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Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal, and chronic lung disease. There
are no effective drug therapies for IPF. Hyperoside, a flavonoid glycoside, has been proven
to have anti-inflammatory, anti-fibrosis, antioxidant, and anti-cancer effects. The aim of
this study was to explore the role of hyperoside in bleomycin-induced pulmonary fibrosis
development in mice. We established the pulmonary fibrosis model by a single
intratracheal aerosol injection of bleomycin. Seven days after the bleomycin treatment,
the mice were intraperitoneally administered with hyperoside for 14 days. We found that
hyperoside treatment ameliorated fibrotic pathological changes and collagen deposition in
the lungs of mice with bleomycin-induced pulmonary fibrosis. Hyperoside treatment also
reduced the levels of MDA, TNF-a, and IL-6 and increased the activity of SOD. In addition,
hyperoside might inhibit the epithelial-mesenchymal transition (EMT) via the AKT/GSK3b
pathway. Based on these findings, hyperoside attenuated pulmonary fibrosis
development by inhibiting oxidative stress, inflammation, and EMT in the lung tissues of
mice with pulmonary fibrosis. Therefore, hyperoside might be a promising candidate drug
for the treatment of pulmonary fibrosis.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal, and chronic lung disease (Kim et al.,
2015). IPF patients have poor long-term survival (Scotton and Chambers, 2007). The incidence of
IPF is increasing over time throughout the world (Hutchinson et al., 2015). IPF is characterized by
aberrant alveolar epithelial cells, uncontrolled myofibroblast proliferation, and abnormal
extracellular matrix (ECM) deposition (Richeldi et al., 2017). EMT plays an important role in
many respiratory diseases, including pulmonary fibrosis (Marmai et al., 2011), chronic obstructive
pulmonary disease (Xu et al., 2017), and lung cancer (Yin et al., 2020). This transition includes the
loss of epithelial markers and the acquisition of mesenchymal markers, which leads to functional
changes, including cell migration, invasion, and cell cycle arrest (Willis and Borok, 2007; Lovisa
et al., 2015; Yang et al., 2020). Although pirfenidone and nintedanib, which have been approved by
the FDA for treating IPF patients, may be able to alleviate the development of IPF, they provide only
in.org October 2020 | Volume 11 | Article 5509551
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limited help and entail adverse side effects such as diarrhea and
nausea (Canestaro et al., 2016; Galli et al., 2017).

Although the pathogenesis of pulmonary fibrosis is unclear,
studies have shown that the transforming growth factor b (TGF-
b) plays an important role in the development of pulmonary
fibrosis (Yan et al., 2014). TGF-b1 can lead to the phenotypic
transition of fibroblasts to myofibroblasts (Wei et al., 2019).
TGF-b1 also can induce EMT through smad-dependent
pathways or non-smad-dependent pathways, including the
phosphoinositide 3 kinase/protein kinase B(PI3K/AKT)
pathway and the mitogen-activated protein kinase (MAPK)
pathway (Willis and Borok, 2007). The EMT induced by TGF-
b1 contributes to the development of pulmonary fibrosis (Willis
and Borok, 2007; Zhang C. et al., 2019). The AKT pathway is
aberrantly activated in pulmonary fibrosis cellular and animal
models (Qu et al., 2019; Ma Z. et al., 2020). The AKT/FOXO3a
pathway promotes the proliferation of human pulmonary
fibroblasts and the production of collagen (Ma Z. et al., 2020).
Other studies have shown that the AKT pathway participates in
EMT (Qu et al., 2019). It has been revealed that bleomycin (Blm)
can activate the AKT/glycogen synthase kinase 3b (GSK3b)
pathway in Blm-induced bronchial epithelial cell injury (Ma
et al., 2009). Moreover, the AKT/GSK3b pathway is associated
with EMT induced by cigarette smoke extract (Agraval and
Yadav, 2019).

