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With the continuous improvement in perinatal care, the number of viable
preterm infants is gradually increasing, along with the rise in preterm-related
diseases such as necrotizing enterocolitis, bronchopulmonary dysplasia,
perinatal brain injury, retinopathy of prematurity, and sepsis. Due to the unique
pathophysiology of preterm infants, diagnosing and treating these diseases has
become particularly challenging, significantly affecting their survival rate and
long-term quality of life. Extracellular vesicles (EVs), as key mediators of
intercellular communication, play an important regulatory role in the
pathophysiology of these diseases. Because of their biological characteristics,
EVs could serve as biomarkers and potential therapeutic agents for
preterm-related diseases. This review summarizes the biological properties
of EVs, their relationship with preterm-related diseases, and their prospects for
diagnosis and treatment. EVs face unique challenges and opportunities for
clinical applications.
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1 Introduction

Globally, approximately 15 million premature births occur annually, representing an

estimated 11% of all deliveries (1). Advances in perinatal care and neonatal resuscitation

techniques have increased the prevalence of preterm births, leading to a rise in associated

complications among preterm infants, including necrotizing enterocolitis (NEC),

bronchopulmonary dysplasia (BPD), perinatal brain injury (PBI), retinopathy of

prematurity (ROP), and sepsis (2–5). Over the past decade, these complications have

remained a significant cause of neonatal mortality and emerged as a leading cause of

death among children under five years old (6). These complications not only

profoundly impact the survival rate and long-term quality of life of preterm infants,

but also impose psychological stress on families and incur substantial economic costs (7).

Early detection and treatment of these diseases have become urgent priorities to reduce

the incidence of preterm birth and enhance the survival quality and long-term prognosis

of preterm infants. As these diseases occur in immature and developing organs and involve

complex underlying pathophysiological mechanisms, reliable diagnostic tools and

therapeutic interventions are currently lacking for many of them.
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Extracellular vesicles (EVs) are mediators of intercellular

signaling and play regulatory roles in the pathophysiological

processes of preterm-related diseases. The lipid bilayer of EVs

protects their cargoes from degradation, giving EVs unique

characteristics that hold promise as biomarkers for diagnosing

preterm infant-related diseases and as therapeutic tools

(Figure 1). This review summarizes the biological characteristics

of EVs and their relationship with preterm delivery, focuses on

the role of EVs in complications associated with preterm infants,

and discusses their potential as diagnostic and therapeutic tools.

Finally, it highlights key issues that need to be addressed to allow

the clinical application of EVs.
2 The biological characteristics of
extracellular vesicles

Extracellular vesicles (EVs) are non-replicating, lipid bilayer-

bound vesicles released from cells into the extracellular space (8).

They are classified into exosomes, microvesicles, and apoptotic

bodies based on their biogenesis, cellular origin, and biophysical

properties (9). Exosomes, typically 40–150 nm in diameter,

originate from the inward budding of the endosomal membrane

to form intraluminal vesicles within multivesicular bodies. These

intraluminal vesicles are released into the extracellular space as

exosomes upon the fusion of multivesicular bodies with the

plasma membrane (10, 11). The exosome biogenesis is regulated

by the endosomal sorting complex required for transport

(ESCRT)-dependent or ESCRT-independent pathways (12),

involving specific sorting and packaging of cargo into exosomes

(13). Microvesicles, approximately 100–1,000 nm in diameter,

bud directly from the plasma membrane, enclosing cytoplasmic

contents, and are typically released during cellular stress and

activation (10, 11). Apoptotic bodies, with diameters ranging

from 500–2000 nm, form during cell apoptosis, characterized by

membrane shrinkage and invagination, leading to the packaging

of cytoplasmic material, including DNA and organelles (14).

EVs carry diverse cargoes, which vary by cell type and cellular

status, affecting their function and fate (15, 16). EVs have pivotal

roles in physiology (17), immunology (18), and metabolism (19).

