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The perinatal development period is critical for the formation of brain
structures responsible for cognitive functions. Disruptions during this phase,
such as perinatal asphyxia, characterized by impaired gas exchange and
hypoxia, can lead to long-lasting neuronal damage and increased
susceptibility to neurodegenerative diseases, including Alzheimer’s disease
(AD). AD, the most common cause of dementia globally, is marked by
amyloid plaques, neurofibrillary tangles, and progressive cognitive decline.
Emerging evidence links perinatal asphyxia with an elevated risk of AD,
highlighting the potential role of oxidative stress, neuroinflammation, and
epigenetic modifications as mediators. This review explores the mechanisms
underlying brain damage after perinatal asphyxia, emphasizing oxidative
stress, inflammation, and epigenetic changes that contribute to lifelong
neurodegenerative susceptibility. Additionally, biomarkers identified in animal
models reveal parallels between perinatal asphyxia and AD pathology,
such as amyloid precursor protein alterations, gliosis, and microglial
activation. These findings suggest perinatal asphyxia may prime microglia
and epigenetically alter gene expression, predisposing individuals to
chronic neurodegeneration. Future research should leverage advanced
methodologies, including transcriptomics, epigenomics, and aged brain
organoid models, to elucidate early-life influences on AD development.
Understanding these mechanisms may pave the way for novel prevention
strategies targeting early-life risk factors for neurodegenerative diseases.
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1 Introduction

The perinatal development period is of great significance for the formation of brain

structures involved in cognitive functions. In recent years, a growing body of studies

has demonstrated the crucial role of gestational factors in the development and

functioning of the brain in postnatal life. Consequently, any alteration in this period

can result in impairment of the neuronal network, which may manifest itself at

different stages in postnatal life and predispose individuals to the development of

diseases, including neurodegenerative diseases. In order to identify early prevention

strategies, the identification of biomarkers is of particular significance and studies

utilizing animal models to examine the impact of pathological conditions during

development and throughout life are crucial.
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Perinatal asphyxia represents a significant global health

concern, characterized by impaired gas exchange and marked by

extreme anoxia and hypercapnia. Prolonged or severe asphyxia

can result in hypoxia and ischaemia. The resulting injury is

diagnosed as hypoxic-ischemic encephalopathy (HIE) (1, 2), with

an incidence of 1–8/1,000 live births in developed countries and

26/1,000 live births in developing countries The incidence of

hypoxic-ischemic encephalopathy (HIE) is elevated in infants

with low birth weight and prematurity, reaching 60% in such

cases (3). HIE is a leading cause of developmental disabilities in

children, accounting for 25% of such cases (4) These disabilities

can manifest as learning difficulties, attention deficit hyperactivity

disorder (ADHD), cerebral palsy, schizophrenia, and psychotic

disorders (5).

In this context, the Developmental Origins of Health and

Disease (DOHaD) hypothesis postulates that adaptive responses

during development predispose the organism to adult disease.

The developing nervous system is more susceptible to

environmental factors that can permanently alter brain structure

and function through epigenetic modifications, predisposing

individuals to long-term pathologies such as cardiovascular

disease (6, 7), metabolic syndrome (8) and depressive disorders

(9). Recent studies have also suggested a possible link with

neurodegenerative diseases (10, 11).

Neurodegenerative diseases represent a major threat to the

health of the elderly population with a high impact on health

and economic systems, and Alzheimer’s disease (AD) is one of

the most devastating. It accounts for 60%–70% of all cases of

dementia, affecting approximately 44 million people worldwide

(12), and with an aging population, the number of people with

AD is estimated to triple by 2,050 (13), placing an increasing

burden on healthcare systems.

Except for a small subset of familial cases, the causes of the vast

majority of cases of Alzheimer’s disease are unknown. Although its

etiology is not fully understood, it is characterized by the formation

of amyloid plaques and the aggregation of neurofibrillary tangles

with dementia-causing mutations associated with its most

insoluble proteins, β-amyloid peptide (Aβ) and microtubule-

associated tau protein, whose accumulation leads to synaptic loss

with subsequent neuronal atrophy, mainly affecting the medial

temporal lobe, with progressive decline in cognitive function

(14, 15). Studies suggest that the accumulation of β-amyloid

plaques and reduction in hippocampal volume may precede the

onset of clinical symptoms (16–18), and that loss of neuronal

function in humans can be detected decades before the onset of

AD (19).