Oxidative stress is another significant pathogenesis in the
development of pulmonary fibrosis (Cameli et al., 2020).
Oxidative stress can contribute to the differentiation of fibroblasts
into myofibroblasts (Bai et al., 2018), the apoptosis of alveolar
epithelial cells (Liu et al., 2010), and the EMT (Felton et al., 2009).
One study found that the level of antioxidants, including superoxide
dismutase (SOD) is reduced, and the level of oxidants, including
methane dicarboxylic aldehyde (MDA) is increased in the lungs
and serum of a rat pulmonary fibrosis model (Bai et al., 2018).

Hyperoside (Hyp) is extracted from Rhododendron
brachycarpum G. Don (Ye et al., 2017). Studies have shown that
Hyp has numerous biological effects, such as anti-inflammatory
(Ye et al., 2017), antioxidant (Ye et al., 2017), anti-fibrosis (Zou
et al., 2017), and anti-cancer (Yang et al., 2017) effects. Hyp has
been revealed to alleviate allergic airway inflammation through the
activation of the Nf-E2 related factor 2 (Nrf2) pathway (Ye et al.,
2017). Additionally, Hyp was found to have a protective effect on
chronic liver fibrosis induced through carbon tetrachloride (Zou
et al., 2017). Moreover, Hyp could protect against cardiac
remodeling induced by pressure overload through the inhibition
of AKT signaling (Wang et al., 2018). In the present study, we
explored the protective effects of Hyp on Blm-induced pulmonary
fibrosis in a C57BL/6 mice model.
MATERIALS AND METHODS

Materials
Hyp (purity over 98%, B20631) was bought from the Yuanye
Biotechnology Co., Ltd. (Shanghai, China). Bleomycin sulfate
(S1214) was obtained from Selleck (Shanghai, China). Primary
Frontiers in Pharmacology | www.frontiersin.org 2
antibodies used in our project were as follows: anti-p-AKT
Ser473(Cell Signaling Technology, 4060, dilution 1:2000),
anti-AKT(Cell Signaling Technology, 4691, dilution 1:1000), anti-
GSK-3b (Cell Signaling Technology, 12456, dilution 1:1000), anti-
p-GSK-3b Ser9 (Cell Signaling Technology, 9323, dilution 1:1000),
anti-TGF-b1 (Proteintech, 21898-1-AP, dilution 1:1000), anti-
SNAIL1 (Proteintech, 13099-1-AP, dilution 1:1000), anti-E-
cadherin (Proteintech, 20874-1-AP, dilution 1:1000), anti-a-SMA
(Proteintech, 14395-1-AP, dilution 1:1000), anti-vimentin
(Cell Signaling Technology, 5741, dilution 1:1000), anti-
fibronectin (Proteintech, 15613-1-AP, dilution 1:1000),
anti-TWIST1 (Proteintech, 25465-1-AP, dilution 1:1000), anti-N-
cadherin (Proteintech, 22018-1-AP, dilution 1:1000), anti-GAPDH
(Servicebio Biotechnology Co., Ltd., GB12002, dilution 1:1000), and
anti-collagen I (Abcam, ab34710, dilution 1:1000).

Mouse Models and Treatment
A single intratracheal aerosol injection of Blm (2 mg/kg)
dissolved in saline was administered to induce pulmonary
fibrosis in C57BL/6 mice (Li et al., 2018). A total of 10 mg of
Hyp was dissolved in 20 ul of dimethyl sulfoxide, and then
diluted with saline. Hyp was intraperitoneally administered to
mice at a dose of 50 mg/kg/d on the basis of a previous study
(Jin et al., 2016). The C57BL/6 male mice were procured from
the GemPharmatech Co., Ltd. (Jiangsu, China). A total of 32
mice were randomly divided into four groups with eight mice
per group: control group, Hyp group, Blm group, Blm plus
Hyp group. The control group and Hyp group mice were
intratracheally aerosol injected with the same dose of saline.
The pulmonary fibrosis mice model was constructed on day 0.
Seven days after Blm treatment, the Hyp group and the Blm
plus Hyp group mice were intraperitoneally administered with
Hyp for 14 days. The control group and Blm group were
intraperitoneally administered with a vehicle solution at the
same time. Afterwards, the lungs were harvested and weighed
on the 21st day. The lung tissues were stored at −80°C and fixed
with 10% buffered formalin. The lung index was determined as
follows: lung index = lung weight (mg)/body weight (g). The
animal experimental procedures were approved by the animal
ethics committee of West China Hospital, Sichuan University,
and consistent with the National Institutes of Health Guide for
Care and Use of Laboratory Animals.

