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Over the last few years, several preclinical studies have shown that some herbal products, 
such as ferulic acid, Ginkgo biloba, and resveratrol, exert neuroprotective effects through 
the modulation of the heme oxygenase/biliverdin reductase system. Unfortunately, 
sufficient data supporting the shift of knowledge from preclinical studies to humans, 
particularly in neurodegenerative diseases, are not yet available in the literature. The 
purpose of this review is to summarize the studies and the main results achieved on 
the potential therapeutic role of the interaction between the heme oxygenase/biliverdin 
reductase system with ferulic acid, G. biloba, and resveratrol. Some critical issues have 
also been reported, mainly concerning the safety profile and the toxicological sequelae 
associated to the supplementation with the herbs mentioned above, based on both 
current literature and specific reports issued by the competent Regulatory Authorities.
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BACKGROUND
At the end of Sixties, three skilled scientists from the University of California San Francisco Medical 
Center first described and characterized the enzymatic activity of heme oxygenase (HO), a microsomal 
enzyme catalyzing the oxidative cleavage of hemoproteins’ prosthetic group in equimolar amounts 
of ferrous iron, carbon monoxide (CO) and biliverdin (BV) (Tenhunen et al., 1968; Tenhunen et al., 
1969). Following this initial description of the enzymatic activity, there were many other findings, 
including the inducible and constitutive nature of HO (HO-1 and HO-2, respectively), as well as the 
full characterization of biliverdin reductase (BVR), a cytosolic enzyme that works in combination 
with HO and reduces BV into bilirubin (BR). A significant contribution to these discoveries was 
provided by Mahin Maines and her research group [see (Maines, 1988; Maines, 1997; Maines, 2005) 
and references therein] who, recently, have deepened the field by describing pleiotropic effects of 
BVR in terms of modulation of numerous cytoprotective signaling pathways [see (Maines and 
Gibbs, 2005; Kapitulnik and Maines, 2009; Gibbs et al., 2015) and references therein].

Following these observations, the HO/BVR system has been studied worldwide by scientists who 
have gradually discovered its enormous potential. Just to give an idea of   the attention aroused, suffice 
it to say that since 1969, more than 15300 papers have been published containing the keyword “heme 
oxygenase” (source: PubMed, accessed on August 8, 2019), while, concerning “biliverdin reductase,” 
the first studies appeared in 1965 reaching, to date, more than 450 papers (source: PubMed, accessed 
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on August 8, 2019). The numbers mentioned so far have been 
achieved thanks to the many studies that have described the 
involvement of the HO/BVR system in the pathogenesis of 
Alzheimer’s disease (AD), Parkinson’s disease (PD), atherosclerosis 
and other cardiovascular disorders, kidney diseases, diabetes, etc. 
The molecular mechanisms through which the HO-1/BVR system 
exerts neuroprotective effects mainly depends on the down-stream 
effectors CO and BR. In the nervous system, CO has been shown 
to modulate synaptic plasticity, neuropeptide secretion, and 
neurogenesis (Verma et al., 1993; Mancuso et al., 1998; Mancuso 
et al., 2010; Choi, 2018), whereas BR interacts with reactive oxygen 
species (ROS), reactive nitrogen species (RNS) and nitric oxide 
(NO) to prevent neurotoxicity due to free radical injury (Mancuso 
et al., 2006a; Mancuso et al., 2008; Barone et al., 2009b; Mancuso 
et al., 2012a). While the antioxidant and cytoprotective effects of 
the HO/BVR system and its by-products have been extensively 
described in literature, scarce attention has been dedicated to a 
critical examination of their potentially toxic effects. Our research 
group has contributed to this field by describing the cytotoxic 
effects of CO either through the inhibition of the stress axis under 
pro-inflammatory conditions or production of pro-inflammatory 
prostaglandins (PG) (e.g., PGE2) in rat hypothalamus [see 
(Mancuso et al., 1997; Mancuso et al., 2006c; Mancuso et al., 
2010) and references therein]. Moreover, we have also explored 
the cytoprotective vs cytotoxic effects of the interaction between 
BR and NO [see (Mancuso et al., 2006b; Mancuso, 2017) and 
references therein; (Barone et al., 2009b)]. Hyman Schipper’s 
group, instead, decisively contributed to the discovery of the 
neurotoxic role of HO-derived iron in mitochondrial dysfunctions 
and in the genesis of oxidative stress-induced damage in neurons 
and glial cells [see (Schipper, 2004; Schipper et al., 2009; Schipper 
et al., 2019) and references therein]. Finally, Shigeki Shibahara and 
Kazuhiko Igarashi, with collaborators, discovered the importance 
of HO-1 gene repression, through the transcription factor Bach1, 
to reduce cellular toxic effects due to iron and CO accumulation 
as in the case of strong and long-lasting pro-oxidant conditions 
(Shibahara, 2003; Shibahara et al., 2003; Igarashi and Sun, 2006). 
These findings contributed to increase the awareness of the risks 
associated with the uncontrolled activation of the HO/BVR system.

