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β-carotene, precursor of vitamin A, is an excellent antioxidant with many beneficial
properties. It is a lipid-soluble antioxidant and a very effective quencher of reactive
oxygen species (ROS) to reduce the oxidative stress. In contrast to vitamin A,
β-carotene is not toxic even consumed in higher amount when it is delivered from
natural plant products. Recently, we found that β-carotene acts as a potential
antioxidant in the oocyte to improve its quality. Even though many studies have been
reported that β-carotene has the beneficial contribution to the ovarian development and
steroidogenesis, it is unknown the effects of β-carotene on the spermatogenesis. This
investigation aimed to explore the hypothesis that β-carotene could improve
spermatogenesis and the underlying mechanism. And we found that β-carotene
rescued busulfan disrupted spermatogenesis in mouse with the increase in the sperm
concentration and motility. β-carotene improved the expression of genes/proteins
important for spermatogenesis, such as VASA, DAZL, SYCP3, PGK2. Moreover,
β-carotene elevated the testicular antioxidant capability by the elevation of the
antioxidant glutathione and antioxidant enzymes SOD, GPX1, catalase levels. In
conclusion, β-carotene may be applied for the infertile couples by the improvement of
spermatogenesis, since, worldly many couples are infertile due to the idiopathic failed
gametogenesis (spermatogenesis).
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INTRODUCTION

Infertility is a growing issue worldwide which now impacts 10%–15% of all couples with half of the
cases being attributed to male factors (Zhou et al., 2016; Wang et al., 2018). Epidemiological studies
reported that spermatozoa concentration was diminished, worldwide, by over 50% from 1973 to
2011, at the same time sperm motility was also decreased dramatically (Centola et al., 2016; Levine
et al., 2017). Various factors are involved in the rapid decline of semen quality, such as environmental
toxins (Checa Vizcaíno et al., 2016; Skakkebaek et al., 2016; Virtanen et al., 2017; Han et al., 2019;
Zhang et al., 2019), high fat diet (Ding et al., 2020), and cancer treatments (Trost and Brannigan
2012; Vakalopoulos et al., 2015). Many investigations have attempted to improve spermatogenesis
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andmale fertility using a busulfan treated animal model. Busulfan
can cause azoospermia by destroying testicular germ cells and
increasing sperm abnormalities (Chi et al., 2013; Jung et al., 2015;
Liu et al., 2019). It has been reported that molybdenum (Mo)
rescued mouse spermatogenesis by the improvement of male
germ cell development s, and maintaining of blood hormone
levels (testosterone, estradiol, and luteinizing hormone) (Liu
et al., 2019). Olive leaf extract has been found to improve
busulfan disrupted spermatogenesis (Ganjalikhan Hakemi
et al., 2019). Korean red ginseng can rescue busulfan induced
the disruption of spermatogenesis (Jung et al., 2015). Genistein
has been reported to decrease intra-testicular testosterone (ITT)
level and to rescue busulfan disrupted spermatogenesis in rats
(Chi et al., 2013). Furthermore, Zhao et al. (2020) found that
alginate oligosaccharides (AOS) improved busulfan disrupted
spermatogenesis at the single cell level.