Despite the lack of knowledge about the cause, environmental

factors appear to play an important role in the development of AD,

such as cerebral infarction (20), sleep-disordered breathing (21)

and hypoxia (22), and the accumulated research to date suggests

an association between perinatal asphyxia and an increased risk

of developing AD (23, 24).

The mechanisms by which AD develops following neonatal

hypoxia are unknown, but in this review we will focus on how

perinatal asphyxia and its key events may contribute to the

development of AD in later life.
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2 Brain damage after perinatal asphyxia

During pregnancy, cerebral blood flow provides oxygen and

glucose to the fetal brain, maintaining homeostasis. Importantly,

is also provides the distribution of hormones that are essential

for proper neurodevelopment, such as thyroid hormones (25),

glucocorticoids (26), neurosteroids [estrogen, progesterone,

allopregnanolone, testosterone and others (27, 28)]. Perinatal

asphyxia, especially resultant from placental disorders, can

interrupt or impair the transfer of these hormones to the fetus

and, consequently, lead to neurodevelopmental alterations.

These conditions result in a reduced supply of oxygen and

glucose, which triggers a continuous temporal injury process

consisting of 4 phases.

The primary phase occurs during oxygen and glucose

deprivation, which triggers an energy failure with membrane

depolarization and cellular edema. This is followed by increased

release of excitatory neurotransmitters such as glutamate into the

synaptic cleft, where they accumulate due to impaired energy-

dependent reuptake, leading to a greater influx of cellular Ca²+

(29). As a result, neurotoxic cascades are triggered, causing

oxidative stress, inflammation, cell death by necrosis and

activation of intracellular apoptotic signaling cascades (30).

This is followed by a latent phase lasting 6–12 h, characterized

by recovery of cerebral metabolism, inflammation and the

continuation of apoptotic cascades (31, 32). If the primary

lesions are moderate or severe, this transient recovery is followed

by a second energy failure accompanied by seizures, secondary

cytotoxic edema, neuroinflammation and programmed cell death.

Considering this whole process, some events may persist

throughout life, such as sensitization to inflammation, increased

susceptibility to seizures, long-lasting inflammation and gliosis,

impaired maturation and myelination, altered proliferation and

synaptogenesis, and epigenetic modifications. This phase is called

the tertiary phase and is characterized by damage to brain

plasticity and connectivity that persists throughout life (33).

In this cascade, two important events in the development of

pathologies stand out and possibly contribute to the prolonged

neurodegeneration that could lead to the association with

Alzheimer’s disease: oxidative stress and inflammation, both of

which interact with each other. Once activated, many cells in the

immune system generate free radicals, and the overproduction of

free radicals also induces an inflammatory response.

The epigenetic modifications (Figure 1), such as changes in

histone proteins making DNA more or less accessible for gene

expression, as well as changes in chromatin due to upregulation of

factors that control acetylation and methylation, are also strong

candidates to explain the correlation between perinatal asphyxia

and Alzheimer’s disease (34). In addition, studies have shown that

in Alzheimer’s disease there are alterations in DNA methylation in

specific genes such as APOE, an apolipoprotein that is reduced in

the hippocampus of patients diagnosed with Alzheimer’s and is

related to increased degradation of amyloidogenic Aβ. As well as

SORL 1, which is also reduced in patients and plays a fundamental

role in APP turnover, but in its absence or at insufficient levels,

APP is cleaved into products that form amyloidogenic Aβ (35–37).
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FIGURE 1

Epigenetic changes in the Alzheimer’s brain. The neuronal damage caused by perinatal asphyxia is characterized by mitochondrial dysfunction since
anabolic pathways that lead to oxidative stress are activated. Interestingly, studies have shown the influence of mitochondrial alteration on epigenetic
regulation in DNA methylation mechanisms, expression of proteins that control the function of histones and molecules with an important role in post-
transcriptional modifications, such as ncRNAs. These epigenetic modifications linked to the functioning of clearance pathways and cell function have a
direct impact on the clinical signs observed in patients with Alzheimer’s disease. Created in BioRender. Kihara A (2025), https://BioRender.com/q55k045.
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2.1 Neuroinflammation and oxidative stress