A particularly detailed aspect, starting from the early 2000s, 
was the interaction between HO-1 and products of herbal 
origin, and caffeic acid derivatives were the first to be studied 
(Scapagnini et al., 2002); only later, many studies have appeared 
in the literature concerning the ability of several other herbal 
products to induce HO-1 (Mancuso et al., 2012b; Mancuso and 
Santangelo, 2014; Fetoni et al., 2015; Mancuso and Santangelo, 
2017). However, as detailed below, the up-regulation of HO-1 by 
herb-derived nutritional supplements is claimed as a beneficial 
mechanism through which they exert neuroprotective outcomes. 
In this regard, however, it is worth underlining how not always 
the fine involvement of HO-1 in the claimed neuroprotective 
effects of herbal products has been studied, but frequently HO-1 
induction has been considered rather as a mere biomarker of 
activation of the cell stress response. In our opinion, the aspects 
that are still weak and are worth investigating, with regard to the 
effects of herbal products through HO-1 up-regulation, are the 
following: (i) the correlation between the dose/concentration of 

herbal product capable of inducing HO-1 in vitro and its effective 
concentration in the target organ within in vivo studies; (ii) the 
extent and duration of HO-1 induction, considering that, as 
previously mentioned, the accumulation of products, such as 
iron and CO can become toxic to cells, (iii) loss of specificity 
of the obtained results, as nearly all the studied herbal products 
induced HO-1 and (iv) the reduced number of studies that 
evaluated the BVR modulation, through herbal products.

The purpose of this review is to provide a critical overview 
of the potential therapeutic role of ferulic acid, Ginkgo biloba, 
and resveratrol via the modulation of the HO/BVR system; 
the reason why the attention has been focused on these herbal 
products depends on the consistent number of articles published 
on this topic through the years strong enough to substantiate 
a potential interest towards clinics. The safety profile of ferulic 
acid, G. biloba, and resveratrol has been also evaluated with 
the purpose to provide a complete overview of the risk/benefit 
balance of a chronic supplementation with these agents.

FERULiC ACiD
Ferulic acid {[(E)-3-(4-hydroxy-3-methoxy-phenyl)prop-2-
enoic acid)], FA, Figure 1} belongs to the family of phenolic acids 
and is highly abundant in fruits and vegetables. Furthermore, FA 
is also a component of Chinese medicinal herbs, such as Angelica 
sinensis, Cimicifuga racemosa, and Ligusticum chuangxiong. The 
main pharmacokinetic parameters of FA are shown in Table 1.

Over the past years, several studies have shown that FA acts as 
a strong antioxidant not only by a direct free radical-scavenging 
mechanism, but largely by enhancing the cell stress response 
through the up-regulation of the HO/BVR system (Barone et 
al., 2009a; Mancuso and Santangelo, 2014). On the other hand, 
literature data have highlighted the contribution of FA-induced 
HO-1 up-regulation to numerous biological effects in several 
preclinical models (see Table 2).

