
TECHNOLOGY REPORT
published: 30 November 2017
doi: 10.3389/fphar.2017.00880

Frontiers in Pharmacology | www.frontiersin.org 1 November 2017 | Volume 8 | Article 880

Edited by:

Vivek K. Bajpai,

Dongguk University Seoul,

South Korea

Reviewed by:

Marina Evans,

Environmental Protection Agency,

United States

Christoph Helma,

In Silico Toxicology (Switzerland),

Switzerland

*Correspondence:

Vineet K. Sharma

vineetks@iiserb.ac.in

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Predictive Toxicology,

a section of the journal

Frontiers in Pharmacology

Received: 12 August 2017

Accepted: 14 November 2017

Published: 30 November 2017

Citation:

Sharma AK, Srivastava GN, Roy A

and Sharma VK (2017) ToxiM: A

Toxicity Prediction Tool for Small

Molecules Developed Using Machine

Learning and Chemoinformatics

Approaches. Front. Pharmacol. 8:880.

doi: 10.3389/fphar.2017.00880

ToxiM: A Toxicity Prediction Tool for
Small Molecules Developed Using
Machine Learning and
Chemoinformatics Approaches
Ashok K. Sharma †, Gopal N. Srivastava †, Ankita Roy and Vineet K. Sharma*

Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education

and Research, Bhopal, India

The experimental methods for the prediction of molecular toxicity are tedious and
time-consuming tasks. Thus, the computational approaches could be used to develop
alternative methods for toxicity prediction. We have developed a tool for the prediction
of molecular toxicity along with the aqueous solubility and permeability of any
molecule/metabolite. Using a comprehensive and curated set of toxin molecules as a
training set, the different chemical and structural based features such as descriptors
and fingerprints were exploited for feature selection, optimization and development
of machine learning based classification and regression models. The compositional
differences in the distribution of atomswere apparent between toxins and non-toxins, and
hence, the molecular features were used for the classification and regression. On 10-fold
cross-validation, the descriptor-based, fingerprint-based and hybrid-based classification
models showed similar accuracy (93%) and Matthews’s correlation coefficient (0.84). The
performances of all the threemodels were comparable (Matthews’s correlation coefficient
= 0.84–0.87) on the blind dataset. In addition, the regression-based models using
descriptors as input features were also compared and evaluated on the blind dataset.
Random forest based regression model for the prediction of solubility performed better
(R2 = 0.84) than the multi-linear regression (MLR) and partial least square regression
(PLSR) models, whereas, the partial least squares based regression model for the
prediction of permeability (caco-2) performed better (R2 = 0.68) in comparison to the
random forest and MLR based regression models. The performance of final classification
and regression models was evaluated using the two validation datasets including the
known toxins and commonly used constituents of health products, which attests to
its accuracy. The ToxiM web server would be a highly useful and reliable tool for the
prediction of toxicity, solubility, and permeability of small molecules.
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INTRODUCTION

The human body is exposed to numerous chemical substances
in our daily life including natural compounds, cosmetics,
pharmaceuticals, and other chemicals. Several of these chemicals
are known to cause adverse drug reactions, non-acute and sub-
acute poisoning leading to allergic reactions, and sometimes
disability or death due to their mutagenic, carcinogenic or toxic
nature (Shonkoff et al., 2012). In addition, our body is also
exposed to toxic gases and aerosols such as carbon monoxide,
lead, cigarette smoke, wood smoke, workplace chemicals, and
dietary exposures to pesticides and herbicides that cause chronic
disease mortality (Seaton et al., 1995). Even toxins and onco-
metabolites, which are produced naturally during microbial
metabolic processes in the gut have been shown to cause diabetes,
kidney disease and cancer (Nowicki and Gottlieb, 2015). The
damaging potential of a toxin is determined by a multitude
of related factors and not just by its inherent toxicity. The
observed clinical consequences of any toxin are influenced by
chemical, biological and exposure related factors depend upon
its absorption, metabolism and elimination from the body. Dose
along with duration, frequency and route of administration
of toxin are the crucial exposure-related factors (Klaassen and
Amdur, 1996). Overall, the toxicity can be understood as the sum
of adverse effects exhibited by a substance on any organism.

The chemical ingredients commonly used in human
applications usually go through clinical trials to be certified as
safe for use in certain limits. The simplest experimental measure
of toxicity is the use of bio-assays involving animals injected with
the toxin (Borenfreund and Puerner, 1985). The experimental
measures are known to be tedious, time-consuming and have
their own limitations (Harry et al., 1998). Therefore, there is a
need for alternatemethods, which can use the inherent properties
of a given molecule for the determination of its toxic nature
(Hinderliter et al., 2010). In this scenario, the computational
methods appear promising in determining the toxicity of a
given compound using its structural and molecular properties.
The most commonly used features for these properties are
molecular descriptors (Dong et al., 2015) and fingerprints
(Xue and Bajorath, 2000), which can extract the chemical
and structural information inherent in any given molecule
for prediction-based approaches. The chemical properties of
a molecule also determine its solubility (Hutchinson et al.,
1979), which influences its absorption; and a molecule with
poor solubility will show limited absorption and hence reduced
toxicity (Hutchinson et al., 1979). Thus, the aqueous solubility,
and also the permeability (caco-2 permeability) are important
toxicity determining factors. The caco-2 cells are human colon
epithelial cancer cell lines, which are used as a model to predict
the intestinal absorption of molecules using experimental
methods (Van Breemen and Li, 2005).

Therefore, the chemical and structural properties of a
molecule can be exploited for the prediction of toxicity of a
given molecule, the determination of which is an important
and challenging task. At present, feature-based methods such
as ToxiPred (Mishra et al., 2014), DeepTox (Mayr et al., 2016)
are available for the prediction of toxicity (Cheng et al., 2012).

Another tool is admetSAR, a freely available tool which uses
various classification and regression models for the prediction of
ADMET properties. Also, a large number of machine learning
tools are available for the toxicological QSAR problems, but
are molecule-specific due to their training on highly similar
molecules with a similar backbone to construct such models.
In summary, the available tools have their own limitations
since most of the available tools are either highly specific for a
particular toxicity, or are not freely available in many cases. Thus,
there is a need for an accurate, efficient, comprehensive and easily
accessible computational tool to predict the toxicity and toxicity-
related properties of a molecule. In this work, by integrating
machine-leaning and chemoinformatics approaches, we have
developed a computational method “ToxiM” for the prediction of
toxicity of molecules using fingerprints and descriptors as input
features. It is freely available at http://metagenomics.iiserb.ac.in/
ToxiM/.