Histopathological Analysis and
Immunohistochemical Analysis
After the lung tissues were fixed with 10% buffered formalin
over 24 h, the lung tissues were embedded in paraffin and cut at
4 µm. Then, the sections underwent hematoxylin-eosin (HE)
staining, Masson trichrome staining, and Sirius Red staining.
The fibrosis levels were evaluated through the Ashcroft scoring
system (Ashcroft et al., 1988). Immunohistochemistry was used
to research the level of E-cadherin and a-SMA in the lung
tissues. After the sections were dewaxed and rehydrated, they
were treated with 3% H2O2 to inactivate the endogenous
peroxidase activity. Then, the sections were blocked through
5% bull serum albumin and incubated with primary antibodies
October 2020 | Volume 11 | Article 550955
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against E-cadherin and a-SMA at a 1:400 dilution. Next, the
sections were incubated with secondary antibodies, developed
with diaminobenzidine, and stained with hematoxylin.

Determination of Hydroxyproline,
Oxidative Stress, and Inflammatory
Cytokine in Lung Tissues
The hydroxyproline, SOD (A001-3,Nanjing Jiancheng, Nanjing,
China), and MDA (A003-1,Nanjing Jiancheng, Nanjing, China)
contents in the mice lung tissues were detected according to the
manufacturer’s instructions. The inflammatory cytokine levels,
including tumor necrosis factor-alpha (TNF-a) (E-EL-M0049c,
Elabscience, Wuhan, China) and interleukin 6 (IL-6) (E-EL-
M0044c, Elabscience, Wuhan, China), were determined by using
an ELISA kit as per the manufacturer’s instructions.

Real-Time PCR Analysis
Total RNA was isolated from the four groups of homogenized
mice lung tissues using the TRIzol reagent (Invitrogen, USA) and
then were reverse transcribed into cDNA using a PrimeScript™

RT reagent kit (Takara, Japan) as per the kit’s instructions. Real-
time PCR (RT-PCR) was performed with a SYBR Green Kit
(Takara, Japan) to determine the mRNA levels of E-cadherin, a-
SMA, collagen I, vimentin, twist1, fibronectin, snail1, and N-
cadherin, and the 2-DDCt method was used to analyze the data.
The primer information of GAPDH, E-cadherin, a-SMA,
collagen I, vimentin, twist1, fibronectin, snail1, and N-cadherin
are presented as follows. GAPDH-F 5′-CCTCGTCC
CGTAGACAAAATG-3′, GAPDH-R 5′-TGAGGTCAATGAA
GGGGTCGT-3′;E-cadherin-F 5′-CGACCGGAAGTGACTC
GAAAT-3′ , E-cadherin-R 5′-TCAGAACCACTGCCCT
CGTAAT-3′;a-SMA-F 5′-TCAGGGAGTAATGGTTGGAATG-
3′, a-SMA- R 5′-CCAGAGTCCAGCACAATACCAG-3′;
collagen I-F 5′-AAGAAGCACGTCTGGTTTGGAG-3′ ,
collagen I-R 5′-GGTCCATGTAGGCTACGCTGTT-3′ ,
vimentin-F 5′-GCAGTATGAAAGCGTGGCTG-3′, vimentin-R
5′-CTCCAGGGACTCGTTAGTGC-3′; twist1-F 5′-CGG
CCAGGTACATCGACTTC-3′, twist1-R 5′-TGCAGCTT
GCCATCTTGGAG-3′; fibronectin-F 5′-ACACGGTTTCCCAT
TACGCC-3′ , fibronectin-R 5′-GGTCTTCCCATCGTC
ATAGCAC-3′; snail1-F 5′-AAGCCATTCTCCTGCTCCCA-3′,
snail1-R 5′-AGCCAGACTCTTGGTGCTTGTG-3′; N-cadherin
-F 5′-CCCTGACTGAGGAGCCTATGAA-3′, N-cadherin –R
5′-GGTTGATAATGAAGATGCCCGTT-3′.