Ferulic acid and its ethyl ester [5–50 μM or 150 mg/kg 
intraperitoneal (i.p.)] were reported to over-express HO-1 in 
rat neurons and gerbil synaptosomes resulting in a significant 
neuroprotective effect on ROS- and glucose oxidase- related 
oxidative damage (Kanski et al., 2002; Scapagnini et al., 2004; 

FiGURE 1 | The chemical structure of ferulic acid.
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Joshi et al., 2006). In the neuronal cell line SH-SY5Y, FA 
(1–10 μM) exerted marked neuroprotective effects against 
trimethyltin-induced damage by increasing the expression of 
HO-1; the translocation of the transcriptional inducer nuclear 
factor erythroid 2-related factor 2 (Nrf2) from cytosol to 
the nucleus has been described as the molecular mechanism 
underlining the FA-induced HO-1 up-regulation (Catino 
et  al., 2016). Moreover, CO and BR have been identified as 
the by-products of HO and BVR activities responsible for the 
antioxidant and neuroprotective effects of FA (Catino et al., 
2016). Through the specific up-regulation of the Nrf2/HO-1 
system, FA (3–30 μM) counteracted lead-induced inhibition 
of neurite outgrow in PC12 cells (Yu et al., 2016). As shown 
by Ma et al. (Ma et al., 2011), the extracellular signal-regulated 
kinase (ERK) has a role in mediating the FA-activation of Nrf2/
HO-1 since its blockade counteracts the nuclear translocation 
and transcriptional activity of Nrf2 on the HO-1 gene. Quite 
recently, our research group has demonstrated how FA exerts 
neuroprotective effects not only under pro-oxidant conditions, 
but also during psychosocial stress. As shown by Mhillaj et al. 
(Mhillaj et al., 2018), FA (150 mg/kg i.p.) enhances long-term 
memory in rats exposed to novelty-induced emotional arousal 
through the up-regulation of HO-1 in the hippocampus and 
frontal cortex; it is worth mentioning the finding that FA also 
over-expressed HO-2 in the frontal cortex. CO is responsible 

for this nootropic effect of FA, whereas BV does not have any 
significant effect (Mhillaj et al., 2018).

Ferulic acid (150 mg/kg i.p. for 4 days) up-regulated HO-1 
in the organ of Corti of guinea pigs exposed to acoustic 
trauma; FA-induced improvement of the auditory function was 
counteracted by the HO inhibitor zinc-protoporphyrin-IX and 
paralleled the time-course of FA-induced HO-1 overexpression, 
thus supporting the hypothesis that the neuroprotective effect of 
this phenolic acid was due to the induction of cytoprotective HO-1 
(Fetoni et al., 2010). Interestingly, FA (21.61 mg/kg for 3 weeks 
intragastric) increased the HO-1 expression and counteracted 
visible light-induced retinal degeneration in pigmented rabbits 
(Wang et al., 2016b).

Ferulic acid has also been complexed with tacrine, one of the 
earliest drugs developed for AD therapy and later discarded for 
severe hepatotoxicity. Tacrine-FA (2–100 µM) has been shown 
to prevent β-amyloid (Aβ) aggregation, ROS formation, and 
apoptosis in PC12 cells; in addition, tacrine-FA (2–20 mg/kg 
intragastric) improved cognitive skills in a mouse model of AD 
(Pi et al., 2012). In a subsequent paper, Huang et al. (Huang et al., 
2012) showed how tacrine-FA inhibits oxidative stress-induced 
damage by over-expressing HO-1, through Nrf2 translocation, 
in HT22 cells.

Ferulic acid has an enviable safety profile, since no significant 
toxicities have been reported in humans; furthermore, FA’s 

TABLE 1 | Main pharmacokinetic parameters for ferulic acid, Ginkgo biloba, and resveratrol in humans.

Bioavail.
(%)

Tmax

(h)
T1/2

(h)
Excretion References

Ferulic acid per os 20% 0.4–3 0.7–5 Urine (glucuronide, sulfoglucuronide,  
and glycine metabolites)

(Mancuso and 
Santangelo, 2014)

G. biloba
ginkgolides
bilobalide
per os

> 80% 0.5–3 4–10 Urine (40–70% unchanged) (Kleijnen and Knipschild, 
1992; Ude et al., 2013)

~ 70% 0.5–3 3–5 Urine (30% unchanged)

Resveratrol
per os

1–1.5
6*

9–11 Urine (monoglucuronide and sulfate  
metabolites)

(Wang and Sang, 2018)

*Second peak probably due to the enteric recirculation of conjugate metabolites.
Bioavail., biovailability; Tmax, time to reach peak plasma concentration; T1/2, half-life.