MATERIALS AND METHODS

Dataset Preparation
To develop the prediction modules using machine learning
approaches, two distinct datasets of molecules were curated (i)
positive dataset- consisting of known toxins, and (ii) negative
dataset- consisting of non-toxins.

Positive Dataset
The positive dataset contained 3,519 toxins retrieved from the
T3DB database (http://www.t3db.ca/) (Lim et al., 2010). All
metals and small peptides (670 toxins) were removed from the
dataset, and the final dataset contained 2,849 toxins. The dataset
included toxic compounds with a recorded medical consequence
in relatively low concentrations.

Negative Dataset
The negative dataset was constructed using the human
metabolites from the RECON1 model in BIGG database (http://
bigg.ucsd.edu/data_access) (King et al., 2016). The human
metabolites were used since they are produced by the conserved
pathways, and had no known reports of showing any human
toxicity, and thus can serve as a good negative set, since the aim of
the tool was to predict the molecules toxic for the human system.
Using the id information available in the RECON1 model, a total
of 1,263 unique molecules were retrieved from different sources
(Supplementary Text S1). These molecules were considered as
the negative dataset in this study.

Validation Datasets
Two validation datasets were used to optimize the performance.
First validation set consisted of 41 drugs, which were withdrawn
from the commercial market due to their adverse effects. Second
validation set consisted of 15 compounds commonly used
as additives in food, cosmetics, detergents and preservatives.
Though these compounds are available in the commercial
market, these are reported to be toxic and their use has been
debatable (Gernhardt et al., 2004).
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FIGURE 1 | Performance of different machine learning methods for the classification of toxins and no-toxins, (A) Using fingerprints as input feature, and (B) Using
descriptors as input features.

Compositional Analysis
To differentiate between the positive and negative datasets,
a compositional analysis was performed using the atomcount
function of “ChemmineR” “library” in “R”. It is a physicochemical
descriptor, which calculates the elemental composition, and was
used to compare the elements occurring in toxins and non-toxins
(Cao et al., 2008).

Input Features
Descriptors and Fingerprints
Descriptors depict all two and three-dimensional properties
in the form of numerical values, and thus, it is a form of

conceptual projection of all the molecular properties. Molecular
descriptors can be categorized into one, two and three-
dimensional descriptors. 1D-descriptors contain information on
bulk properties such as molecular weight, molar refractivity,
permeability and solubility. Physicochemical properties of a
molecule such as LogP, LogD, and Topological Polar Surface Area
(TPSA) can be estimated based on 2D structures described by
the fragmental descriptors. The 1D and 2D descriptors were used
in this study. Fingerprints are a complex form of descriptors.
They typically encode the information of molecular structures
into a bit string, which produces a pattern characteristic of
a given molecule. Bit strings account for different structural
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TABLE 1 | Performance of random forest models at difference mtry values using
variable number of important descriptors.

Descriptors mtry Sensitivity Specificity Precision Accuracy MCC

Top20 6 0.9429 0.8802 0.9479 0.9240 0.8203

8 0.9434 0.8812 0.9484 0.9246 0.8218

10 0.9421 0.8782 0.9470 0.9228 0.8174

12 0.9418 0.8927 0.9542 0.9272 0.8272

14 0.9436 0.8734 0.9444 0.9222 0.8165

Top40 4 0.9421 0.8791 0.9475 0.9231 0.8181

5 0.9434 0.8830 0.9492 0.9252 0.8231

6 0.9431 0.8847 0.9501 0.9255 0.8237

7 0.9454 0.8800 0.9475 0.9255 0.8243

8 0.9433 0.8794 0.9475 0.9240 0.8204

Top60 16 0.9477 0.8905 0.9523 0.9304 0.8356

24 0.9468 0.8848 0.9497 0.9280 0.8300

32 0.9480 0.8861 0.9501 0.9292 0.8330

40 0.9477 0.8878 0.9510 0.9295 0.8335

48 0.9472 0.8850 0.9497 0.9283 0.8307

Top80 12 0.9468 0.8857 0.9501 0.9283 0.8306

18 0.9448 0.8879 0.9515 0.9277 0.8289

24 0.9455 0.8836 0.9492 0.9268 0.8270

30 0.9476 0.8851 0.9497 0.9286 0.8315

36 0.9439 0.8849 0.9501 0.9261 0.8253

Top100 3 0.9473 0.8904 0.9523 0.9301 0.8348

5 0.9470 0.8948 0.9545 0.9314 0.8375

7 0.9469 0.8884 0.9515 0.9292 0.8327

9 0.9474 0.8922 0.9532 0.9307 0.8362

11 0.9473 0.8904 0.9523 0.9301 0.8348

Top100 at mtry 5 was selected to be the best performing model to build the descriptor-

basedmodule for ToxiM as the model showed the best performance among all the models

developed during the variable optimization step for descriptors.

fragments, and their presence or absence was indicated by
0 or 1. Fingerprint overlap was determined as a measure of
similarity andwas calculated by Tanimoto coefficient (Dong et al.,
2015).

Development of Classification Models for the

Prediction of Toxicity
Fingerprints and descriptors were used as the input feature
for the development of various classification models. In total,
10,208 bits belonging to 10 different fingerprints were calculated
for 2,843 molecules in positive dataset, and 1,262 molecules in
negative dataset using “PaDEL” (Supplementary Text S2; Yap,
2011). The fingerprint dataset (10,208 bits) from 4,105 molecules
was divided randomly into 80:20 ratios, from which the 80% part
(3,282 molecules) was used for training and the remaining 20%
(823 molecules) was used for testing.

In total, 196 descriptors belonging to six different descriptor
families (Supplementary Text S3) were calculated using
“RDKit” for 2,835 molecules in the positive dataset, and
1,247 molecules in the negative dataset. Descriptors such as

MinPartialCharge, MaxPartialCharge, MaxAbsPartialCharge,
MaxAbsPartialCharge, and Ipc, were excluded because the values
for these descriptors for all the molecules present in the dataset
could not be calculated using RDKit. The final dataset consisting
of 191 descriptors from 4,082 molecules was divided randomly
into 80:20 ratio, from which 80% part (3,263 molecules) was used
for training, and the remaining 20% (819 molecules) was used
for testing.

Principal Component Analysis (PCA)
We have high-dimensional data represented by several input
features. Thus, PCA was carried out to compress the data
dimensions by identifying those components, which are
distinctly different in the two datasets (Wold et al., 1987).