Western Blot Analysis
Frozen lung tissues were homogenized in RIPA lysis buffer
(Beyotime, China). Then, the samples were placed on ice for
10 min and centrifuged for 15 min at 12,000 r/min. After adding
5× protein sample loading buffers (Epizyme, China), the
supernatants of the samples were boiled for 10 min. Protein
concentrations were detected with a BCA Protein Kit (Beyotime,
China). The proteins were separated using 10% SDS-PAGE
(Epizyme, China), then transferred onto polyvinylidene
difluoride (PVDF) membranes (Millipore, USA) at a constant
current of 200 mA. Next, after blocking with 5% non-fat milk for
Frontiers in Pharmacology | www.frontiersin.org 3
one hour, the membranes were incubated with different primary
antibodies against p-AKT, AKT, GSK-3b, p-GSK-3b, TGF-b1,
SNAIL1, E-cadherin, vimentin, TWIST1, fibronectin, N-cadherin,
a-SMA, collagen I, and GAPDH at 4°C overnight. Subsequently,
the membranes were incubated with the appropriate secondary
antibodies. The blot was analyzed using the Image J software.

Statistical Analysis
The experimental data were expressed as the mean ± standard
deviation. The differences were analyzed by student’s t tests or
one-way ANOVA tests using SPSS 16.0, and the graphs were
performed through GraphPad Prism 6.0. A p-value < 0.05 was
regarded as statistically significant.
RESULTS

Hyp Attenuated Blm-Induced Pulmonary
Fibrosis Development in Mice
After a single intratracheal aerosol injection of Blm, the Blm
group showed a significant body weight loss and lung index
increase compared to the control group, and it was dramatically
reversed by Hyp intervention (Figures 1A, B). Meanwhile, as
shown in Figure 1C, the Ashcroft scores, which reflect the
fibrosis levels (Ashcroft et al., 1988), were also markedly
increased in the Blm group. Compared with the Blm group,
the Blm plus Hyp group had lower Ashcroft scores (Figure 1C).
Compared to the control group, the Blm treatment contributed
to the damaged lung tissue morphological structure, the
thickened alveolar wall, and the excessive collagen deposition,
as revealed via HE staining, Masson trichrome staining, and
Sirius Red staining. These effects were dramatically alleviated by
Hyp intervention (Figures 1D–F).

Hydroxyproline Content, Oxidative Stress,
and Inflammatory Cytokine in the Mice
Lung Tissues
As shown in Figure 2A, the mouse lung hydroxyproline content
(a main ingredient of collagen) was elevated after Blm treatment
compared to the control group. However, intervention with Hyp
remarkably alleviated the mice’s lung hydroxyproline content.
The study found that oxidative stress also plays a significant role
in the development of pulmonary fibrosis (Cameli et al., 2020).
Hence, to further study the potential mechanisms of the
protective effects of Hyp, we measured the oxidative stress in
the mice lung tissues. As shown in Figures 2B, C, in the mice
pulmonary fibrosis model, the activity of SOD, one kind of
antioxidant, was dramatically decreased, while the content of
MDA, another kind of oxidant, was dramatically increased.
However, intervention with Hyp remarkably elevated the
activity of SOD and remarkably reduced the content of MDA.
In addition, the inflammatory cytokines, including IL-6 and
TNF-a, were markedly elevated in the mice lung tissues of the
pulmonary fibrosis model and were dramatically inhibited by
Hyp (Figures 2D, E).
October 2020 | Volume 11 | Article 550955
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Hyp Inhibited EMT Induced by Blm In Vivo
As shown in Figures 3A–E, the Western blot and RT-PCR
showed that the protein and gene levels of a-SMA and collagen
I were up-regulated in the Blm group, and Hyp reduced the
expression of a-SMA and collagen I. Hyp also inhibited the
expression of TGF-b1 in the mice lung tissues treated with Blm
(Figures 3F, G). Among the EMT-related markers, the Western
blot showed that the protein levels of E-cadherin were down-
regulated and the protein levels of fibronectin, N-cadherin,
vimentin, TWIST1, and SNAIL1 were up-regulated in the Blm
group, and the RT-PCR also showed that the gene levels of E-
cadherin were down-regulated and the gene levels of fibronectin,
N-cadherin, vimentin, twist1, and snail1 were up-regulated in
the Blm group (Figure 4). However, compared to the Blm group,
the EMT was markedly reversed by the intervention of Hyp. As
shown in Figure 5, the immunohistochemical staining
demonstrated that Blm treatment dramatically reduced the
expression of E-cadherin and elevated the expression of a-SMA
in mice lungs, and it was also reversed by the intervention
of Hyp.
Frontiers in Pharmacology | www.frontiersin.org 4
Hyp Inhibited the AKT/GSK3b Signaling
Pathway In Vivo
To study the potential molecular mechanism of Hyp on
pulmonary fibrosis, we detected the effects of Hyp on the AKT
signaling pathway. The phosphorylation of AKT and GSK-3b
were significantly increased in pulmonary fibrosis mice, and were
dramatically inhibited by Hyp (Figure 6). GSK-3b is
constitutively active and can be inactivated by phosphorylation
of Ser9 in an AKT-dependent manner (Grimes and Jope, 2001).
Therefore, Hyp intervention blocked activation of AKT and the
inactivation of GSK-3b by AKT, and could inhibit the AKT/
GSK3b signaling pathway in vivo.
DISCUSSION