TABLE 2 | Contribution of HO-1 up-regulation to the biological effects of ferulic acid (FA) in preclinical in vitro and in vivo models.

Preclinical model Ferulic acid* (concentration or dose) Effect(s) Reference(s)

Radiation-induced damage in mice 50 mg/kg per os for 5 days Prevention of radiation-induced oxidative damage in  
the duodenum

(Das et al., 2017)

Cisplatin-induced nephrotoxicity in rats 50 mg/kg per os for 5 days Prevention of drug-induced injury and improvement  
of renal function

(Bami et al., 2017)

Pre-adipocytes 100 µM Reduction of adipocyte tissue mass (Koh et al., 2017)
Lymphocytes 0.001–0.1 µM Inhibition of oxidative damage. (Ma et al., 2011)
Endothelial cells 0.2–5 µM Prevention of radiation-induced oxidative damage (Ma et al., 2010)
Melanocytes 1–50 µM† Prevention of UVB-induced skin oxidative damage (Di Domenico et al., 2009)
Rat heart 100 mg/kg per os for 14 days Increase of the antioxidant defense in cardiac tissue (Yeh et al., 2009)
Dermal fibroblasts 25 µM† Prevention of hydrogen peroxide-induced  

oxidative damage.
(Calabrese et al., 2008)

*Only studies carried out with purified FA or congeners have been included in this table.
†Ferulic acid ethyl ester.
UVB, ultraviolet B.
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modulation of drug metabolizing enzymes is negligible (see 
https://toxnet.nlm.nih.gov. Accessed on June 27, 2019). However, 
female rats treated with the highest tolerated dose of tacrine-FA 
have shown both glycogen depletion and HO-1 induction and 
cytochrome-P450 (CYP) CYP1A1, 2B1, and 3A2 up-regulation 
in the liver, mainly due to the tacrine moiety (Lupp et al., 2010). 
A careful risk/benefit analysis of the pharmacological and safety 
profiles of tacrine-FA is required.

GINKGO BILOBA
Gingko biloba is a plant growing in the mountainous valleys 
of Eastern China. G. biloba extracts contain several active 
compounds, including flavonoids, terpenes, organic acids, and 
polyphenols, the most important being flavonol-glycosides 
(primarily quercetin, kaempferol, and isorhamnetin) and 
terpene-lactones; the latter are further divided into diterpenes 
(ginkgolides) and sesquiterpenes (bilobalide) (Figure 2). For 
a summary of the pharmacokinetic parameters and biological 
effects of G. biloba, see Tables 1 and 3, respectively.

Through the induction of HO-1, ginkgolides A, B, and 
C [1, 3, and 10 mg/kg by intravenous route (i.v.)] decreased 
neurological deficits and brain infarct volume in rats exposed to 
ischemia/reperfusion damage (Zhang et al., 2018). In a similar 

experimental setting the G. biloba extract EGb 761 [containing 
flavonol-glycosides (24%), ginkgolides A, B, and C (2.8–3.4%), 
and bilobalide (2.6–3.2%)] at the dosage of 100 mg/kg per os for 7 
days before or 4-24 h after damage reduced cortical infarct volume 
and stimulated the proliferation of neuronal stem/progenitor 
cells via HO-1 overexpression in mice with permanent middle 
cerebral artery occlusion (Shah et al., 2011; Nada and Shah, 
2012; Nada et al., 2014). The same research group confirmed 
the neuroprotective effects of G. biloba in the hippocampus of 
mice pre-treated with EGb 761 (100 mg/kg per os for 7 days) and 
then susceptible to bilateral common carotid artery occlusion 
(Tulsulkar and Shah, 2013). The contribution of HO-1 to the 
neuroprotective effects of EGb 761 (100 mg/kg per os) was also 
demonstrated in HO-1 knockout male mice with middle cerebral 
artery occlusion (Saleem et al., 2008). Ginkgolide B (1–50 µM or 
10 mg/kg i.p.) prevented cisplatin-induced damage in HEI-OC1 
auditory cells and rats through HO-1 induction (Ma et al., 2015). 
Interestingly, in order to improve brain penetration, G. biloba 
has been complexed with phosphatidylcholine (Carini et al., 
2001); this novel formulation exhibited neuroprotective effects by 
increasing catalase, superoxide dismutase, glutathione peroxidase, 
and glutathione reductase activities in rat brain (Naik et al., 2006). 
Regrettably, there are no studies addressing the potential role 
of this novel formulation on HO-1. Worth mentioning is the 
nootropic effects of a novel formulation of G. biloba (120 mg/

TABLE 3 | Contribution of HO-1 up-regulation to the biological effects of Ginkgo biloba in preclinical in vitro and in vivo models.