Even after secondary cell death, the immune response is

harnessed and both microglia and astrocytes are activated by

pro-inflammatory mediators such as cytokines, reactive oxygen

species and debris from damaged cells. Thus, information in the

central nervous system is characterized by the classical activation

of microglia (M1) and the production of cytokines such as TNF-

α, IL1-β, IL-6, IL-8 and ROS. This is followed by alternative

activation (M2), which leads to the release of anti-inflammatory
Frontiers in Pediatrics 03
cytokines such as IL-4 and IL-3, resulting in the removal of ROS

and tissue repair. The mechanisms responsible for regulating

microglial phenotypes in the neonatal CNS are poorly

understood and this M1/M2 interaction does not appear to

follow a strict differentiation; depending on signaling, phenotypes

may switch from M1 to M2 or vice versa during lesion

progression (38, 39).

In fact, microglia are one of the main mediators of the

inflammatory response after hypoxic-ischemic injury, and their

activation and aggregation are markers of HIE in human
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neonates. A retrospective study of 178 brains from post-mortem

neonates showed that those diagnosed with HIE who died had a

marked infiltration of microglia in the region of the dentate

gyrus of the hippocampus, compared with infants who died from

other causes and had lower numbers of microglial cells (40).

Another clinical study described an increase in potentially

neurotoxic inflammatory factors in microglia (galectin-3 and

MMP-9) in babies with HIE (41).

In addition, microglia crosstalk with astrocytes, another

important cell population with multiple roles, including

regulating blood flow, increasing the supply of energy metabolites

and maintaining the extracellular balance of fluids and

neurotransmitters (42), as well as participating in the immune

response. In this context, microglial activation and the cytokines

it produces trigger astrocyte activation. Astrocytes in turn

hypertrophy, increase glial fibrillary acid expression and form a

glial scar around the affected area (43). Astrocytes also produce

and release pro-inflammatory cytokines and chemokines that

exacerbate brain damage.

Clinical studies show that these cytokines and other

inflammatory mediators released by glial cells, such as TNF-α,

IL1-β, IL-6, IL-8 and IL-10, are significantly increased in the

serum and cerebrospinal fluid (CSF) of asphyxiated neonates

(44–47). In addition, the release of TNF-α, IL1-β and IL-6

promotes increased synthesis of other cytokines and adhesion

molecules (48), and together they induce the production and

secretion of mediators such as ROS, leading to cell damage and

death (49).

During asphyxia, several mechanisms are responsible for

oxidative stress, including an increase in Ca²+ influx, which

activates nitric oxide (NO) synthase, generating NO free radicals

that contribute to the release of ROS, a reduction in the

components of the electron transport chain, and an increase in

iron release from ferritin and increased ATP degradation (50).

In addition, studies suggest that oxidative stress plays a role in

the crosstalk between inflammatory systems (51, 52). The rapid

increase in the levels of pro-inflammatory cytokines secreted by

glial cells leads to their accumulation in the brain tissue, resulting

in direct injury by further increasing the levels of toxic NO.

These processes result in an accumulation of ROS, which

cannot be eliminated immediately by antioxidant enzymes due to

disrupted metabolism, and cause damage to lipids, proteins and

nucleic acids, leading to lipid and protein oxidation and

degeneration of deoxyribonucleic acid (DNA) (53), inducing

neuronal apoptosis and inhibiting neurogenesis, resulting in

damage later in life.
3 Biomarkers in brain damage after
perinatal asphyxia and Alzheimer’s
disease

In recent years, a significant number of studies have focused

on identifying factors that may link the effects of perinatal

asphyxia to the risk of developing neurodegenerative diseases

such as AD.
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Since 1997, researchers have demonstrated delayed neuronal

death following perinatal asphyxia (54). One study found

significant changes in amyloid precursor protein levels at P30

and in the expression of metallopeptidases involved in amyloid

metabolism at P10 in rats exposed to prenatal hypoxia (55).

The researchers found that PSA-NCAM is a neuropathological

marker of neurodegeneration that is evident as early as 8 days after

neonatal hypoxia-ischemia, as the abnormal accumulation of PSA-

NCAM preceded the accumulation of phosphoSer396 tau observed

30 days after injury. Furthermore, a study in guinea pigs

provided the first evidence of neurodegeneration, finding

neuronal loss, gliosis, and monoaminergic and cholinergic

alterations 3 months after perinatal asphyxia (56).