Selection of Appropriate Machine Learning Model for

Classification
10-fold cross validation was performed on training data with
descriptor and fingerprints as feature inputs for various machine
learning algorithms including SVM, CART, Random Forest and
KNN, to compare their performance (Hanley and McNeil, 1982)
using “caret” package in R (Liaw and Wiener, 2002).

Optimization of Various Parameters for the

Development of Classification Models
The mtry (number of randomly selected variables), ntree
(number of trees generated by random forest algorithm) and
input feature parameters were optimized using the random forest
package in R (version 3.3.2) (Ihaka and Gentleman, 1996). The
importance of each fingerprint and descriptor was calculated
using the mean decrease in accuracy values at the best mtry value
obtained using tuneRF function, which calculates optimal value
for mtry for random forest using out of bag error estimate. The
Out-of-Bag (OOB) error, which represents the prediction error
of random forest algorithm, of fingerprint-based classification
models was calculated using top 0.5, 1, 5, 10, and 20% fingerprints
from the total 3,282 molecules using various mtry values at
ntree = 200–1,000. Similarly, the OOB error performance of
descriptor-based classification models was evaluated using top
20, 40, 60, 80, and 100 descriptors derived from the total 3,263
molecules using various mtry values at ntree = 200–1,000. The
best model with minimum OOB error from fingerprint-based
and descriptor-based classification models was selected. On the
basis of performance of these two models, the top 10% (1,021
bits) fingerprints and the top 100 descriptors were combined
together to develop a hybrid model with 1,121 input features.
Performances of various classification models were optimized
using 10-fold cross validation.

Performance Validation of Final Classification Models
Performances of fingerprint, descriptor and hybrid-
based models were evaluated on 20% of the test
dataset, and also on two separate validation datasets
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FIGURE 2 | Optimization of random forest at various mtry and ntree values using descriptors as input features, (A) performance using top 20 descriptors, (B)
performance using top 40 descriptors, (C) performance using top 60 descriptors, (D) performance using top 80 descriptors, and (E) performance using top 100
descriptors.

using the following performance measures.

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP

Precision =
TP

TP + FP

Accurancy =
TP + TN

TP + FN + FP + TN

MCC =
(TP × TN)− (FP × FN)

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

Where, TP = True Positive, TN = True Negative, FP = False
Positive, FN = False Negative andMCC =Matthews correlation
coefficient.

Development of Regression Models for the

Prediction of Solubility and Permeability
To examine the toxicity determining factors such as aqueous
solubility and caco-2 permeability, additional regression models

were developed to calculate the numerical values of LogS and
LogP. These values are expected to be high in the case of a toxin
and low in the case of a non-toxin (Artursson and Karlsson,
1991).

Construction of Datasets
To prepare the solubility dataset, a total 452 molecules were
considered from the positive and negative dataset for which the
experimental values for aqueous solubility were available at the
admetSAR dataset (Cheng et al., 2012) and from the work by
Palmer et al. (2007). All these molecules are structurally diverse
and solid at room temperature (Palmer et al., 2007). To prepare
the permeability dataset, 133 molecules from the positive and
negative dataset for toxicity classification model were considered
for which the experimental values for caco-2 cell permeability
were available at admetSAR dataset (Cheng et al., 2012), and from
the work by Wang et al. (2016). Both the datasets were divided
into two groups in the ratio of 80:20, where the 80% part was used
as training dataset and the 20% part was used as testing dataset.
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TABLE 2 | Performance of random forest models at difference mtry values using
variable number of important fingerprints.

mtry Sensitivity Specificity Precision Accuracy MCC

Train0.5per 3 0.9296 0.8867 0.9525 0.9171 0.803

5 0.9359 0.884 0.9503 0.9205 0.8117

7 0.9376 0.873 0.9446 0.918 0.8067

9 0.9428 0.8694 0.9419 0.9202 0.8126

11 0.9423 0.8667 0.9406 0.919 0.8099

14 0.9422 0.8659 0.9402 0.9186 0.8092

Train1per 10 0.9454 0.8754 0.9446 0.9238 0.8212

15 0.9457 0.8712 0.9424 0.9226 0.8187

20 0.949 0.8713 0.9419 0.9247 0.8242

25 0.9476 0.8667 0.9397 0.9223 0.8186

30 0.9472 0.8658 0.9393 0.9217 0.8171

35 0.9469 0.8699 0.9415 0.9229 0.8197

40 0.9472 0.8649 0.9388 0.9214 0.8165

Train5per 11 0.9504 0.8751 0.9437 0.9267 0.8291

17 0.9486 0.8721 0.9424 0.9247 0.824

22 0.9496 0.8783 0.9454 0.9275 0.8302

27 0.9493 0.8817 0.9472 0.9284 0.8321

32 0.9484 0.8797 0.9463 0.9272 0.8292

37 0.9494 0.8843 0.9485 0.9293 0.8341

44 0.9519 0.8841 0.9481 0.9308 0.838

Train10per 32 0.9508 0.877 0.9446 0.9278 0.8312

44 0.9514 0.8831 0.9476 0.9302 0.8366

64 0.9511 0.8856 0.949 0.9308 0.8378

88 0.9524 0.8877 0.9498 0.9324 0.8414

108 0.9515 0.8866 0.9494 0.9314 0.8392

128 0.9515 0.8857 0.949 0.9311 0.8386

Train20per 44 0.9518 0.8806 0.9463 0.9296 0.8353

66 0.9506 0.882 0.9472 0.9293 0.8344

88 0.9502 0.8828 0.9476 0.9293 0.8343

128 0.9506 0.8855 0.949 0.9305 0.837

176 0.9507 0.8864 0.9494 0.9308 0.8377

Top 10% fingerprints at mtry 88 were selected to be the best performing model to build the

fingerprint-based module for ToxiM, as this model showed the best performance among

all the models developed during the variable optimization step for fingerprints.

These training and testing datasets were used for the construction
and validation of the regression models. Final solubility dataset
contained 362 molecules in the training set and 90 molecules in
the testing set, whereas the final dataset for permeability consisted
of 115 molecules in the training dataset, and 18 molecules in the
testing dataset.

Selection of Appropriate Machine Learning Based

Models
Molecular descriptors have been used as an input feature for the
development of various regression models because descriptors
have all the molecular information including electronic,
topological, thermodynamics and structural properties. Multi-
linear regression (MLR), Random Forest Regression (RFR)
and Partial Least Square Regression (PLSR) were optimized to

calculate the aqueous solubility and caco-2 cell permeability
(Schneider et al., 2010).

