AUTHOR=Huang Wen-Tsung , Tsai Yu-Hsuan , Chen Shang-Hung , Kuo Ching-Wen , Kuo Yao-Lung , Lee Kuo-Ting , Chen Wen-Chung , Wu Pei Chih , Chuang Chun-Yu , Cheng Siao Muk , Lin Chun-Hui , Leung Euphemia Yee , Chang Yung-Chieh , Cheung Chun Hei Antonio TITLE=HDAC2 and HDAC5 Up-Regulations Modulate Survivin and miR-125a-5p Expressions and Promote Hormone Therapy Resistance in Estrogen Receptor Positive Breast Cancer Cells JOURNAL=Frontiers in Pharmacology VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2017.00902 DOI=10.3389/fphar.2017.00902 ISSN=1663-9812 ABSTRACT=
Intrinsic or acquired resistance to hormone therapy is frequently reported in estrogen receptor positive (ER+) breast cancer patients. Even though dysregulations of histone deacetylases (HDACs) are known to promote cancer cells survival, the role of different HDACs in the induction of hormone therapy resistance in ER+ breast cancer remains unclear. Survivin is a well-known pro-tumor survival molecule and miR-125a-5p is a recently discovered tumor suppressor. In this study, we found that ER+, hormone-independent, tamoxifen-resistant MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC5, and survivin, but show decreased expression of miR-125a-5p, as compared to the parental tamoxifen-sensitive MCF7 breast cancer cells. Molecular down-regulations of HDAC2, HDAC5, and survivin, and ectopic over-expression of miR-125a-5p, increased the sensitivity of MCF7-TamC3 cells to estrogen deprivation and restored the sensitivity to tamoxifen. The same treatments also further increased the sensitivity to estrogen-deprivation in the ER+ hormone-dependent ZR-75-1 breast cancer cells