AUTHOR=Liu Bin , Liu Jing , Wang Jiangong , Sun Fengjiao , Jiang Shujun , Hu Fengai , Wang Dan , Liu Dunjiang , Liu Cuilan , Yan Haijing TITLE=Adiponectin Protects Against Cerebral Ischemic Injury Through AdipoR1/AMPK Pathways JOURNAL=Frontiers in Pharmacology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2019.00597 DOI=10.3389/fphar.2019.00597 ISSN=1663-9812 ABSTRACT=

Excitotoxicity induced by excessive N-methyl-D-aspartate (NMDA) receptor activation underlies the pathology of ischemic injury. Adiponectin (APN) is an adipocyte-derived protein hormone that modulates a number of metabolic processes. APN exerts a wide range of biological functions in the central nervous system. However, the role of APN and its receptors in cerebral ischemia/reperfusion (I/R)-induced injury and the related mechanisms remain to be clarified. Here, we found that APN and APN receptor agonist AdipoRon (APR) were protective against excitotoxicity induced by oxygen and glucose deprivation/reperfusion (OGD/R) and NMDA in primary neurons. Adiponectin receptor 1 (AdipoR1) knockdown reversed the protection conferred by either APN or APR. Moreover, the protective effects offered by both APN and APR were compromised by compound C, an inhibitor of amp-activated protein kinase (AMPK) phosphorylation. Both APN and APR protected the dissipation of the ΔΨm caused by OGD/R. They also up-regulated the PGC-1α expression, which was reversed by compound C. Furthermore, both APN and APR ameliorated but APN knockout aggravated the infarct volume and neurological deficient induced by transient middle cerebral artery occlusion (tMCAO) in vivo. Taken together, these findings show that APN and APR protect against ischemic injury in vitro and in vivo. The protective mechanism is mainly related to AdipoR1-dependent AMPK phosphorylation and PGC-1α up-regulation.