

In the pressure overload model of heart failure based on a 28-
days long partial aortic constriction in the rat or mouse, cardiac
remodeling was accompanied by a reduced expression of cardiac
ACE2 and Mas receptor along with diminished Ang (1–7) levels
in the plasma (Zhang et al., 2014; Wang et al., 2016). RAS
blockade by ARBs or enalapril improved remodeling and
diminished or even reversed the downregulation of the ACE2/
Ang (1–7)/Mas receptor axis.

Smoking induced increased right ventricular systolic pressure,
thickened wall of pulmonary arteries with apparent hypertrophy
along with increased Ang II and decreased ACE2 levels in the
lung of rats (Han et al., 2010). Losartan administration
ameliorated these effects and partially reversed the decrease of
pulmonary ACE2 expression.

Experimental acute kidney injury induced by subtotal
nephrectomy in rats led to a reduction in renal ACE2 activity
(Velkoska et al., 2010) but a marked increase in cardiac ACE2
activity (Burchill et al., 2008). Short-term ACE inhibition by
ramipril reduced blood pressure, improved renal function,
regressed left ventricular hypertrophy and normalized cardiac and
renal ACE2 activity (Burchill et al., 2008). Another study investigated
the effect of long-term ACE inhibition on cardiac and renal ACE2 in
rats in chronic kidney disease induced by subtotal nephrectomy
(Burrell et al., 2012). In these animals no change in cardiac ACE2
expression was found compared to control rats. ACE inhibition with
ramipril reduced blood pressure and cardiac hypertrophy but failed
to change the cardiac ACE2 expression and activity.

In most studies (3 of 4) on myocardial infarction, ligation of a
coronary artery increased cardiac ACE2 expression as tested on day 7
or 28 (Burrell et al., 2005; Ocaranza et al., 2006; Burchill et al., 2012).
Regarding the latter time point, RAS inhibition for 28 days evoked
either no effect or a decrease of ACE2 expression. Losartan or
olmesartan treatment caused cardiac ACE elevation only when the
ligation itself caused no alteration. In the latter case, plasma Ang
(1–7) was slightly increased by ligation and further elevated by ARBs.
Regarding day 56 post ligation, a decrease in cardiac ACE2 expression
was detected which was prevented by an enalapril treatment for
8 weeks (Ocaranza et al., 2006).

Stress downregulated ACE2 mRNA level in the mouse colon
(Yisireyili et al., 2018). Administration of irbesartan inhibited the
activation of stress-induced AT1 pathway, reduced intestinal
reactive oxygen species accumulation, inflammation and
restored ACE2 expression as well (Yisireyili et al., 2018).

Plasma and cardiac expression of ACE and ACE2 were
determined in genetically engineered rats (TGR(hAGT)L1623)
given vehicle or valsartan (Ferrario et al., 2019). Rats expressing
the human AGT gene in their genome allowed investigation of non-
renin mechanisms of excess Ang II activity since rat renin is not able
to convert the human AGT protein. The antihypertensive effect of

valsartan after a 14-days treatment was associated with reduced left
ventricular wall thickness and augmented plasma concentrations of
Ang I andAng II. Cardiac ACE2 activity was significantly higher than
ACE activity in TGR (hAGT)L1623 rats but was not altered by
blockade of AT1 receptors.