Preclinical model G. biloba (concentration or dose) Effect(s) Reference(s)

Myoblasts 25–100 µg/mL Cytoprotection from alcohol-induced oxidative damage (Wang et al., 2015)
Endothelial cells 50–200 µg/mL Endothelial protection from high-glucose- or TNF-α–induced 

vascular oxidative damage; cytoprotection against cigarette 
smoke-induced apoptosis in lungs

(Hsu et al., 2009; Chen et al., 2011; 
Tsai et al., 2013)

Macrophages 1–100 µg/mL Inhibition of inflammatory damage in LPS-treated cells; 
regulation of cholesterol homeostasis and reduction in 
atherosclerosis lesion size

(Tsai et al., 2010; Ryu et al., 2012)

Ethanol-induced liver 
damage in rats

48 or 96 mg/kg intragastric for 90 days Reduction of oxidative damage and improvement of ethanol-
induced microvesicular steatosis and parenchimatous 
degeneration in hepatocytes

(Yao et al., 2007)

LPS, lipopolysaccharide; TNF, tumor necrosis factor.

FiGURE 2 | The chemical structure of ginkgolides and bilobalide.
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day per os) complexed with phosphatidylserine administered to 
healthy volunteers for 7 days (Kennedy et al., 2007).

As far as neurodegenerative disorders, no evidence has 
been found in literature dealing with the involvement of HO-1 
and/or BVR in G. biloba-related neuroprotection. Indeed, 
the neuroprotective effects of EGb 761 have been extensively 
reported in both AD (Augustin et al., 2009; Liu et al., 2015; 
Wan et al., 2016) or PD rodent models (Kim et al., 2004; Rojas 
et al., 2012; El-Ghazaly et al., 2015) and in humans. Over the 
last 2–3 years, some retrospective analyses, meta-analyses, and 
systematic reviews on the neurotherapeutic effects of G. biloba 
extracts in subjects with dementia, including AD, have been 
published and the conclusions are the following: (i) over 12 
months treatment, EGb 761 and donepezil showed similar effects 
in cognitive decline in patients aged 80 years or older affected by 
AD (Rapp et al., 2018); (ii) EGb 761 (240 mg/day per os for 22–24 
weeks) had a better performance than placebo in 1,598 patients 
with dementia (probable AD with or without cerebrovascular 
disease and probable vascular dementia) (Savaskan et al., 2018); 
(iii) doses lower than 200 mg/day did not have any remarkable 
clinical effects in demented people (Yuan et al., 2017) and (iv) G. 
biloba extract (240 mg/day per os) also showed neuroprotective 
effects in subjects with mild cognitive impairment (Zhang et al., 
2016; Kandiah et al., 2019). Unfortunately, there are no clinical 
studies on the neuroprotective effects of G. biloba in PD patients, 
therefore no conclusions can be drawn.

Although the safety profile of G. biloba extracts is acceptable, few 
mild adverse effects, including mild gastrointestinal complaints, 
headaches, and allergic reactions have been reported (Kleijnen 
and Knipschild, 1992). However, important interactions between 
G. biloba and common drugs should be underlined. G. biloba is 
an inducer of CYP2C19 and, through this mechanism, it has been 
shown to reduce omeprazole plasma levels in individuals sharing 
the poor metabolizer phenotype (Yin et al., 2004) and to increase 
metabolism and reduce plasma concentrations of the antiepileptic 
drugs, valproic acid, and phenytoin, thus increasing the risk of 
fatal seizures (Kupiec and Raj, 2005). A greater risk of bleeding has 
been reported in people taking G. biloba and aspirin or warfarin 
(Agbabiaka et al., 2017). G. biloba has been discouraged in people 
taking selective serotonin-reuptake inhibitors for the increased 
risk of developing serotonin syndrome (Kreijkamp-Kaspers et 
al., 2015). Lastly, ginkgo flavonol-glycosides caused a coma in an 
80-year-old AD patient taking trazodone, probably by stimulating 
the CYP3A4 activity which increases the transformation of 
trazodone into the active metabolite 1-(m-chlorophenyl) 
piperazine and up-regulates GABAergic activity in the brain 
(Galluzzi et al., 2000).