Pulmonary fibrosis, the end stage of several diffuse parenchymal
lung diseases, is a progressive disease, which leads to eventual
death (Wuyts et al., 2013). Although the FDA has approved
A B

D

E

F

C

FIGURE 1 | Effect of Hyp on pulmonary fibrosis development induced by Blm in mice. (A) Mice body weights were measured (n=8). The pulmonary fibrosis mice model
was established on day 0. (B) Mice lung index (lung weight/body weight) was calculated on the 21st day (n=8). (C) Ashcroft scores for the four groups were based on HE
staining (n=4). Representative images of HE staining (D), Masson trichrome staining (E), and Sirius Red staining (F) for the four groups (scale bars =50 mm).*P < 0.05.
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pirfenidone and nintedanib to treat IPF, none of these markedly
decreases patients’ mortality (Canestaro et al., 2016; Galli et al.,
2017). Furthermore, few effective drugs can reverse human
pulmonary fibrosis and prevent chronic progression to
respiratory failure (Li and Kan, 2017). Therefore, it is very
Frontiers in Pharmacology | www.frontiersin.org 5
meaningful to seek new effective and targeted therapies for
pulmonary fibrosis. Recent studies have revealed that the active
ingredients from traditional Chinese medicine have anti-
fibrotic effects (Li and Kan, 2017). Hyp is an active ingredient
extracted from Rhododendron brachycarpum G. Don (Ye et al.,
A

B

D E

F
G

C

FIGURE 3 | Effect of Hyp on the fibrosis proteins in Blm-induced pulmonary fibrosis in mice. The protein expression of collagen I (A, B), a-SMA (D), TGF-b1 (F, G)
was determined in each group via Western blot analysis (n=3). The gene expression of collagen I (C) and a-SMA (E) was determined in each group via RT-PCR
analysis (n=3). *P < 0.05.
A B

D E

C

FIGURE 2 | Effect of Hyp on hydroxyproline, oxidative stress, and inflammatory cytokine in pulmonary fibrosis mice induced by Blm. The hydroxyproline content (A),
the MDA content (B), the SOD activity (C), the IL-6 level (D), and the TNF-a level (E) were determined in the mice lung tissues (n=5). *P < 0.05.
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2017). Hyp is known to exert many pharmacological actions,
including antioxidant and anti-fibrosis effects (Ye et al., 2017;
Zou et al., 2017). Studies have shown that Hyp protects against
oxidative damage and cytotoxicity induced by oxalic acid in
human kidney-2 cells (Chen et al., 2018). Hyp has also been
revealed to prevent heart failure-induced liver fibrosis (Guo
et al., 2019). In this study, we revealed that Hyp attenuated Blm-
induced pulmonary fibrosis development in mice via inhibiting
oxidative stress, inflammation, and EMT.