β-carotene (C40H56) is one of the major dietary carotenoids
(Johnson 2002). β-carotene, alpha-carotene and beta
cryptoxanthin are the major precursors of vitamin A. Vitamin
A has been reported to pose a number of health advantages such as
retainment of eye health, epithelial function, embryonic
development, immune system function, and the cardiovascular
function, and even the reduction of cancer incidence (Boon et al.,
2010). β-carotene, widely present in vegetables and fruits such as
carrot, mango, and spinach, is the precursor of vitamin A (Boon
et al., 2010; Pysz et al., 2016). It is an effective lipid-soluble
antioxidant to maintain the reducing micro-environment in
biological systems (Gu et al., 2017; Nishino et al., 2017).
Consumption of high level of vitamin A can result in toxicity,
while β-carotene from natural plant products is nontoxic even
consumed in large amount. Moreover, β-carotene from fruits and
vegetables not only improves nutritional status of vitamin A but
also prevents the incidence of cancer (Fiedor and Burda, 2014).
Daily supplementation of β-carotene significantly increases
β-carotene and retinol bioavailability, consequently to benefit
follicular development and oocyte maturation (De Bie et al.,
2016). Short-term dietary β-carotene supplement ameliorates
ovarian steroidogenesis with the increase in the production of
progesterone (Arellano-Rodriguez et al., 2009), and benefits serum
insulin concentrations in goats (Meza-Herrera et al., 2013). We
found that β-carotene acts as a potential antioxidant in the oocyte
to improve its quality (Yu et al., 2019). Moreover, β-carotene has
been found to act as a valuable protective agent to improve heat
stress or titanium oxide nanoparticle induced spermatogenic
disorders due to its potent antioxidative effects (Orazizadeh
et al., 2014; Lin et al., 2016). Even though early studies have
suggested that β-carotene poses the beneficial contribution to
the ovarian development and steroidogenesis, and
spermatogenesis at specific condition, it is not understood the
effects of β-carotene on the spermatogenesis especially on the
conditional azoospermia (starting from the pubertal window). The
purpose of this investigation was to explore the hypothesis that
β-carotene could improve spermatogenesis at the pubertal window,
and the underlying mechanism.

MATERIALS AND METHODS

Study Design
This study was approved by the Committee on the Ethics of
Animal Experiments of Qingdao Agricultural University IACUC
(Institutional Animal Care and Use Committee; Approval #:
QAUIACUC20191102M) in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health
(Zhang et al., 2018; Zhao et al., 2020). (Detailed Materials and
Methods in the Supplementary Material) Mice were maintained
under a light: dark cycle of 12:12 h and at a temperature of 23°C
and humidity of 50%–70%, and with free access to food (chow
diet) and water (Zhang et al., 2018; Zhao et al., 2020). The main
purpose of this investigation was to explore the rescuing effects of
β-carotene on spermatozoa quality and the underlying
mechanisms.

Three-week-old ICRmale mice were given a single injection of
busulfan [40 mg/kg body weight (BW)] (Jung et al., 2015). We
would like to explore the beneficial advantages of β-carotene on
the spermatogenesis at pubertal period (Dutta and Sengupta
2016). The following day, the mice were dosed with corn oil
as the control or β-carotene in corn oil via oral gavage (0.1 ml/
mouse/d). β-carotene dosing solution was freshly prepared on a
daily basis and delivered every morning for five weeks. There
were fourteen treatment groups (30 mice/treatment): 1) Control
(vehicle control, corn oil); 2) β-caro 1 (β-carotene 1 mg/kg BW);
3) β-caro 10 (β-carotene 10 mg/kg BW); 4) β-caro 50 (β-carotene
50 mg/kg BW); 5) β-caro 100 (β-carotene 100 mg/kg BW); 6)
β-caro 200 (β-carotene 200 mg/kg BW); 7) β-caro 300 β-carotene
300 mg/kg BW); 8) B0 (busulfan alone); 9) B + β-caro 1 (busulfan
plus β-carotene 1 mg/kg BW); 10) B + β-caro 10 (busulfan plus
β-carotene 10mg/kgBW); 11) B+β-caro 50 (busulfan plus β-carotene
50mg/kg BW); 12) B + β-caro 100 (busulfan plus β-carotene
100mg/kg BW); 13) B + β-caro 200 (busulfan plus
β-carotene 200mg/kg BW); 14) B + β-caro 300 (busulfan plus
β-carotene 300mg/kg BW). After treatment, the mice were
humanely euthanized to collect samples for different analyses.

Spermatozoa Motility Determined by a
Computer-Assisted Sperm Analysis System
Spermatozoa motility and concentration were assessed by a
computer-assisted sperm assay (CASA) method according to
World Health Organization guidelines (WHO, 2010; Zhao
et al., 2016). The spermatozoa motility data were present
grade A + grade B (WHO, 2010).