Multi-linear regression (MLR) fits two or more variables
on the experimentally known data by using a linear equation.
In general, the linear equation for MLR regression having n
observations is Y= a1X1+a2X2+a3X3+.......+anXn+C. In this
case, every independent variable Xi (i = 1,2,3...,n) is associated
with the dependent variable Y according to the above equation.
R2 was used for LogS and LogP estimation using MLR algorithm
(Kujawski et al., 2012). For the development of final models, the
best descriptors were selected based on their minimum p-values.

The RFR models for both datasets were trained using
randomForest package in R. Models were constructed using mtry
= 14, step = 0.5, improvement factor = 10−5 and ntree =
100. Variable importance information for each descriptor was
obtained from the random forest models. For the development
of final models, the best descriptors were selected based on their
mean decrease in accuracy values.

Partial Least Square regression (PLSR) is a widely used
predictive modeling method to deal with highly collinear
predictor variables (Van Huffel, 1997). In this model, it is
considered that all the independent variables (Xi = descriptors)
are linearly related to the dependent variable (Y = LogS/LogP)
(Geladi and Kowalski, 1986). Variable selection was performed
with the help of plsgenomics library and variable. selection
function (Kotsiantis et al., 2007).

RESULTS

Compositional Analysis Reveals the
Difference between Toxin and Non-toxins
The compositional analysis revealed that non-toxic
molecules were rich in Carbon, Oxygen, Nitrogen, and
Phosphorus, which are the building blocks of living matter
(Supplementary Figure S1). In contrast, the toxins were rich
in Chlorine, Bromine, Arsenic, Lead, Cobalt and Fluorine in
addition to Carbon and Oxygen (Supplementary Figure S2;
Data Sheet 2). The atom frequency of compositional elements
showed clear differences between toxins and non-toxins, which
suggests that composition and related properties are important
determinants of the toxicity of a compound.

Principal Component Analysis
To compute variance between toxins and non-toxins, PCA was
performed on training data using fingerprints and descriptors
as input features (Supplementary Figure S3 and Supplementary
Text S4).

Selection of Appropriate Machine Learning
Method for Classification
The classification performance of various machine learning
methods was evaluated using “caret” package in R script
(Kotsiantis et al., 2007). Using fingerprints as input features
(Figure 1A) ROC (Receiver Operating Characteristic) values
displayed by RF, SVM, KNN, and CART were 0.97, 0.96, 0.95,
and 0.77, respectively. Similarly, using descriptors as the input
features, the ROC values displayed by RF, SVM, KNN, and CART
were 0.97, 0.94, 0.94, and 0.85, respectively (Figure 1B). Thus, it
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FIGURE 3 | Optimization of random forest at various mtry and ntree values using fingerprints as input features, (A) performance using top 0.5% fingerprints, (B)
performance using top 1% fingerprints, (C) performance using top 5% fingerprints, (D) performance using top 10% fingerprints, and (E) performance using top 20%
fingerprints.

was apparent that the RF-based model outperformed the other
machine learning based models.

Optimization of RF Parameters and
Development of Classification Models
Mean decrease in accuracy values for each variable in descriptors
and fingerprints were calculated at the best mtry (optimized
by tuneRF function) and ntree = 500. The mean decrease in
accuracy values for the top 30 fingerprints and descriptors are
shown in Supplementary Figures S4A,B, and the complete list of
fingerprints and descriptors with the mean decrease in accuracy
values are provided in Supplementary Tables S1, S2.

The performance of descriptor-based and fingerprint-based
classification models was examined at various mtry values and
ntree = 200–1,000 using different combinations of descriptors
and fingerprints. From Table 1 and Figure 2, it is apparent
that the model developed using the top 100 descriptors at
mtry = 5 and ntree = 1,000 performed better than the other
classification models and showed an accuracy of 0.93, MCC of
0.84, and the lowest OOB error of 6.9%. From Table 2 and
Figure 3, it is apparent that the model developed using the
top 10% (1,021 bits) of fingerprints at mtry = 88 and ntree
= 800, performed better than other classification models as it
displayed an accuracy of 0.93, MCC of 0.84 and the lowest OOB
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FIGURE 4 | Distribution of significantly discriminating descriptors (Wilcoxon test, p < 0.05) among toxins (T) and non-toxins (NT).

error of 6.7%. A hybrid set was constructed using the top 100
descriptors and 1,021 fingerprints, and the performance of RF-
based classification model was evaluated using the optimized
parameters for fingerprint-based model (mtry = 88 and ntree =
800). The performance of the hybrid model was almost similar
to the performance of fingerprint-based model, and showed
the Sensitivity, Specificity, Precision, Accuracy and MCC of
0.95, 0.89, 0.95, 0.93, and 0.84, respectively. From above, the
best performing fingerprint-based, descriptor-based and hybrid
models were selected as the final models for the classification of
molecules as toxic or non-toxic.

Identification of Statistical Significant
Descriptors and Fingerprints
A separate statistical analysis (Wilcoxon rank sum test) was
performed on the training datasets of top 100 descriptors

and top 1,021 fingerprints to find out the significantly
discriminating (P ≤ 0.05) descriptors and fingerprints among
toxins and non-toxins. The distribution of top descriptors and
fingerprints in toxins and non-toxins are shown in Figures 4, 5,
respectively. From the results, it is apparent that the proportion
of these descriptors and fingerprints varied considerably
from toxins to non-toxins. Detailed characterization of the
discriminating features for toxin-like property in any molecule
will be of great use for the researchers working in the
toxicology field.

Performance Evaluation of RF
Classification Models Using Blind Set
The performances of descriptor-based, fingerprint-based and
hybrid models were evaluated using the blind data set (methods
section). From Figure 6, it is apparent that all the models showed
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FIGURE 5 | Distribution of significantly discriminating fingerprints (Wilcoxon test, p < 0.05) among toxins (T) and non-toxins (NT).

very high true positive rates as compared to the false positive
rates. The ROC values shown by the hybrid model (Figure 6C)
was slightly higher (0.98) than the other two fingerprints
(Figure 6B) and descriptors (Figure 6A) models (0.97). The
detailed performances of each model are provided in Table 3.