After treatment with Blm, the mouse lung weight
dramatically increased due to many factors, including
inflammatory cell infiltration, cell swelling, and capillary
congestion, and body weight was decreased (Xin et al., 2019).
So, the lung index increased in the pulmonary fibrosis model and
reflected the degree of pulmonary fibrosis (Xin et al., 2019). As
Frontiers in Pharmacology | www.frontiersin.org 6
expected, our results showed that the lung index was remarkably
increased in the Blm group compared to the control group. After
treatment with Hyp, the lung index was decreased.

The main characteristics of pulmonary fibrosis are the
activation of myofibroblasts, the deposition of ECM, and the
destruction of normal lung structure (Wuyts et al., 2013).
Myofibroblasts, transformed from epithelial cells via EMT,
produce ECM and contribute to the progression of
pulmonary fibrosis (Scotton and Chambers, 2007; Zhang L.
M. et al., 2019). However, some researchers took the opposite
view. Rock et al. thought that epithelial cells were not the origin
of myofibroblasts in pulmonary fibrosis (Rock et al., 2011). The
origin of myofibroblasts is still controversial. Although it
seemed to be a fact that EMT might contribute to pulmonary
fibrosis (Willis and Borok, 2007; Zhang C. et al., 2019). We
observed Blm-induced pathological changes in mice lung
tissues via HE staining, Masson trichrome staining, and Sirius
Red staining. As expected, the damaged lung tissue’s
morphological structure, the thickened alveolar walls, and the
excessive collagen deposition were found in the Blm group.
Moreover, the Ashcroft scores in the Blm model were
significantly higher than in the control group. On the
contrary, after treatment with Hyp, these pathological changes
were dramatically alleviated. Lung hydroxyproline content, a
main ingredient of collagen, was also remarkably reduced by
Hyp treatment.

Oxidative stress, an imbalance between oxidants and
antioxidants, and inflammation also play important roles in
the development and progression of pulmonary fibrosis
(Cameli et al., 2020; Otoupalova et al., 2020). One study found
that the levels of T-SOD, catalase (CAT), and glutathione (GSH)
were significantly decreased, and the expressions of MDA were
significantly increased in rat lung and serum after Blm treatment
(Bai et al., 2018). The inflammatory cytokines, such as TNF-a
and IL-6, were also significantly increased after Blm
administration (Ma W. H. et al., 2020). Furthermore, the
inhibition of oxidative stress and inflammation might
ameliorate pulmonary fibrosis in mice models (Ma W. H.
et al., 2020). In our investigation, when compared with the
control group, the levels of MDA, TNF-a, and IL-6 were
dramatically increased and SOD was dramatically reduced in
Blm-treated pulmonary fibrosis mice lung tissues. Meanwhile,
Hyp markedly inhibited Blm-induced oxidative stress and
inflammation in the lung tissues of mice.

TGF-b, one kind of multifunctional cytokine, regulates cell
proliferation, cell differentiation, cell apoptosis, and cell
migration and favors ECM production (Dennler et al., 2002).
The TGF-b signaling pathway is implicated in many diseases,
such as cancer, fibrosis, and autoimmune diseases (Dennler et al.,
2002). TGF-b1 is an important profibrogenic cytokine in
pulmonary fibrosis (Wei et al., 2019). During the progression
of pulmonary fibrosis, TGF-b1 induces the differentiation of lung
fibroblasts to myofibroblasts and increases the production of
collagen (Wei et al., 2019). As expected, our results showed that
TGF-b1 was remarkably increased in Blm-treated pulmonary
fibrosis mice, and this effect was inhibited by Hyp. Likewise, the
A

B

C

FIGURE 4 | Hyp inhibited EMT induced by Blm in vivo. The protein
expression of fibronectin, E-cadherin, N-cadherin, vimentin, TWIST1, and
SNAIL1 (A, B) was determined in each group via Western blot analysis (n=3).
The gene expression of fibronectin, E-cadherin, N-cadherin, vimentin, twist1
and snail1 (C) was determined in each group via RT-PCR analysis (n=3).
*P < 0.05 compared with the control group; #P < 0.05 compared with the
Blm model group.
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levels of a-SMA and collagen I were raised in the Blm group, and
Hyp could inhibit the increase of a-SMA and collagen I.
Moreover, our study also found that Hyp inhibited the protein
and gene levels of fibronectin, N-cadherin, vimentin, TWIST1,
and SNAIL1 and increased the protein and gene levels of E-
cadherin. However, there was no strong evidence to confirm the
contribution of epithelial cells to fibroblasts in our study. Further
studies would be needed to confirm the roles of epithelial cells in
EMT and pulmonary fibrosis, including lineage tracing studies
and cell studies.