RESvERATROL
Resveratrol (3,5,4’-trihydroxy-trans-stilbene, (Figure 3) is a 
phytoalexin found in grapes, cranberries, peanuts, and some 
beverages (Mancuso et al., 2007). However, wine is considered 
the main source of resveratrol since the solubility of the latter in 
ethanol is about 1,667-times higher than that in water (Weiskirchen 
and Weiskirchen, 2016). Also based on the interest aroused by the 

so-called “French paradox” over the last few years, the interaction 
resveratrol-HO-1 has been extensively studied for its beneficial 
effects in several preclinical models of disease (Table 4).

With regard to the neuroprotective effects, earlier studies 
showed that resveratrol (5–100 µM) up-regulates HO-1 in 
primary cultures of mouse neurons (Zhuang et al., 2003). 
Resveratrol (15 µM), was also found to increase HO-1 expression 
in neuron-like PC12 cells through both phosphoinositide 
3-kinase and MEK1/2 activities (Chen et al., 2005). Quite 
recently, resveratrol (10 µM) has exhibited a marked protective 
effect on primary rat oligodendrocyte progenitor cells exposed 
to lipopolysaccharide through the modulation of Nrf2/HO-1 
pathway and the enhancement of cell stress response (Rosa et 
al., 2018). Neuroprotective effects, due to HO-1 up-regulation, 
have also been shown in C6 astroglial cells and in hippocampal 
primary rat astrocytes treated with 100 µM resveratrol and then 
exposed to neurotoxicants, such as buthionine sulfoximine, 
azide, or ammonia, for 3–24 h (Bobermin et al., 2015; Bellaver et 
al., 2016; Arus et al., 2017).

Resveratrol (20–40 mg/kg i.p. for 7 days) significantly 
enhanced HO-1 expression and prevented both cerebral edema 
and infarction in seven-day-old rat pups exposed to hypoxic/
ischemic injury secondary to unilateral carotid artery ligation 
(Gao et al., 2018). Similar results have been obtained in adult 
male rats treated with resveratrol (15–30 mg/kg i.p. for 7 days) 
and undergoing middle cerebral artery occlusion; in these 
animals, HO-1 induction was paralleled by down-regulation 
of caspase-3 and improvement of neuronal viability (Ren et 
al., 2011). Resveratrol (1–100 µM) increased HO-1 expression 
in both rat neural stem cells and primary rat cortical neurons 
exposed to glucose deprivation/reoxygenation injury (an in vitro 
experimental model mimicking cerebral artery occlusion and 
reperfusion injury) along with a strong enhancement of cell stress 
response and a marked reduction of apoptotic cell death (Shen et 
al., 2016a; Yang et al., 2018). As far as AD is concerned, resveratrol 
(10–40 µM) has been shown to counteract Aβ-induced oxidative 
stress in PC12 cells through the overexpression of Nrf2/HO-1 
system (Hui et al., 2018). In Aβ-treated rats, resveratrol [100 
µM/5 µL by intracerebroventricular route (i.c.v.)] up-regulated 
hippocampal HO-1, reduced neuronal death in the same area, 
and improved spatial memory (Huang et al., 2011). In SH-SY5Y 

FiGURE 3 | The chemical structure of resveratrol.
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cells exposed to rotenone, resveratrol (10–20 µM) induced HO-1 
expression and prevented dopaminergic cell death by autophagy 
(Lin et al., 2014).

