AUTHOR=Luethi Dino , Walter Melanie , Zhou Xun , Rudin Deborah , Krähenbühl Stephan , Liechti Matthias E.
TITLE=Para-Halogenation Affects Monoamine Transporter Inhibition Properties and Hepatocellular Toxicity of Amphetamines and Methcathinones
JOURNAL=Frontiers in Pharmacology
VOLUME=10
YEAR=2019
URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2019.00438
DOI=10.3389/fphar.2019.00438
ISSN=1663-9812
ABSTRACT=
Halogenated derivatives of amphetamine-type stimulants are appearing on the drug market, often with altered pharmacological profile and sometimes different legal status compared to the non-halogenated substances. The aim of the present study was to investigate the pharmacological profile and hepatocellular toxicity of para-halogenated amphetamines and cathinones. The potential of amphetamine, 4-fluoroamphetamine, 4-chloroamphetamine, methcathinone, 4-fluoromethcathinone, and 4-chloromethcathinone to inhibit the monoamine transporters for norepinephrine, dopamine, and serotonin was determined in transporter-transfected human embryonic kidney 293 cells. Cell membrane integrity, ATP content, oxygen consumption rate, and superoxide levels were measured in human hepatoma HepG2 cells after exposure to the substances for 24 h. All compounds inhibited the norepinephrine transporter at submicromolar concentrations and the dopamine transporter at low micromolar concentrations. The selectivity of the compounds to inhibit the dopamine versus serotonin transporter decreased with increasing size of the para-substituent, resulting in potent serotonin uptake inhibition for the halogenated derivatives. All substances depleted the cellular ATP content at lower concentrations (0.25–2 mM) than cell membrane integrity loss occurred (≥0.5 mM), suggesting mitochondrial toxicity. The amphetamines and 4-chloromethcathinone additionally impaired the mitochondrial respiratory chain, confirming mitochondrial toxicity. The following toxicity rank order for the para-substituents was observed: chloride > fluoride > hydrogen. In conclusion, para-halogenation of stimulants increases the risk for serotonergic neurotoxicity. Furthermore, para-halogenation may increase hepatic toxicity mediated by mitochondrial impairment in susceptible users.