AUTHOR=Defraeye Thijs , Bahrami Flora , Ding Lu , Malini Riccardo Innocenti , Terrier Alexandre , Rossi René M. TITLE=Predicting Transdermal Fentanyl Delivery Using Mechanistic Simulations for Tailored Therapy JOURNAL=Frontiers in Pharmacology VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.585393 DOI=10.3389/fphar.2020.585393 ISSN=1663-9812 ABSTRACT=
Transdermal drug delivery is a key technology for administering drugs. However, most devices are “one-size-fits-all”, even though drug diffusion through the skin varies significantly from person-to-person. For next-generation devices, personalization for optimal drug release would benefit from an augmented insight into the drug release and percutaneous uptake kinetics. Our objective was to quantify the changes in transdermal fentanyl uptake with regards to the patient’s age and the anatomical location where the patch was placed. We also explored to which extent the drug flux from the patch could be altered by miniaturizing the contact surface area of the patch reservoir with the skin. To this end, we used validated mechanistic modeling of fentanyl diffusion, storage, and partitioning in the epidermis to quantify drug release from the patch and the uptake within the skin. A superior spatiotemporal resolution compared to experimental methods enabled