Studies in humans have found that resveratrol (25 mg per os) 
has a low bioavailability and reaches plasma concentrations of 
about 40 nM within 2 h from administration (Goldberg et al., 
2003; Walle et al., 2004); plasma concentrations up to 2.4 µM are 
reached if the dose of resveratrol increases up to 1 g (Almeida 
et al., 2009). For a summary of resveratrol pharmacokinetics 
see Table 1. In order to improve bioavailability, resveratrol has 
been complexed with solid lipid nanoparticles (SLN) or gold-
conjugated nanoparticles (Park et al., 2016; Yadav et al., 2018). 
Among these formulations, SLN increased by about 4-times 
the brain levels of resveratrol, which was able to up-regulate 
HO-1 and improve cognitive decline in rats with permanent 
bilateral common carotid artery occlusion (Yadav et al., 
2018). Unfortunately, there are no studies in humans on the 
effective concentrations of resveratrol in the brain and a brain 
concentration greater than 2.4 µM is unlikely, by considering the 
plasma concentrations reached in the studies mentioned above 
and the presence of the blood-brain barrier. This suggests that 
most of the preclinical studies on the neuroprotective effects of 
resveratrol cannot be applied to humans. As far as the role of 
wine as the source of resveratrol is concerned, considering both 
the annual consumption of red and white wines in France (31.7 
vs 11.7 L, respectively) and the amount of resveratrol contained 
in red and white wines (2 and 0.5 mg/L, respectively), it is 
possible to calculate an amount of resveratrol “drunk” of about 
0.2 mg/day, 5000-times less than the highest daily dosage (1 g/
day) claimed to give rise to pharmacological effects (Weiskirchen 
and Weiskirchen, 2016).

It is worth mentioning the document released by the EFSA 
regarding the request by the European Commission on the 

safety of trans-resveratrol as a novel food (Efsa, 2016). In this 
document, the EFSA established that the 38 clinical studies 
provided in support of the claim do not lead to any conclusion 
about the efficacy of resveratrol, at doses up to 5 g/day for either 
acute (4 days) or chronic administration (4–12 weeks), in the 
treatment of metabolic diseases or cancer. The EFSA pointed 
out the heterogeneity of the resveratrol doses, the low number of 
individuals recruited, the uncontrolled experimental design, and 
the exploratory character of several studies.

In some clinical studies, patients supplemented with 
resveratrol reported mild adverse effects, such as diarrhea and 
hot flushes. As far as the interaction with drugs-metabolizing 
enzymes is concerned, resveratrol has been shown to inhibit 
CYP3A4, CYP2D6, and CYP2C9 and to induce CYP1A2 in vitro. 
No significant changes in plasma levels of common drugs have 
been reported so far (Efsa, 2016).

CONCLUSiONS
In illustrating the interactions between the HO/BVR system with 
FA, G. biloba, and resveratrol, we have attempted to address some 
critical points presented in the Introduction, discussing each 
issue to the best of our knowledge.

An initial consideration concerns the janus face of the HO-1/
BVR by-products. As mentioned in the Introduction, both CO 
and BR have important pleiotropic and neuroprotective effects 
in the nervous system, but they may become toxic in the case 
of a disproportionate production or under conditions of redox 
imbalance (Mancuso et al., 1997; Mancuso et al., 2010; Mancuso, 
2017). The potential toxic effect due to an over activation of the 
HO/BVR system has also been supported by the discovery of 
the importance of HO-1 gene repression in order to preserve 

TABLE 4 | Contribution of HO-1 up-regulation to the biological effects of resveratrol in preclinical in vitro and in vivo models.

Preclinical model Resveratrol (concentration or dose) Effect(s) Reference(s)

Kidney injury in rats 30 mg/kg i.p. Amelioration of sepsis-induced kidney injury (Wang et al., 2018a)
Renal cells 20 µM Cytoprotection from nicotine-induced oxidative damage. (Arany et al., 2017)
Lung injury in rodents 30 mg/kg i.p.