EVs function as cell-to-cell messengers by transferring mRNA

that, upon entering cells, are translated into specific proteins

with unique biological effects (20). Besides mRNA, EVs

transport various molecules between cells, including proteins,

lipids, DNA, and non-coding RNA, making them vital

regulators of cellular communication (20, 21).They are

detectable in body fluids such as blood, saliva, and urine,

thereby offering a convenient means for disease detection (22).

As the cargo of EVs is cell-specific, reflecting their cells of

origin (15, 16), EVs can be used as biomarkers for studying

specific cell types involved in various diseases. EV concentration
Abbreviations

MSC, mesenchymal stem cells; AF-MSCs, amniotic fluid-derived mesenchymal st
marrow-derived mesenchymal stem cells; E-NSCs, enteric neural stem cells; NSC, n
necrotizing enterocolitis; BPD, bronchopulmonary dysplasia; HIE, hypoxic-ische
injury; PAIS, perinatal arterial ischemic stroke; ROP, retinopathy of prematurity.
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can indicate disease progression, with studies achieving high

accuracy in distinguishing the severity of bronchopulmonary

dysplasia (BPD) based on EV levels (23).

EVs also hold therapeutic promise (24). They carry

molecules capable of modifying cell signaling and gene

expression, thereby exerting therapeutic effects (25, 26).

Compared to traditional drug delivery methods, EVs offer

advantages such as enhanced cargo protection and tissue

penetration (27). Derived from benign sources, therapeutic

EVs are less likely to provoke adverse reactions, which can be

further improved by reducing surface proteins (28, 29).

Furthermore, they can be engineered for targeted delivery,

thereby enhancing their efficacy (30).

As interest in EVs as potential biomarkers and therapeutics

grows and EV research has significantly increased, the

International Society for Extracellular Vesicles introduced the

Minimal information for studies of extracellular vesicles guidelines

to standardize protocols and reporting (8, 31). These guidelines

cover nomenclature, separation techniques, characterization,

functional studies, and sample collection. However, they

discourage using exosomes or microvesicles unless their subcellular

origin is confirmed but recommend using EV with terms based on

size, density, molecular composition, or cellular origin (8).
3 Role of extracellular vesicles in
preterm infant diseases

From a clinical viewpoint, there are three major roles of EVs

in preterm infant diseases: pathogenic EVs, diagnostic EVs, and

therapeutic EVs. Pathogenic EVs typically originate from

damaged cells or diseased tissues and are enriched with pro-

inflammatory factors and damage-related molecules, directly

contributing to disease progression (32, 33). Diagnostic EVs,

derived from body fluids, can be obtained non-invasively and

carry disease-specific biomarkers, making them suitable for

early diagnosis and real-time monitoring (34, 35). Therapeutic

EVs generally come from stem cells or plant/animal extracts

and are modified to enhance their drug or gene delivery

capabilities, intervening in pathological processes and

promoting tissue repair (36, 37). In terms of composition and

function, pathogenic EVs carry inflammatory factors and

pathological mediators that drive disease progression, while

diagnostic EVs contain highly specific biomarkers that aid in

disease detection (38, 39). Therapeutic EVs deliver drugs,

RNA, or targeted molecules for therapeutic intervention (36).

While these three types of EVs differ in their origin,

composition and function, they all demonstrate significant

clinical translational potential and complement each other,

advancing the application of extracellular vesicles in neonatal

disease research and therapy.
em cells; AF-NSCs, amniotic fluid-derived neural stem cells; BM-MSCs, bone
eural stem cells; EVs, extracellular vesicles; CNS, central nervous system; NEC,
mic encephalopathy; IVH, intraventricular hemorrhage; WMI, white matter
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FIGURE 1

Extracellular vesicles in the pathophysiology, diagnosis, and therapy of preterm-related diseases. During pathological processes such as inflammation,
ischemia-hypoxia, cell death, oxidative stress, and ischemia-reperfusion, extracellular vesicles (EVs) act as mediators of intercellular signaling, playing a
role in the pathophysiology of preterm-related diseases. These diseases affect the quantity and composition of EV cargo, and analyzing the EVs in
body fluids or tissue samples can aid in disease diagnosis. EVs derived from mesenchymal stem cells, breast milk, amniotic fluid, umbilical cord
blood, and bone marrow exhibit anti-inflammatory, antioxidant, and cell regeneration-promoting properties, making them promising therapeutic
agents for preterm-related diseases. (Created with BioRender.com).
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4 Extracellular vesicles and
spontaneous preterm birth