DISCUSSION

Recently, ACE2 has become the focus of the cardiovascular research
as a counter-regulatory component of the RAS opposingmost actions
of Ang II by inhibiting cardiovascular hypertrophy and remodeling
(Karnik et al., 2017; Arendse et al., 2019; Santos et al., 2019). Based on
animal experiments, it was proposed that ACE2 is upregulated by
ACE/ARB treatment. Since ACE2 was identified as the receptor of
SARS-CoV-2 (Hoffmann et al., 2020; Zhou et al., 2020), ACE2
upregulation with consequently facilitated viral uptake might
aggravate lung injury and fatal outcome in the case of COVID-19.
Recent clinical reports (Diaz, 2020) and reviews (Fang et al., 2020) on
the COVID-19 pandemic raised such concerns without systematic
analysis of results from animal and human studies leading to
premature conclusions and even panic among physicians and
patients taking ACEIs or ARBs. However, leading international
organizations, including the WHO, realized the threat of
treatment discontinuation and recommended soon in the middle
of March 2020 that ongoing ACEI or ARB treatment should not be
stopped. In this review, a comprehensive analysis of data concerning
the effects of ACEIs/ARBs on ACE2 expression/activity in animals
has been performed. The majority of the studies reported increased
ACE2 levels in response to ACEI/ARB treatment.

In healthy animals, ambiguous results have been obtained
concerning the elevation of ACE2 expression by RAS inhibition,
only one paper supporting it (Ferrario et al., 2005; Hamming et al.,
2008; Cano et al., 2019). In models of various pathological conditions
(hypertension (Igase et al., 2005; Agata et al., 2006; Jessup et al., 2006;
Whaley-Connell et al., 2006; Takeda et al., 2007; Zhong et al., 2011;
Yang et al., 2014), myocarditis (Sukumaran et al., 2011; Sukumaran
et al., 2012a), diabetes (Lo et al., 2012; Graus-Nunes et al., 2019) and
smoking (Han et al., 2010), details are shown inTable 1), ACEIs and/
or ARBs led to normalization of decreased ACE2 expression or
elevated it above the control levels. In most studies on myocardial
infarction caused by coronary artery ligation ACE2 expression was
increased and RAS inhibition caused a further elevation in half of the
studies (Ishiyama et al., 2004; Burrell et al., 2005;Ocaranza et al., 2006;
Burchill et al., 2012). In the subtotal nephrectomy models of kidney
injury, ACEI treatment elevated the reduced ACE2 expression in the
kidney, but it did not affect myocardial ACE2 level (Burrell et al.,
2005; Burchill et al., 2008; Velkoska et al., 2010). ARB treatment
increased the diminished ACE2 expression in the stress-induced
colitis inmice (Yisireyili et al., 2018). In summary, it can be concluded
that two-third of the animal studies provided evidence for the
upregulation of ACE2 in response to ACEI or ARB treatment.

ACEI/ARB-evoked ACE2 upregulation can be explained
considering the following facts: Ang II acting on AT1

receptors downregulates ACE2 by several mechanisms: 1) Ang
II reduces ACE2 expression by triggering ERK1/2 or p38 MAPK
pathways; 2) Ang II induces cleavage of the catalytic unit of ACE2

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 6195247

Kriszta et al. RAS Inhibitors and ACE2 Expression

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


from the cell surface (shedding) by the disintegrin and
metalloprotease ADAM17; 3) Ang II induces internalization of
ACE2 (Kuba et al., 2010; Deshotels et al., 2014).

Consequently, the RAS blockade by ACEI/ARB leading to
diminished AT1 receptor stimulation results in increased tissue
levels of ACE2. Since ACE2 is a functional receptor for the SARS-
CoV-2, ACE2 upregulation could theoretically promote viral
entry into the alveolar epithelial cells. However, convincing
evidence has been provided that ACE2 activity inhibits acute
lung injury (Imai et al., 2008; Gopallawa and Uhal, 2014). The
molecular background of the protective role of ACE2 is
presumably due to the formation of Ang (1–7) which acting
on the Mas receptor opposes the various detrimental effects of
Ang II mediated by the AT1 receptor such as oxidative stress,
inflammation, tissue damage leading to severe lung injury. In
accord, Ang (1–7) levels are increased after treatment with
ACEIs/ARBs.