The activation of several non-smad-dependent pathways,
including the PI3K/AKT pathway and the MAPK pathway, are
involved in TGF-b1-induced EMT (Willis and Borok, 2007).
The PI3K/AKT pathway plays an important role in cell growth
and cell proliferation (Yan et al., 2014). Recent studies have
shown that the activation of the AKT pathway plays a
considerable role in pulmonary fibrosis (Qu et al., 2019; Ma
Z. et al., 2020).

GSK-3b, a serine threonine kinase, is a key downstream
target of AKT that is involved in many cellular processes
Frontiers in Pharmacology | www.frontiersin.org 7
(Grimes and Jope, 2001). GSK-3b is constitutively active and
can be inactivated by phosphorylation of Ser9 in an AKT-
dependent manner (Grimes and Jope, 2001). One study found
that the phosphorylation of AKT was increased in human
pulmonary fibroblasts during Blm-induced fibrotic processes
(Ma Z. et al., 2020). The phosphorylation of AKT was also
increased in radiation-induced pulmonary fibrosis (Qu et al.,
2019). Furthermore, during the Blm-induced toxic lung injury,
the phosphorylation of AKT at Ser473 and GSK-3b at Ser9 were
increased in human bronchial epithelial cells, and the
increasing phosphorylation of GSK-3b at Ser9 could inhibit
the activity of GSK-3b (Ma et al., 2009). However, the
phosphorylation of GSK-3b was decreased after the human
bronchial epithelial cells were pretreated with LY294002 (Ma
et al., 2009). Cigarette smoke extract induced EMT in airway
epithelial cells by the AKT/GSK3b pathway (Agraval and
Yadav, 2019). One study found that during the development
of Blm-induced pulmonary fibrosis, the up-regulation of
SNAIL1 contributed to EMT (Zhang L. M. et al., 2019).
Multi-walled carbon nanotubes could prompt the secretion of
A

B

FIGURE 5 | The immunohistochemical analysis of E-cadherin (A) and a-SMA (B) in mice lung tissues (scale bars =20 mm).
A B C

FIGURE 6 | Effect of Hyp on the AKT/GSK-3b signaling pathway in pulmonary fibrosis in mice induced by Blm. The protein expression of p-AKT and p-GSK-3b (A–C)
was determined in each group via Western blot analysis (n=3). *P < 0.05.
October 2020 | Volume 11 | Article 550955

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Huang et al. Hyperoside Attenuates Pulmonary Fibrosis
TGF-b, the activation of AKT, the inhibition of GSK-3b, and
the up-regulation of SNAIL1 in human bronchial epithelial
cells (Polimeni et al., 2016). This study demonstrated that
multi-walled carbon nanotubes could induce EMT by the
AKT/GSK-3b/SNAIL1 signaling pathway (Polimeni et al.,
2016). Thus, we studied the changes of the AKT/GSK3b
signaling pathway in Blm-induced pulmonary fibrosis. In the
present study, the p-AKT and p-GSK-3b were significantly
elevated in pulmonary fibrosis mice, and these increased
Frontiers in Pharmacology | www.frontiersin.org 8
expressions were reversed after Hyp treatment. Therefore,
Hyp might inhibit EMT via the AKT/GSK3b pathway in
pulmonary fibrosis. The precise mechanisms between EMT
and the AKT/GSK3b pathway need further cell studies.
CONCLUSIONS

In summary, we revealed that Hyp attenuated pulmonary fibrosis
development in mice, and the potential mechanism might be due
to inhibiting the Blm-induced inflammation, oxidative stress,
and EMT via the AKT/GSK3b pathway (Figure 7). Hyp might
offer a promising candidate drug for the treatment of
pulmonary fibrosis.
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