Childbirth represents a complex interplay between the fetus

and the mother, where factors such as fetal endocrine signals,

maternal endocrine signals, other signaling, and immune changes

play crucial roles in maintaining pregnancy (40, 41). Disruptions

in the balance of endocrine and immune systems can lead to an

overload of inflammation, ultimately culminating in spontaneous

preterm birth (42). This process shares similarities with full-term

delivery, involving heightened uterine contractions, cervical

dilation, and rupture of fetal membranes, all triggered by a

transition in the uterine muscle layer from a quiescent state to

intermittent contractions (43). Progesterone plays a key role in

inhibiting the expression of pro-inflammatory factors to maintain
Frontiers in Pediatrics 03
the quiescent state of the uterine muscle layer (44). Fetal

inflammatory signals can lead to functional progesterone

withdrawal, increased intrauterine inflammatory factors, immune

cell activation, disruption of maternal inflammatory balance, and

ultimately preterm delivery (42).

EVs are significant players in the pathophysiological processes

of spontaneous preterm birth. In a mouse model, EVs carrying

inflammatory mediators increase gradually from day 5–19 of

pregnancy. Late pregnancy EVs, when injected into mice at day

15 of pregnancy, induce preterm birth and related inflammation

(45). This suggests that EVs regulate parturition through

paracrine signaling. Menon et al. (46) discovered decreased

placental-derived EVs in maternal plasma of preterm birth

compared to term birth mothers, with significant differences in

protein composition associated with inflammation, epithelial-
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mesenchymal transition, coagulation/complement activation, and

cell death. Another study compared content in maternal plasma

between different preterm birth causes, revealing variations in total

circulating EV protein mainly related to inflammation and

metabolic signaling (47). Gray et al. (48) observed dysregulation of

circulating miRNAs in plasma of spontaneous preterm birth

compared to normal pregnancies. Analysis of EV miRNA

characteristics between term and preterm deliveries identified

differences in miRNAs targeting signaling pathways such as TGF-

β, p53, and glucocorticoid receptor signaling, implicating

circulating EV miRNAs in preterm birth mechanisms (49).

McElrath et al. (50) explored the potential of EVs isolated from

maternal plasma in the first trimester of singleton pregnancies as

biomarkers for spontaneous preterm birth before 35 weeks,

identifying 5 EV proteins as predictive markers with promising

diagnostic performance. Zhao et al. (51) analyzed EV lipids in

maternal plasma during mid-pregnancy, identifying microvesicle

phosphatidyl serine (34:0) as a potential predictor for preterm birth.

EVs also hold therapeutic potential in spontaneous premature

birth research. Sheller-Miller et al. (52) designed EVs containing

NF-κB inhibitors, demonstrating their ability to prolong gestation

and reduce maternal inflammation, suggesting EVs could serve as

stable and specific interventions to mitigate inflammation

associated with preterm birth.
5 Extracellular vesicles and necrotizing
enterocolitis

Necrotizing enterocolitis (NEC) poses a significant threat to

preterm infants, representing a common and often life-

threatening gastrointestinal emergency. Global incidence rates

have seen a troubling increase over the past decade, particularly

among premature infants weighing less than 1,000 grams at birth

(53). Due to the challenges in early diagnosis and the lack of

effective treatments, NEC often progresses rapidly, with mortality

rates estimated around 25% and reaching up to 80% in severe

cases of fulminant NEC (54).