Development and Validation of Regression
Models
In addition to the prediction of toxicity of compounds, MLR,
RF, and PLS based regression models were also developed to
calculate the solubility and permeability values using descriptors
as the input feature. To construct MLR-based regression models,
top 15 descriptors were selected (based on their importance) to
calculate LogS and top 11 descriptors were selected to calculate

LogP (Supplementary Tables S3, S4). Similarly, to construct RF-
based regression models, top 40 most important descriptors were
selected to calculate LogS, and top 10 descriptors were selected
to calculate LogP (Supplementary Tables S5, S6). To construct
PLS-based regression model, top five descriptors were used to
calculate LogS and LogP (Supplementary Tables S7, S8). The
performance of each model was evaluated using R2 values, which
is a statistical measure of how close the data points are fitted on
the regression line.

The solubility predictive ability of RF-based regression model
was higher (R2 = 0.84) as compared to the ML-based regression
model (R2 = 0.61) and PLS regression model (R2 = 0.76)
(Figure 7). Therefore, the RF-based model was selected for
validation, which displayed a correlation accuracy of 0.92 on
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FIGURE 6 | ROC performances of random forest models on validation dataset, (A) performance of the descriptor-based model, (B) performance of the
fingerprint-based model, and (C) performance of the hybrid-based model.

TABLE 3 | Performance of all three models on blind dataset.

Model Sensitivity Specificity Precision Accuracy MCC

Descriptors 0.95 0.88 0.95 0.93 0.84

Fingerprints 0.96 0.92 0.96 0.95 0.87

Hybrid 0.96 0.88 0.95 0.94 0.85

the blind dataset (Table 4). The permeability predictive ability of
PLS-based regression model was marginally higher (R2 = 0.678)
as compared to the RF-based regression model (R2 = 0.675)
and ML regression model (R2 = 0.66) (Figure 8). Therefore, the
PLS-based regression model was selected for validation, which
performedwith a correlation accuracy of 0.82 on the blind dataset
(Table 5).

Development of Toxim Webserver for the
Prediction of Toxicity
The steps involved in the construction of ToxiM classification
models for the prediction of toxicity of molecules is represented

in Figure 9. Using the final classification and regression models,
a web server ToxiM was developed to facilitate the online
submission of a query by the user, and to display the prediction
results. The toxicity prediction page enables the user to submit
the query molecule either by the PubChem CID or by uploading
its SDF file. The query SDF file is processed through the
models available at the web server for the prediction of
toxicity, permeability and solubility properties. All the three best
performing models, i.e., fingerprint-based, descriptor-based and
hybrid-based are available at the webserver for selection. The
query is analyzed through the selected model, and the results
are displayed in the form of prediction probabilities for the
classification of a query as toxic or non-toxic. To examine the
solubility and permeability of a given query molecule, descriptor-
based best performingmodels, the RF-based regressionmodel for
the calculation of LogS, and the ML-based regression model for
the calculation of LogP, are available as the default options. A
tutorial page is provided to explain the navigation through the
website. The webserver can be accessed at http://metagenomics.
iiserb.ac.in/ToxiM/.
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FIGURE 7 | Performance of regression-based models for prediction of LogS, (A) RF-based regression model, (B) MLR-based regression model, and (C) PLS-based
regression.

Performance Validation of Toxim Using
Validation Datasets
The performance of ToxiM was evaluated on two validation
datasets. The first dataset consisted of 41 drugs, which were
withdrawn due to their potentially harmful effects. The second
dataset consisted of 15 commonly used molecules but their
toxicity to humans have been debatable (Wishart et al.,
2006). ToxiM predicted all the withdrawn drugs to be toxic
with probability score >0.5, and could successfully validate
the toxicity of these drugs (Supplementary Table S9). For
withdrawn drugs, toxicity prediction probability scores of ToxiM
were higher in comparison to the admetSAR (Table 6). The
predictions of ToxiM on the second validation set are provided
in Supplementary Table S10. In addition to the toxicity prediction
of withdrawn drugs and other molecules, LogP and LogS values

were also calculated using the regression analysis on both the sets.
The results for LogP and LogS for FDA withdrawn molecules are
given in Supplementary Tables S11, S12, respectively. Similarly,
the values of LogP and LogS calculated for the second dataset are
given in Supplementary Tables S13, S14, respectively.

Analysis and Discussion of Toxim
Prediction Results on Second Validation
Set
Food additives such as aspartame, saccharin and MSG, were
predicted to be toxic by all three modules of ToxiM (Maher
and Wurtman, 1987; Ellwein and Cohen, 1990; Freeman, 2006).
Aspartame and saccharin are artificial non-carbohydrate calorie-
free sweeteners, which are commonly available in the commercial
market. These were predicted to be toxic (descriptor model score:
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TABLE 4 | Experimental and predicted values of LogS on the blind set for
solubility.

Molecule Name Observed LogS Predicted LogS

Dicofol −0.2 0.16

1,1,2,2-Tetrachloroethane −2.45 −3.18

1,1-Dichloroethane −4.883 −3.32

1,1,2-Trichloroethane −5.08 −4.77

1,2-Diphenylhydrazine −5.16 −3.66

1-Bromopropane −7.21 −7.38

Tefluthrin −2.38 −2.34

1,2,4-Trichlorobenzene −1.219 −2.15

Benzo[e]pyrene 0.64 0.08

2,4-Dichlorophenoxyacetic acid −2.478 −2.82

Dapsone −2.507 −2.29

Pyrene −4.71 −4.55

Styrene −2.92 −3.36

Hexachlorobutadiene −3.26 −3.39

Alprazolam −3.48 −2.67

Prochlorperazine −4.19 −4.32

Meperidine −3.27 −3.74

Imipramine −2.77 −2.86

Metharbital −4.92 −4.17

Cimetidine −1.75 −1.38

Procaine −3.18 −2.85

Diazepam −3.752 −3.83

Nitrazepam −2.635 −2.14

Strychnine −4.4 −4.63

Bromadiolone −3.54 −2.72

Pentane −3.96 −4.22

2,3-Dimethylpentane −2.144 −1.88

3,3-Dimethylpentane −5.666 −6.28

2,2,3-Trimethylbutane −1.89 −2.59

2-Methylheptane −4.61 −3.79

2-Pentene −2.617 −3.10

2-Methyl-1-butene −2.73 −2.30

Isopropylbenzene −5.28 −4.12

2-Nitrophenol −4.23 −4.12

4-Aminophenol −8.23 −8.11

Benfluralin −7.8 −8.11

Chlorpyrifos-methyl −0.77 −3.38

Iprodione −6.74 −6.66

Niclosamide −8.65 −7.77

Oxadiazon −2.7 −1.57

Prometon −3.28 −2.78

4-Phenylphenol −6.8 −6.62

Propylparaben −2.09 −2.91

Adenine −2.338 −3.27

Cholic acid −1.74 −1.90

D-Fructose −1.29 −1.25

L-Tryptophan −4.7 −4.58

Succinic acid −3.42 −3.12

Atrazine −4.376 −3.61

Clomazone −4.38 −4.89

(Continued)