Measurement of Plasma Steroid Hormones
Plasma testosterone (T) and oestrogen (E) levels were quantified
by mouse testosterone Elisa Kit and mouse estradiol Elisa Kit,
respectively, from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China) as reported in our early publication (Wang
et al., 2016).
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Measurement of Plasma AST and ALT
Plasma aspartate aminotransferase (AST; Cat #: C010-2-1) and
alanine aminotransferase (ALT; Cat #: C009-2-1) were measured
by the kits from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China) as reported in our previous publication
(Wang et al., 2016).

Measurement of Testis Antioxidant Enzyme
Activity
The activity of catalase (Cat #: A007-1-1), GPX1 (Cat #: A005),
SOD (Cat #: A001-3), T-AOC (Cat #: A015-2-1) in mouse testis
were detected by the kits from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China) as reported in our previous publication
(Wang et al., 2016).

Measurement of Testis Glutathione/GSSG
The testis levels of GSH/GSSG (Cat #: S0053) were detected by the
kits from Beyotime Bioengineering Institute (Shanghai, China) as
reported in our previous publication (Wang et al., 2016).

Western Blotting
Western blotting analysis was followed the procedure reported in
our previous publications (Wang et al., 2016; Zhao et al., 2016;
Zhang et al., 2018). The sources of primary antibodies are listed in
Supplementary Table S1. The experiments were repeated >3
times. The intensity of WB bands was determined by image J
software.

Immunofluorescent Staining
The procedure for immunofluorescent staining was reported in
our recent publications (Wang et al., 2016; Zhao et al., 2016;
Zhang et al., 2018). Supplementary Table S1 lists the primary
antibodies. Testis sections (5 μm) were prepared and subjected
to antigen retrieval and immunostaining as previously
described (Zhang et al., 2018). Briefly, sections were first
blocked with normal goat serum in PBS, followed by
incubation (1:150 in PBS-1% BSA) with primary antibodies
at 4°C overnight. After a brief wash, sections were incubated
with an Alexa 546-labeled goat anti-rabbit or donkey anti-goat
secondary Abs (1:100 in PBS; Beyotime Institute of
Biotechnology, Shanghai, China) at room temperature for
30 min and then counterstained with 4′,6-diamidino-2-
phenylindole (DAPI). The stained sections were visualized
using a Nikon Eclipse TE2000-U fluorescence microscope
(Nikon, Inc., Melville, NY), and the captured fluorescent
images were analyzed using MetaMorph software. A
minimum of 1,000 cells were counted for each section, and a
minimum of two to three tissue sections per animal were
analyzed. Three animals from the control or treatment
groups were analyzed. The number of positive cells was
expressed as the percentage of total cells counted. The data
was expressed as the average ±SD, N > 3.

Statistical Analysis
The data were determined by SPSS statistical software (IBM Co.,
NY) with one-way analysis of variance (ANOVA) following by

LSD multiple comparison test. All groups were compared with
each other for every parameter. The data were shown as the
mean ± SEM. Statistically significant was based on p < 0.05.

RESULTS

β-carotene Increased the Motility and
Concentration of Spermatozoa After
Busulfan Treatment
As shown in Figures 1A,B, β-carotene at the concentration of
1-300 mg/kg body weight (BW) did not affect mouse sperm
concentration or motility so much. However, after busulfan
treatment, β-carotene significantly increased sperm
concentration at 10 mg/kg BW compared to busulfan
alone (Figure 1A). 50 and 100 mg/kg β-carotene did not
significantly increased mouse sperm concentration
compared to busulfan alone, which may be due to the
dose dependent effect (the better dose is around
10 mg/kg). After busulfan treatment, all six doses of
β-carotene (1–300 mg/kg) significantly elevated mouse
sperm motility at similar level compared to busulfan alone
(Figure 1B). Because 10 mg/kg BW β-carotene produced the
relatively confound effect on improving mouse sperm
quality, most of the following experiments were done with
this dose. Moreover, the data were confirmed by the IHF
staining with the germ cell marker DAZL. Busulfan disrupted
the spermatogenesis by the decrease in the germ cells, while
β-carotene dramatically increased the number of germ cells
than busulfan alone. The data here suggested that β-carotene
can improve spermatogenesis. β-carotene did not affect body
weight, organ index, and other body parameters much
(Table 1). β-carotene did not improve the testis index
even though it improved busulfan disrupted
spermatogenesis. This may be due to β-carotene partially
improved the spermatogenesis not to that degree to affect
testis wet weight.