It must be emphasized that in the clinical setting, any benefit of
RAS-inhibiting drugs (ACEIs, ARBs) may originate from two
sources. On the one hand, the reduced level of AT1 receptor
activation itself results in desirable effects such as vasodilation,
enhanced sodium and water excretion, antiinflammatory and
antioxidant effects, reduction of platelet aggregation, reversal of
remodeling in the cardiovascular system etc. ACE2 upregulation
is a further direct consequence of the diminished level of AT1

receptor stimulation leading to activation of the Ang (1–7)–Mas
receptor axis. As this latter signaling pathway mediates effects
that are largely opposite to those of the Ang II–AT1 receptor axis,
similar, clinically beneficial actions may be induced. It means that
even if ACE2 upregulation is revealed upon ACEI or ARB use, the
therapeutic effects are not necessarily due to activation of the
ACE2–Ang (1–7)–Mas receptor axis.

CONCLUSION

Animal studies analyzed in the present review outlined a clear
picture that ACEI/ARB treatments can cause ACE2
upregulation with consequential beneficial effects considering
either cardiovascular disorders or lung injury. Nevertheless, the
question whether these drugs exert favorable or harmful clinical
effects regarding the outcome of COVID-19 is still unanswered.
Randomized, properly designed clinical trials are needed to
address this issue.

LIMITATIONS OF THE STUDY

The present systematic review is exclusively based on results from
animal experiments investigating the relation between ACEI/
ARB administration and ACE2 expression. ACEI/ARB-evoked
ACE2 upregulation per se is not proof that the beneficial effects of
these drugs are due to the ACE2 upregulation. The review does
not assess anything directly associated with COVID-19. The
clinical significance of the relationship between ACEI/ARB use
and ACE2 expression can only be assessed in properly designed
studies involving COVID-19 patients.

METHODS

This systematic review was reported according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses 2009 (see Supplementary Figure S1)
(PRISMA) Statement (Liberati et al., 2009). The protocol of
this study was designed following the principles of the
Cochrane Handbook for Systematic Reviews of
Interventions (Higgins et al., 2019) and uploaded in
advance to the Zenodo pre-print server (Kriszta et al.,
2020). Our aim was to investigate the effects of ACEIs and
ARBs on ACE2 activity and expression in experimental
in vitro and in vivo animal models.

Search
We searched MEDLINE, Embase, Scopus and Web of Science up
to 2020/05/17, with the following search key: (“angiotensin
converting enzyme inhibitor” OR “angiotensin receptor
blocker” OR captopril OR enalapril OR trandolapril OR
quinapril OR cilazapril OR zofenopril OR ramipril OR
fosinopril OR perindopril OR losartan OR valsartan OR
telmisartan OR irbesartan OR olmesartan OR candesartan)
AND (“angiotensin converting enzyme 2” OR “angiotensin
converting enzyme related carboxypeptidase” OR ACE2 OR
ACE-2 OR “peptidyl-dipeptidase A”) No language or other
filters were used in the search.

Selection
References were managed by the EndNote X9 software (Clarivate
Analytics, Philadelphia, PA, United States). Following the
removal of duplicates, title and abstract screening were
performed by two independent reviewers to identify
potentially eligible articles. Disagreements were reviewed by
third review author and resolved by consensus.

Data Extraction
Two independent reviewers extracted relevant data. The
disagreements between the independent reviewers were
resolved through consensus and discussion involving the
senior leaders. A standardized form (Excel datasheet) was used
to extract data from the included studies. For the systematic
review of experimental data, the extracted information included:
study characteristics, species, sex, age, strain in case of animal
models, or concentration (cell cultures or in vitro studies), dose
regimen, route of application, duration of the treatment,
outcome, Angiotensin (1–7) and Angiotensin (1–9) levels.

Data Synthesis
Extracted data from experimental studies were synthesized
exclusively narratively.

Risk of Bias Assessment
Bias assessment was performed by two authors independently
using the SYRCLE’s tool (Hooijmans et al., 2014). Disagreements
were resolved by a third investigator. Results of the risk of bias
assessment between studies are shown in Supplementary
Table S1.
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