TABLE 4 | Continued

Molecule Name Observed LogS Predicted LogS

Diphenylamine −2.75 −2.52

Ethofumesate −2.48 −2.31

Ethylenethiourea −8.19 −8.14

Fenarimol −4.28 −3.98

3-Chlorobiphenyl −2.82 −2.57

Oryzalin −1.73 −1.61

Picloram −4.88 −4.81

Terbacil −1.57 −2.18

Dodecanoic acid −4.36 −3.95

Equilin −1.74 −1.24

Griseofulvin −7.321 −5.84

Estrone −1.35 −2.85

Hydroxyurea −3.59 −3.96

1-Hexadecanol −8.6 −6.74

Coumarin −6.19 −2.71

Benzoin −3.51 −3.54

1-Nitronaphthalene 1.12 0.63

2,3′,4,4′-Tetrachlorobiphenyl −2.82 −3.01

2,2′,3,4,5-Pentachlorobiphenyl −3.32 −3.24

1,2-Dibromo-3-chloropropane −1.89 −2.23

2,2′,3,3′,6,6′-Hexachlorobiphenyl −0.8 −0.24

Vinyl chloride −5.53 −5.45

Tetracene −3.6 −4.18

Triphenylene −2.23 −1.69

Dichlorprop −5.69 −4.66

2-Methyl-4-chlorophenoxyacetic acid −3.85 −2.90

Alachlor −3.8 −3.58

Amygdalin −1.4 −2.25

Mirex −2.183 −2.11

Asulam −7.8 −6.72

Benfuracarb −4.62 −4.01

Benomyl −4.45 −7.01

Carbaril −2.54 −2.51

Chlorbufam −7.26 −5.66

2,4-Dinitrophenol −2.85 −3.21

Dioxacarb −3.37 −4.22

Benzo[a]pyrene −4.82 −4.75

Pyrolan −1.48 −1.47

Ethylbenzene −0.71 −0.76

Benzo[b]fluoranthene −1.66 −2.38

0.54 and 0.74 respectively) and were also found to be soluble and
permeable. Similarly, MSG, which is used as a flavor enhancer,
was predicted to have a toxicity score of 0.57, and was found to
be soluble and permeable. Thus, the ToxiM predictions also point
toward their potentially harmful effects.

Pesticides are being widely used to control insects, rodents
and other pests in the agricultural fields. The continued usage
of pesticides has highly detrimental environmental impacts on
air, water, soil and food, and could be toxic to humans, lower
animals and the food chain. Their exposure has been linked
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FIGURE 8 | Performance of regression-based models for prediction of LogP, (A) MLR-based regression model, (B) RF-based regression model, and (C) PLS-based
regression model.

to hormone disruption, cancer, neurological effects like loss of
memory, and affect neurological and reproductive development.
The ToxiM tool predicted the highly used pesticides DCPA and
EDTA (Fountain and Reith, 2014) as toxic with prediction values
>0.9, and both were also found to be soluble but, EDTA was
predicted to be non-permeable. Another commonly used class
of compounds comprised of the beauty and cosmetic products.
Molecules such as Butylhydroxybutylnitrosamine (Parkinson
and Lotzová, 1989) and Sodium tetradecanesulfonate, which
are present in cosmetics, were predicted to be toxic (0.89 and
0.88, respectively) by ToxiM. Imidazolidinyl urea is used in
cosmetics as an antimicrobial preservative due to its high
solubility in water, and its use has been debatable (https://
ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/
imidazolidinylurea_508.pdf). Similarly, mixed results were
also obtained in the case of Imidazolidinyl urea, where the

ToxiM descriptor model predicted it to be non-toxic, whereas,
both fingerprint and hybrid models predicted it to be toxic.
The Imidazolidinyl urea is not known to induce any toxicity
in human but in patients with contact dermatitis, it can
show positive reaction from the exposure to Imidazolidinyl
urea.

Benzethonium chloride (National Toxicology Program, 1995)
is commonly used in cosmetics, medicaments, deodorants,
and mouthwash because of its antiseptic and antimicrobial
properties. It was predicted to be highly toxic by all the
three models of ToxiM, and was also predicted to be soluble
and permeable. Another commonly used synthetic product,
Polysorbate-80 (Roberts et al., 2010), which is used as an
emulsifier in vitamins, vaccines, medicines, surfactant in soaps
and cosmetics, defoamer in the fermentation of wine, and as
a binding agent in ice cream, was also predicted to be highly
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TABLE 5 | Experimental and predicted values of LogP of blind set for permeability.

Molecule Name Observed LogP Predicted LogP

Glipizide −4.58 −4.54

Ceftriaxone −4.46 −4.77

Dextromethorphan −4.74 −4.40

Olopatadine −4.72 −5.09

Sulfasalazine −4.49 −4.46

Diazepam −4.74 −4.70

Oxazepam −4.95 −4.60

Diflunisal −5.48 −5.58

Thalidomide −4.70 −4.55

Verapamil −4.31 −4.46

Daidzein −6.60 −5.78

Vinblastine −3.92 −4.34

Griseofulvin −4.68 −4.73

Diclofenac −5.01 −4.64

Cytarabine −4.63 −4.18

Methanol −3.93 −4.76

choline −5.38 −5.06

progesterone −6.10 −5.60

toxic by all the three models. Mixed results were obtained for
Sodium hypochlorite, which is commonly known as bleaching
powder, and is used on a large scale for bleaching, surface
purification, and disinfection of water. Sodium hypochlorite was
predicted to be toxic by fingerprint model and non-toxic by
descriptor and hybridmodels. The reason for the inconsistency in
predictions in the case of sodium hypochlorite can be explained
using compositional analysis, which revealed that toxins had
atoms such as Cl, Br etc., and sodium hypochlorite also contained
Cl atom in its structure. Also, it is predicted to be toxic
only by fingerprint model that uses the structural properties
of a molecule to make the prediction. On the other hand, the
descriptor module predicted bleaching powder to be non-toxic,
as it takes into consideration physical and chemical properties
of the molecule. It is well-established that sodium hypochlorite
acts as an irritant for the human skin but it is not toxic
at lower concentrations. The hybrid model uses the feature
information from both fingerprint and descriptor modules for
making the prediction, which was inconsistent in this case due
to the above reasons. Sodium hypochlorite was also predicted to
be highly water soluble (Budavari, 1996) and permeable, which
is in accordance with experimentally known facts. Asbestos,
which is commonly used in construction works because of its
thermal insulation and fire protection, was predicted to be toxic
(0.54–0.84) (Kanarek, 2011). Ethylene glycol, an antifreeze agent
whose toxic effects have been long debated, was predicted to
be toxic using the hybrid and fingerprint-based ToxiM models
(0.68 and 0.54,respectively) (Jacobsen and McMartin, 1986),
whereas it was classified as a non-toxin by the descriptor model.
Mixed results obtained for ethylene glycol can be explained by
the fact that it does not have any inherent toxicity before it
is metabolized (http://emedicine.medscape.com/article/814701-
overview#a5).