1–3 mg/kg per os for 3 days
Improvement of sepsis- or paraquat-induced lung injury in rats
Enhancement of cell stress response and attenuation of cigarette 
smoke-induced damage in mice

(Li et al., 2016; Wang  
et al., 2018b)
(Liu et al., 2014)

Renal carcinoma in rats 30 mg/kg per os for 24 weeks Inhibition of proliferation and improvement of renal function;  
increase in the antioxidant system

(Kabel et al., 2018)

Membranous nephropathy in mice 30 mg/kg s.c. every other day for 6 
weeks

Reduction of apoptosis and complement-induced damage; 
amelioration of renal function

(Wu et al., 2015)

Endothelial cells 0.01–10 µM Reduction of oxidative stress-induced damage and inhibition of 
senescence in progenitor cells

(Shen et al., 2016b)

Smooth muscle cells 1–10 µM Inhibition of oxidative damage and inflammation; vascular protection (Juan et al., 2005)
Obstructive jaundice in rats 10–20 mg/kg per os Restoration of intestinal permeability and improvement of gut  

barrier function
(Wang et al., 2016a)

Gastric inflammation in mice 100 mg/kg per os for 6 weeks Reduction of oxidative damage and inflammation in Helicobacter 
pylori–infected gastric mucosa

(Zhang et al., 2015)

Myocardial damage in rats 100 µM i.v. Reduction of oxidative damage and improvement of cardiac 
function following ischemia/reperfusion injury

(Cheng et al., 2015)

Hepatoma cells 1 µM Stimulation of mitochondrial biogenesis and reduction of 
inflammatory damage

(Kim et al., 2014)

Macrophages 1–10 µM Inhibition of inflammatory damage (Son et al., 2014)

i.p., intraperitoneal route of administration; i.v., intravenous route of administration; s.c., subcutaneous route of administration.
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cell homeostasis and integrity (Shibahara, 2003; Shibahara et 
al., 2003; Palozza et al., 2006). For this reason, the long-lasting 
induction of HO-1 due to chronic supplementation with herbal 
products may be a double-edged sword and the possibility of 
neurotoxicity must be carefully considered.

Regarding the effective dose correlation in vitro and 
blood or tissue concentrations found in vivo, resveratrol is an 
indisputable example. Both the bioavailability data through 
wine consumption and the EFSA opinion on anti-inflammatory 
efficacy do not justify the turmoil often generated by the media 
regarding the beneficial properties of resveratrol in red wine. 
In this regard, the antioxidant, antithrombotic, and metabolic 
effects of ethanol per se often are not mentioned; moreover, red 
wines usually contain ethanol in greater concentration than white 
wines and the beneficial effects claimed for the former can be 
due, once again, to ethanol (Goldberg et al., 1995; Criqui, 1998; 
Belleville, 2002). Focusing on the beneficial effects of moderate 
ethanol consumption would also allow a greater responsibility 
on the consumers’ part towards their own health, because of 
the pathological effects of uncontrolled alcohol intake are well 
known. On the contrary, if attention is focused on resveratrol, 
of which only the beneficial effects are artificially advertised, the 
need for a controlled intake of red wine is lost since the attention 
is driven towards a natural compound.

The risk linked to the effects on drug metabolizing enzymes 
and the health consequences in case of concomitant drug 
intake, concepts that are very often neglected also by health 
professionals, should be emphasized. Particularly dangerous 
are the interactions between G. biloba and CYP or other phase 
II enzymes, which could increase the risk of toxicity in patients 
treated with drugs, such as valproic acid, trazodone, talinolol, 
warfarin, etc. It is worth mentioning that the lack of reliable 
data on the neuroprotective effects of resveratrol and G. biloba 

challenges their potential beneficial effects in the treatment 
of neurodegenerative diseases. In this regard, more attention 
is required for FA for which, to our knowledge, there are no 
clinical studies confirming the promising neuroprotective 
results obtained on preclinical models. The few clinical 
studies available, addressing the kinetics in most cases, have 
been performed using foods rich in FA and this does not 
always allow to ascertain the actual dose administered and 
any confounding effects related to other active compounds 
present. Actually, only one randomized and double-blind 
study on hyperlipidemic patients (Bumrungpert et al., 2018) 
has appeared in the literature and shows the hypolipemic, 
anti-inflammatory, and antioxidant effects of FA (1 g/day per 
os for 6 weeks).

These considerations lead to the conclusion that there is 
not sufficient evidence on the efficacy of these herbal products 
in neurodegenerative diseases and that further efforts and 
many attempts are recommended and requested by doctors, 
researchers, and other health professionals to bridge this gap for 
the benefit of patients and their families.
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