AUTHOR=di Leandro Luana , Giansanti Francesco , Mei Sabrina , Ponziani Sara , Colasante Martina , Ardini Matteo , Angelucci Francesco , Pitari Giuseppina , d’Angelo Michele , Cimini Annamaria , Fabbrini Maria Serena , Ippoliti Rodolfo TITLE=Aptamer-Driven Toxin Gene Delivery in U87 Model Glioblastoma Cells JOURNAL=Frontiers in Pharmacology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.588306 DOI=10.3389/fphar.2021.588306 ISSN=1663-9812 ABSTRACT=

A novel suicide gene therapy approach was tested in U87 MG glioblastoma multiforme cells. A 26nt G-rich double-stranded DNA aptamer (AS1411) was integrated into a vector at the 5′ of a mammalian codon-optimized saporin gene, under CMV promoter. With this plasmid termed “APTSAP”, the gene encoding ribosome-inactivating protein saporin is driven intracellularly by the glioma-specific aptamer that binds to cell surface-exposed nucleolin and efficiently kills target cells, more effectively as a polyethyleneimine (PEI)-polyplex. Cells that do not expose nucleolin at the cell surface such as 3T3 cells, used as a control, remain unaffected. Suicide gene-induced cell killing was not observed when the inactive saporin mutant SAPKQ DNA was used in the (PEI)-polyplex, indicating that saporin catalytic activity mediates the cytotoxic effect. Rather than apoptosis, cell death has features resembling autophagic or methuosis-like mechanisms. These main findings support the proof-of-concept of using PEI-polyplexed APTSAP for local delivery in rat glioblastoma models.