β-carotene Rescued Busulfan Disrupted
Meiosis Process During the
Spermatogenesis
Meiosis plays important roles in the controlling germ cell
development to haploid and maintaining genetic diversity. It
has been reported that the abnormal meiosis will induce
aneuploidy formation, even cause infertility, miscarriage or
even birth defect. In current investigation, busulfan disrupted
the meiosis process during the spermatogenesis with the
alteration in the percentage of cells at different stages
(Figure 2). The percentage of cells at leptotene and zygotene
was increased while the percentage of cells at diplotene was
decreased in busulfan treated mice (Figure 2B). However,
β-carotene rescued busulfan disrupted meiosis process with
the restoration of the percentage of the cells as similar levels
in control mice at all four stage of meiosis (Leptotene, zygotene,
Pachytene, and leptotene; Figure 2B).
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FIGURE 1 | Mouse sperm motility, concentration, and DAZL expression. (A) Mouse sperm concentration. The y-axis represents the concentration. The x-axis
represents the treatment (n � 30/group). a,b,c Means not sharing a common superscript are different (p < 0.05). (B) Mouse sperm motility. The y-axis represents the
percentage of cells. The X-axis represents the treatment (n � 30/group). a,b,c Means not sharing a common superscript are different (p < 0.05). (C) IHF for germ cell
marker DAZL.
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TABLE 1 | Mouse body and plasma parameters. Data present as Average ±SEM.a,b,c indicate a significant difference among different treatments (n � 20; p < 0.05).

Control Carotene 1 Carotene 10 Carotene 50

Body weight (g) 32.44 ± 2.25 36.54 ± 1.00 36.37 ± 1.38 35.34 ± 0.82
Testis index (% of body weight) 0.84 ± 0.074 0.67 ± 0.029 0.73 ± 0.027 0.72 ± 0.023
Kidney index (% of body weight) 1.94 ± 0.167 1.71 ± 0.082 1.70 ± 0.034 1.70 ± 0.059
Spleen index (% of body weight) 0.42 ± 0.05 0.36 ± 0.02 0.31 ± 0.02 0.33 ± 0.02
Liver index (% of body weight) 6.33 ± 0.52a 5.34 ± 0.22 bc 5.50 ± 0.12 bc 5.62 ± 0.22b

E2 (ng/L) 251.84 ± 8.87 291.75 ± 29.99 291.75 ± 17.52 286.68 ± 13.52
Testosterone (ng/L) 47.64 ± 3.69 30.40 ± 5.42 33.20 ± 6.20 37.48 ± 9.58
ALT 35.77 ± 0.77 34.83 ± 1.60 35.46 ± 0.82 34.37 ± 0.71
AST 70.6 ± 3.7 55.1 ± 1.6 66.4 ± 2.94 65.7 ± 3.0

Busulfan B + carotene 1 B + carotene 10 B + carotene 50
Body weight (g) 32.50 ± 0.55 32.86 ± 0.79 33.82 ± 0.56 35.73 ± 0.75
Testis index (% of body weight) 0.24 ± 0.009 0.21 ± 0.006 0.21 ± 0.012 0.19 ± 0.011
Kidney index (% of body weight) 1.72 ± 0.029 1.75 ± 0.063 1.65 ± 0.067 1.62 ± 0.048
Spleen index (% of body weight) 0.39 ± 0.016 0.38 ± 0.014 0.39 ± 0.019 0.31 ± 0.011
Liver index (% of body weight) 5.00 ± 0.098 4.80 ± 0.085 4.85 ± 0.105 5.62 ± 0.122
E2 (ng/L) 329.13 ± 29.15 273.31 ± 29.99 378.34 ± 21.88 422.15 ± 21.19
Testosterone (ng/L) 43.92.±7.29 33.92 ± 9.78 39.84 ± 6.12 40.40 ± 8.66
ALT 37.38 ± 1.13 38.71 ± 0.50 35.45 ± 1.08 38.80 ± 1.53
AST 78.6 ± 3.72 84.36 ± 7.91 75.56 ± 4.98 80.53 ± 8.87