In an experimental model of newborn pigs subjected to

perinatal asphyxia, it has been shown that the injury reduces

levels of beta-amyloid (1–42) in cerebrospinal fluid (57). In fact,

a decrease in CSF AB42 is the first biomarker change to occur in

Alzheimer’s disease.

In a model of prenatal hypoxia, transgenic mice showed deficits

in memory and spatial learning, a significant reduction in synapses

and increased levels of amyloid precursor protein (24). Gabaergic

inhibitory interneurons parvalbumin (PV) and calbindin-1

(Calb1), whose interaction with hippocampal pyramidal cells is

fundamental to memory and learning processes, are also affected

late after neonatal HI (58).

In APPSwe/PS1A246E transgenic mice, perinatal hypoxia also

exacerbated cognitive impairment observed in the Morris water

maze test and AD pathology by affecting synaptic ultrastructure,

increasing senile plaque and Aβ peptide production, and

exacerbating astrocyte and microglial activation in adult animals

(59). A mouse model of HI also showed prolonged gliosis that

correlated with a late deficit of Calb1 (60).

In humans, one study found high levels of the β-amyloid 1–38

and β-amyloid 1–42 peptides in the blood of babies up to 15 days

after perinatal asphyxia. In contrast, levels of β-amyloid peptide

1–40 were lower between 8 and 14 days after asphyxia, and TAU

protein increased in the first 7 days, decreased between 8 and 14

days and increased again up to 15 days after injury (61).

Neuroinflammation plays a central role in the pathogenesis of

AD, and several studies have demonstrated the involvement of glial

cells in the production of pro-inflammatory mediators that

contribute to the exacerbation of neurodegeneration [for review,

see (62)]. In addition to the well-known astrogliosis present in

AD (63) and other neurodegenerative diseases, there is increasing

evidence for the involvement of microglia as protagonists in this

process (64–66), and a cell type of microglia with a specific

transcriptional signature, called “disease-associated microglia”

(DAM), has been identified, whose functions are still

undetermined, but which are present in AD (67).

Recently, the hypothesis that microglial priming predisposes

individuals to neurodegenerative disease has gained prominence

and is being better investigated (68–70). Microglial priming

corresponds to an enhanced response of microglial activation

to a second inflammatory stimulus (71). Thus, microglial

activation during development renders these cells susceptible

to subsequent infection or systemic inflammation (68),
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contributing to the progression of chronic neurodegenerative

diseases (71).

Furthermore, since gene expression patterns reflect aging and

neurodegeneration, and studies have shown that several genes in

the human cortex change their expression during fetal and

postnatal development, it is reasonable to expect that perinatal

factors influence these processes. An important gene during

development that is altered in adult neurogenesis and implicated

in Alzheimer’s disease is the RE1 accelerator transcription factor,

REST (72). This factor is induced by hypoxia and leads to

changes in about 20% of hypoxia-suppressed genes (73).

Overexpression of presenilin genes related to y-secretase has also

been demonstrated in lymphocytes 15 days after perinatal

asphyxia (74) and increased expression of these genes correlates

positively with findings in patients with neurodegenerative

disease (75).
4 Conclusions and future perspectives

The research accumulated so far shows changes similar to those

found in the pathology of Alzheimer’s disease after perinatal

asphyxia, suggesting the latter as a risk factor for Alzheimer’s

disease. These findings open the door to hypotheses such as the

existence of microglial priming, epigenetic alterations and the

DOHaD theory. However, further experiments are needed to

prove these theories and to understand the mechanisms by

which events in early life influence the development of

neurodegenerative diseases.

Advances in methodologies that could be applied in the

neurosciences field, such as single-cell transcriptome, epigenome

and even the development of strategies to use aged brain

organoids might be promising tools to elucidate the impact of

early life events in neurodegenerative diseases, as well as the use

of transgenic and non-transgenic mice, such as the Senescence

Accelerated Mouse-Prone 8 (SAMP8) mice, and other animal

models that mimic the neurodegenerative diseases phenotype.
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