AUTHOR=Agba Stephanie , Hanif Ahmad , Edin Matthew L. , Zeldin Darryl C. , Nayeem Mohammed A. TITLE=Cyp2j5-Gene Deletion Affects on Acetylcholine and Adenosine-Induced Relaxation in Mice: Role of Angiotensin-II and CYP-Epoxygenase Inhibitor JOURNAL=Frontiers in Pharmacology VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.00027 DOI=10.3389/fphar.2020.00027 ISSN=1663-9812 ABSTRACT=

Previously, we showed vascular endothelial overexpression of human-CYP2J2 enhances coronary reactive hyperemia in Tie2-CYP2J2 Tr mice, and eNOS−/− mice had overexpression of CYP2J-epoxygenase with adenosine A2A receptor-induced enhance relaxation, but we did not see the response in CYP2J-epoxygenase knockout mice. Therefore, we hypothesized that Cyp2j5-gene deletion affects acetylcholine- and 5'-N-ethylcarboxamidoadenosine (NECA) (adenosine)-induced relaxation and their response is partially inhibited by angiotensin-II (Ang-II) in mice. Acetylcholine (Ach)-induced response was tested with N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH, CYP-epoxygenase inhibitor; 10−5M) and Ang-II (10−6M). In Cyp2j5−/− mice, ACh-induced relaxation was different from C57Bl/6 mice, at 10−5 M (76.1 ± 3.3 vs. 58.3 ± 5.2, P < 0.05). However, ACh-induced relaxation was not blocked by MS-PPOH in Cyp2j5−/−: 58.5 ± 5.0%, P > 0.05, but blocked in C57Bl/6: 52.3 ± 7.5%, P < 0.05, and Ang-II reduces ACh-induced relaxation in both Cyp2j5−/− and C57Bl/6 mice (38.8 ± 3.9% and 45.9 ± 7.8, P <0.05). In addition, NECA-induced response was tested with Ang-II. In Cyp2j5−/− mice, NECA-induced response was not different from C57Bl/6 mice at 10−5M (23.1 ± 2.1 vs. 21.1 ± 3.8, P > 0.05). However, NECA-induced response was reduced by Ang-II in both Cyp2j5−/− and C57Bl/6 mice (−10.8 ± 2.3% and 3.2 ± 2.7, P < 0.05). Data suggest that ACh-induced relaxation in Cyp2j5−/− mice depends on nitric oxide (NO) but not CYP-epoxygenases, and the NECA-induced different response in male vs. female Cyp2j5−/− mice when Ang-II treated.