FIGURE 2 | β-carotene rescued the meiosis process in spermatogenesis after busulfan treatment. (A) The representative images for the immunostaining of meiosis
marker SYCP3 at different meiosis stages. (B) The percentage of cells at different meiosis stages in different treaments n � 10.
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β-carotene Improved the Expression of
Important Genes for Spermatogenesis
In order to confirm β-carotene improving spermatogenesis
and search for the mode of action of it in rescuing
spermatogenesis, the gene and protein expression of
important factors in spermatogenesis was determined. We
did Q-RT-PCR for a lot of genes important for
spermatogenesis, and we found that the expression of eight

genes was increased by B + β-caro 10 group compared to
Busulfan alone, while just PIWIL1 was dramatically increased
by β-caro 10 compared to control (Figures 3A,B). At the same
time the protein level of PIWIL1 was determined by WB.
β-caro 10 significantly increased the protein level of PIWIL1
compared to control group. B + β-caro 10 significantly increase
PIWIL1 protein levels compared to B alone (Figure 3C). The
data here confirmed the Q-RT-PCR data. Meaning while, the
protein levels of germ cell marker VASA, meiosis protein
SYCP3, and sperm cell protein PGK2 were also detected by
IHF. β-caro 10 significantly elevated the protein level of VASA
compared to control, while busulfan significantly decreased
the protein level of VASA. However, B + β-caro 10 significantly
restored the protein of VASA to control level (Figures 4A,B).
β-caro 10 did not affect the protein levels of SYCP3 and PGK2,
however, busulfan significantly diminished these two proteins.
B + β-caro 10 significantly increased these two proteins to the
control levels (Figures 4A,B). The data here confirmed the
Q-RT-PCR data for these important genes in spermatogenesis.

β-carotene Improved the Anti-Oxidant
Status in Testes to Rescue the
Spermatogenesis
To explore the deep mechanisms of β-carotene improving
spermatogenesis, the anti-oxidant enzymes and glutathione
(GSH) level in testes were determined. We and other groups
have found that β-carotene can increase the anti-oxidant
capability to benefit the function of the biological systems
(Yu et al., 2019). GSH is an important antioxidant molecule.
β-caro 10 can increase the level of testicular GSH compared to
control although not significantly. Busulfan significantly
decreased testicular GSH level, while B + β-caro 10 and B
+ β-caro 50 mg/kg groups significantly increased the
testicular GSH levels compared to busulfan alone
(Figure 5). At the same time, the anti-oxidant enzyme
activity of catalase, GPX1 and SOD, and the total
antioxidant capability (T-AOC) were determined in the
testis samples. Compared to control, the activity levels of
catalase, GPX1, SOD and the level of T-AOC were
significantly increased by β-caro 10 mg/kg. Moreover, B+
β-caro 10 significantly elevated the activity levels of
catalase, GPX1 and SOD and the level of T-AOC
compared to B alone (Figures 6A,B). Furthermore, the
protein level of PTEN was detected by WB. It was found
that B alone increased the protein level of PTEN, while B +
β-caro 10 restored the protein level of PTEN to the control
level. All the data here further suggested that β-carotene can
improve the antioxidant capability in testes to improve the
spermatogenesis process.

DISCUSSION

It has been reported that the carotenoids in fruits play very
important roles to prevent diseases and maintain body functions.
Moreover, many investigations suggested β-carotene, lycopene,

FIGURE 3 | β-carotene improved the gene expression of important
makers in spermatogenesis. (A) The expression of eight important genes in
control and β-carotene groups. (B) The expression of eight important genes in
busulfan and busulfan + β-carotene groups. (C) Protein expression of
piwil1 in testicular samples by WB. *, p < 0.05.