Methyl methacrylate, which is a polymer used in the
manufacture of PMMA and MBS and also in hip and knee
replacements, was predicted to be toxic, soluble and permeable.
Polyacrylamide-butylamine, a polymer used in the manufacture
of pesticides, emulsifiers and pharmaceuticals, was predicted to
be toxic by descriptor model but was shown to be non-toxic
by fingerprint and hybrid models. Polyacrylamide-butylamine
was also predicted to be soluble and permeable with the help of
regression models used in ToxiM. A total of 12 out of 15 cases
were predicted to be toxic, of which 9 compounds were predicted
to be permeable, 11 compounds were predicted to be soluble, and
9 compounds were shown to be water soluble and permeable.

We also attempted to derive the relation between classification
and regression predictions scores of molecules present in the
second validation dataset. Out of 15 compounds present in the
second validation set, three compounds: ethylene glycol, Sodium
hypochlorite and Imidazolidinyl urea, were predicted to be non-
toxic by descriptor module (Supplementary Table S15). Among
12 compounds that were predicted to be toxic, two terminal cases
[Polysorbate 80(glycol) and Asbestos] were found that did not
show the linear relation of permeability and solubility with the
toxicity prediction done by descriptor module. Some of these
cases are discussed in the Supplementary Text S5.

Dimethyl tetrachloroterepthalate (DCPA) which is a pre-
emergent-herbicide was shown to be permeable but insoluble in
water, which is supported by the report published in the Merck
Index where DCPA was suggested to be <5% soluble in water
(Budavari, 1989). Human toxicity excerpts have shown that this
compound does not show any detectable health effects, which
explains the continuous usage of DCPA (Gleason et al., 1957;
Hamilton and Hardy, 1974).

Thus, for most of the discussed cases and those presented
in Supplementary Tables S10, S15, the toxicity prediction values
corroborated well with their known toxic nature, which attests
the usability of the tool for the prediction of toxicity of a given
compound. However, in a few cases such as Benzethonium
Chloride (National Toxicology Program, 1995), the compound
was predicted to be toxic, permeable and non-soluble in water but
experimentally, it is known to be highly water soluble which is in
contrast with the prediction results obtained for Benzethonium
Chloride. The plausible explanation for the contrasting result
in the case of solubility prediction could be inferred from the
results of performance of models for predicting the solubility
and permeability, which showed the R2-values of 0.84 and 0.678
respectively. Polysorbate 80 (glycol), which is known to be highly
water soluble was predicted to be neither caco-2 cell permeable
nor water soluble. Polysorbate 80 is still used in cosmetics and
as food additives, because it does not show any adverse effects
at lower concentration (Gosselin et al., 1976; Supplementary
Text S5). Solubility and permeability are known to be complex
properties, the prediction of which has been a challenging task
since the available datasets compile the data generated in different
laboratories using different techniques, which reduces the quality
of the data and its usability as a good training set (Bergström,
2005). Thus, it is suggested that an independent validation of the
predictions made on solubility and permeability properties of the
query molecule should be carried out by the user.
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FIGURE 9 | The steps involved in the construction of ToxiM classification models for the prediction of toxicity of molecules.

DISCUSSION

The prediction of toxicity of any molecule and/or their
metabolites is important while deciding its commercial
application in products related to human health and for
assessing their potential detrimental effect on the environment.

Additionally, the prediction of aqueous solubility and
permeability along with its toxicity provides useful information
for a given molecule while determining its actual toxic potential.
Hence, in this study machine learning-based classification and
regression models were developed to predict these properties
using the chemical and structural information present in
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TABLE 6 | Toxicity prediction performance of admetSAR and ToxiM.

Smiles admetSAR

scores

ToxiM

Scores

Names Type of Toxicity

OC(=O)CCCCCCNC1c2c(CCc3c1cccc3)cccc2 0.4559 0.831 Amineptine hepatotoxicity

Clc1cn2c(CC(=O)N(CCC)CCC)c(nc2cc1)c1ccc(Cl)cc1 0.4837 0.997 Alpidem hepatotoxicity

S=C(N(CC(=O)O)C)c1c2c(c(c(OC)cc2)C(F)(F)F)ccc1 0.5253 0.947 Tolrestat Failed phase III

O=C1c2c(C(=O)c3c1c(O)ccc3)cccc2O 0.5401 0.943 Danthron human carcinogen

Clc1ccc(CC(NC(=O)OCC)(C)C)cc1 0.5445 0.995 clophorex

P(=O)(O)(O)O.N(C(C)C)c1ncccn1 0.5563 0.684 IsaxonineÊ
Phosphate

hepatotoxicity

FC(F)(F)c1cc(N2CCN(CC2)CCOC(=O)c2c(Nc3c4c(ncc3)cc(cc4)C(F)(F)F)cccc2)ccc1 0.5568 0.953 Antrafenine

S(=O)(=O)(O)C.Fc1c(N2C[C@H]3[C@H](C3NC(=O)[C@@H](NC(=O)[C@@H](N)C)
C)C2)nc2n(cc(c(=O)c2c1)C(=O)O)c1c(F)cc(F)cc1

0.5706 0.785 Trovafloxacin hepatotoxicity

Clc1c(ccc(OCC(=O)O)c1Cl)C(=O)c1sccc1 0.5742 0.934 Ticrynafen hepatotoxicity

Clc1c(onc1C)NS(=O)(=O)c1c(scc1)C(=O)Cc1c(cc2OCOc2c1)C 0.5746 0.979 sitaxsentanÊ hepatotoxicity

