AUTHOR=Reis Mariana Alves , Matos Ana M. , Duarte Noélia , Ahmed Omar Bauomy , Ferreira Ricardo J. , Lage Hermann , Ferreira Maria-José U.
TITLE=Epoxylathyrane Derivatives as MDR-Selective Compounds for Disabling Multidrug Resistance in Cancer
JOURNAL=Frontiers in Pharmacology
VOLUME=11
YEAR=2020
URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.00599
DOI=10.3389/fphar.2020.00599
ISSN=1663-9812
ABSTRACT=BackgroundMultidrug resistance (MDR) has been regarded as one of the major hurdles for the successful outcome of cancer chemotherapy. The collateral sensitivity (CS) effect is one the most auspicious anti-MDR strategies. Epoxylathyrane derivatives 1–16 were obtained by derivatization of the macrocyclic diterpene epoxyboetirane A (17), a lathyrane-type macrocyclic diterpene isolated from Euphorbia boetica. Some of these compounds were found to strongly modulate P-glycoprotein (P-gp/ABCB1) efflux.
PurposeThe main goal was to develop lathyrane-type macrocyclic diterpenes with improved MDR-modifying activity, by targeting more than one anti-MDR mechanism.
Study design/methodsIn this study, the potential CS effect of compounds 1–16 was evaluated against gastric (EPG85-257), pancreatic (EPP85-181), and colon (HT-29) human cancer cells and their drug-resistant counterparts, respectively selected against mitoxantrone (EPG85-257RNOV; EPP85-181RNOV; HT-RNOV) or daunorubicin (EPG85-257RDB; EPP85-181RDB; HT-RDB). The most promising compounds (8, 15, and 16) were investigated as apoptosis inducers, using the assays annexin V/PI and active caspase-3.
ResultsThe compounds were more effective against the resistant gastric cell lines, being the CS effect more significant in EPG85-257RDB cells. Taking together the IC50 values and the CS effect, compounds 8, 15, and 16 exhibited the best results. Epoxyboetirane P (8), with the strongest MDR-selective antiproliferative activity against gastric carcinoma EPG85-257RDB cells (IC50 of 0.72 µM), being 10-fold more active against this resistant subline than in sensitive gastric carcinoma cells. The CS effect elicited by compounds 15 and 16 appeared to be by inducing apoptosis via caspase-3 activation. Structure-activity relationships of the compounds were additionally obtained through regression models to clarify the structural determinants associated to the CS effect.
ConclusionsThis study reinforces the importance of lathyrane-type diterpenes as lead molecules for the research of MDR-modifying agents.