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 5939536

Ma et al. β-Carotene Improves Spermatogenesis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 4 | β-carotene improved the protein expression of important makers in spermatogenesis. (A) IHF for important genes for spermatogenesis VASA, SYCP3,
and PGK2. (B) Quantitative data for IHF of VASA. (C) Quantitative data for IHF of SYCP3. (D) Quantitative data for IHF of PGK2. a,b,c,d Means not sharing a common
superscript are different (p < 0.05).
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lutein, zeaxanthin and other carotenoids possess lots of health
benefits. The blood concentration of β-carotene is about
2.54–3.3 μg/ml. It has been applied in many animal
investigations such as cow, goat, rabbit, and sow (Arellano-
Rodriguez et al., 2009; Aksak Karamese et al., 2015; Oliveira
et al., 2015; Szczubiał 2015; Merhan et al., 2016). In current
investigation, 1∼300 mg/kg β-carotene was used with or without
busulfan for dosing mice, we found that busulfan (single dose
40 mg/kg BW at 3 weeks of age) resulted in azoospermia in mice
during adulthood (8 weeks of age). The result was consistent with
lots of previous reports (Chi et al., 2013; Jung et al., 2015; Liu et al.,
2019). Moreover, β-carotene increased sperm concentration and
motility after busulfan treatment. The data suggested that
β-carotene can rescue spermatogenesis. Then, we set out to
investigate the underlying mechanisms by which β-carotene
rescued spermatogenesis.

β-carotene improved busulfan disrupted meiosis process.
Busulfan decreased the percentage of cells in late phases, while
β-carotene restored the percentage of these cells to the control
level. Meiosis is an important process to keep germ cell
development. And the abnormal meiosis may upset the
haploid formation which may lead to the infertility,
miscarriage, and so on (Men et al., 2019). Busulfan disrupted
the expression of genes/proteins important for spermatogenesis,
while β-carotene restored the expression of these genes/proteins
to the control level.

It has been reported busulfan increased intracellular
oxidative stress (Li et al., 2018). And β-carotene has been
reported to be a very good antioxidant to quench singlet
oxygen and free radicals which can damage cellular DNA
and lipids (Haila et al., 1997; Sies and Stahl 1998). In
current investigation, we found that busulfan decreased the
testicular GSH levels to induce the oxidative stress. However,
β-carotene not only increased testicular GSH level, but also
increased the antioxidant enzymes SOD, catalase, GPX to
increase testicular antioxidant capability to rescue

spermatogenesis. Moreover, busulfan increased the protein
level of PTEN while β-carotene decreased PTEN level to
that of control which indicated that β-carotene decreased
the testicular cell apoptotic level.

In summary, β-carotene rescued busulfan disrupted
spermatogenesis by improving meiosis process, the
expression of important genes/proteins in spermatogenesis
process, testicular antioxidant capability. These beneficial
advantages of β-carotene may be applied to ameliorate
male reproduction for the patients who are under busulfan
or other cancer-drug treatments. As natural product,
β-carotene may be applied for the infertile couples
especially cancer-drug treated patients by the improvement
of spermatogenesis, since, worldwide many couples are
infertile due to the idiopathic failed gametogenesis
(spermatogenesis) (Zhou et al., 2016; Wang et al., 2018;
Zhang et al., 2019).

FIGURE 5 | Testicular GSH level. (A) Busulfan + β-carotene increased
the testicular GSH level compared to busulfan alone. a,b Means not sharing a
common superscript are different (p < 0.05).

FIGURE 6 | Testicular levels of the antioxidant enzymes SOD, catalase,
and GPX; and T-AOC. PTEN protein level in testis samples. (A) Testicular
levels of SOD, catalase, GPX, and T-AOC in control and β-carotene treatment
groups; (B) Testicular levels of SOD, catalase, GPX, and T-AOC in
busulfan and busulfan + β-carotene treatment groups; (C) Protein level of
PTEN in testis samples by WB. *, p < 0.05.
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