O1C(CC(=CC1=O)OC)/C=C/C1=CCCC=C1 0.5873 0.95 Kava hepatotoxicity

O=C(N1[C@@H](CC1)C(=O)NCc1ccc(cc1)/C(=N/O)/N)[C@H](NCC(=O)OCC)
C1CCCCC1

0.603 0.886 Ximelagatran hepatotoxicity

O(CC(NN)C)c1ccccc1 0.6151 0.738 Fenoxypropazine hepatotoxicity

Brc1ccc(S(=O)(=O)N/C=N/CCSCc2nc(sc2)N=C(N)N)cc1 0.6167 0.896 Ebrotidine ToxicityÊÊon reproduction

OC(CC(=O)Nc1ccc(OCC)cc1)C 0.6174 0.883 Bucetin carcinogenesis

Ic1c(O)c2ncccc2c(Cl)c1 0.6223 0.99 Clioquinol emaciation

O(c1ccc(C(=C2CCCCC2)c2ccc(OC(=O)C)cc2)cc1)C(=O)C 0.6307 0.961 cyclofenil underlying heartÊconditions

O(C(Nc1ccc(cc1)C(=O)O)C(=O)c1ccc(cc1)c1ccccc1)CC 0.6483 0.918 XenazoicÊAcid hepatotoxicity

O=C1N(N(C(=O)C1CCCC)c1ccccc1)c1ccccc1 0.6583 0.99 phenylbutazone hepatotoxicity

O(CCCC)C(=O)c1ccc(N)cc1 0.6807 0.964 Butamben CNS and cardiac effects

O1CCN(CC(OC(=O)c2cc(OC)c(OC)c(OC)c2)COCCC(C)C)CC1 0.71 0.932 Amoproxan Dermatologic and ophthalmic toxicity

Clc1ccc(CC(N)(C)C)cc1 0.7205 0.954 Chlorphentermine Cardiovascular Toxicity

N(=C(\N=C(N)N)/N)/CCCC 0.7374 0.581 Buformin SevereÊlactic acidosis

Clc1c(N2CC=CC2)ccc(C(C)C(=O)O)c1 0.7379 0.959 Pirprofen Liver Toxicity

O1C(c2ccccc2)C(=O)N=C1N 0.7407 0.743 Pemoline Hepatotoxicity

O=C1Nc2c(C1(c1ccc(O)cc1)c1ccc(O)cc1)cccc2 0.741 0.957 Oxyphenisatin Hepatotoxicity

O=C1N(c2c(C1(c1ccc(OC(=O)C)cc1)c1ccc(OC(=O)C)cc1)cccc2)C(=O)C 0.7436 0.971 Phenisatin Hepatotoxicity

Clc1ccc(CCC2N(CCc3c2cc(OC)c(OC)c3)C)cc1 0.7469 0.998 Metofoline Unspecific experimental toxicity

O=C1N(Cc2c1cccc2)c1ccc(C(C)C(=O)O)cc1 0.7493 0.903 Indoprofen Animal carcinogenicity, gastrointestinal
toxicity

[O-][N+](=O)c1nc(n(c2ccc([N+](=O)[O-])cc2)c1)C 0.7522 0.959 Nitrefazole Hepatic and hematologic toxicity

Fc1c2n(C3CC3)cc(c(=O)c2c(N)c(F)c1N1C[C@@H](N[C@@H](C1)C)C)C(=O)O 0.7719 0.895 Sparfloxacin QT prolongation and phototoxicity

O=C(NCc1ccccc1)CCNNC(=O)c1ccncc1 0.7767 0.896 Nialamide Hepatotoxicity

Clc1ccc(OCC(=O)N2CCN(CC2)Cc2cc3OCOc3cc2)cc1 0.7791 0.997 Fipexide Hepatotoxicity

S(c1ccc(C(O)C(NCCCCCCCC)C)cc1)C(C)C 0.7826 0.807 Suloctidil OralÊtoxicityÊis very low but is much
higher with intravenous

O(c1nn(c2c1cccc2)Cc1ccccc1)CC(=O)O 0.7859 0.938 Bendazac Hepatotoxicity

Brc1ccc(/C(=C/CN(C)C)/c2cccnc2)cc1 0.7868 0.997 Zimeldine

O=C1N(N(C(=O)C1CC=C(C)C)c1ccccc1)c1ccccc1 0.8006 0.984 Feprazone Cutaneous reaction, multiorgan toxicity

O[C@]1(n2c3[C@H]4N(CCC[C@]4(C1)CC)CCc3c1c2cccc1)C(=O)OC 0.8101 0.979 Vincamine Hematologic toxicity

Clc1c(O)c(Sc2c(O)c(Cl)cc(Cl)c2)cc(Cl)c1 0.8154 0.985 Bithionol Dermatologic toxicity

OC(=O)Cc1ccc(CC(C)C)cc1 0.8507 0.931 Ibufenac Hepatotoxicity, jaundice

Oc1c(C(=O)c2cc(O)c(O)c(O)c2)ccc(O)c1O 0.8572 0.858 EXIFONE Hepatotoxicity

a molecule. The 10-fold cross validation for all steps from
algorithm selection to the model optimization helped in avoiding
the overfitting of data, which is usually a significant concern
while training. The reported accuracies in assigning a molecule
as toxic or non-toxic, and coefficient of determination values
to predict the aqueous solubility and permeability attest the
performance of the tool.

The performances of developed models were measured using
the validation sets, and a higher performance was also observed
for ToxiM on comparison with admetSAR. Only for a few cases,
some discrepancy in predictions by the different models were
observed which justifies the inclusion of the different prediction
models in ToxiM, and the known literature also supported the
variable toxicity predictions observed for such molecules. Thus,
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it is recommended that the user should examine the query
molecule using all the three models available at the web server
for comprehensive results.

Several factors need to be considered while determining the
toxicity of a given molecule such as its compositional, structural
and molecular properties, concentration, aqueous solubility and
permeability, target organism/system, which together provides
useful information on the toxic potential of a given molecule.
In this work, we have focused on the structural and molecular
properties of molecules for developing the tool to predict the
molecules which could be toxic for humans. Though, the current
tool is limited for the prediction of toxicity based on the structural
and molecular properties, the achieved accuracy of results on
the validation datasets attests the importance of these properties
and also justifies the application of machine learning for toxicity
prediction. It would be a challenging task to include the effect
of concentration, and binding with the downstream targets or
any other factor that leads to physiological toxicity. The accuracy
and applicability of the tool may further be improved in the
future by including the other properties, but it would require a
lot of experimental data to generate suchmodels. The predictions
made using this server will provide valuable information to
the scientific community to examine the environmental and
physiological toxicity of a given molecule, and especially working
in the field of xenobiotics metabolism and toxicity.
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