The pathogenesis of NEC is multifaceted, closely intertwined

with intestinal epithelial damage, mucosal repair mechanisms, and

inflammatory responses; each can be regulated by EVs. EVs

derived from intestinal epithelial cells activate wound repair

pathways (55) and contribute to maintaining intestinal immune

balance (38). Post-injury, intestinal epithelial cells release EVs into

the mesenteric lymph, and these EVs have immunomodulatory

effects that suppress post-injury inflammatory signaling and NEC

progression (33, 38). Additionally, polymorphonuclear neutrophils

release EVs during NEC, triggering acute remodeling of epithelial

junctions, enhancing neutrophil recruitment, and exacerbating

epithelial damage (56). Moreover, adherent-invasive Escherichia

coli (AIEC) infection can boost EV secretion from intestinal

epithelial cells, with these EVs promoting AIEC replication and

inducing pro-inflammatory responses (57). This evidence

underscores the influence of EVs on NEC occurrence and

development through intercellular communication.
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Early diagnosis of NEC is paramount for reducing morbidity

and mortality rates, yet reliable biomarkers for early diagnosis

remain elusive (58). EVs have potential for biomarkers for early

NEC diagnosis (Table 1). Significant changes in urinary EV-

derived miRNA (including miR-376a, miR-518a-3p, and miR-

604) in NEC cases relative to non-NEC sepsis and healthy

controls suggest urinary EV-miRNA as potential specific

biomarkers for NEC (35).

EVs also offer promise as a novel therapeutic approach for

NEC (Table 2). EVs derived from bone marrow mesenchymal

stem cells (MSC) have shown potential in restoring intestinal

barrier function, akin to bone marrow mesenchymal stem cells

infusion alone, indicating their potential as cell-free therapy for

neonatal NEC (59). MSC-EVs containing miRNAs specific to

Snail/Claudin signaling pathways have induced improvements in

intestinal barrier function (36). EVs from other stem cell sources,

such as amniotic fluid-derived MSC, amniotic fluid-derived

neural stem cells, bone marrow-derived MSC, and neonatal

intestinal neural stem cells, have similarly exhibited therapeutic

effects in reducing experimentally induced NEC incidence (60).

Human milk-derived EVs (HMEVs) have potential to prevent

NEC in premature infants (37). HMEVs contribute to intestinal

development, maintain barrier function, and offer protective

effects against NEC. HMEVs have been shown to enhance cell

migration, protect against oxidative stress-induced damage, and

promote intestinal stem cell survival through various signaling

pathways, thereby preventing and treating NEC (61–63).

Additionally, HMEVs contain miRNAs and other bioactive

molecules that regulate immune responses and inflammation,

further mitigating NEC severity (64, 65). Proteomic analysis has

identified lactoferrin as a key cargo of HMEVs with protective

properties against NEC (66). Furthermore, the omega-3 fatty acids

present in HMEVs contribute to intestinal epithelial reformation,

fibrosis alleviation, and immune response regulation (67).
6 Extracellular vesicles and
bronchopulmonary dysplasia

Bronchopulmonary dysplasia (BPD) is a multifactorial chronic

lung disease commonly associated with prematurity and a leading

cause of respiratory disease-related mortality in premature infants

(68). The global incidence of BPD is estimated to range from

11% to 50% (69). With advances in perinatal medicine, the

survival rate of extremely premature infants has notably

increased, with a parallel increase in BPD incidence (70–72).

Long-term complications that follow preterm BPD, such as

neurodevelopmental impairment and cardiopulmonary

dysfunction, result in a significant social burden (73).

BPD is associated with abnormal prenatal repair and repetitive

postnatal lung injuries, characterized by pulmonary airway and

vascular system inflammation and destruction, leading to alveolar

simplification, pulmonary fibrosis, and pulmonary hypertension

(69). EVs are implicated in these pathological processes.

Genschmer et al. (32) demonstrated that EVs derived from

infants with severe BPD could induce lung parenchymal
frontiersin.org
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TABLE 1 Application of extracellular vesicles in the diagnosis of preterm infant diseases.

Condition Extracellular vesicle markers Study
design

Key findings Reference

NEC Urine derived EV miRNAs Case-control Multiple miRNAs including miR-376a, miR-518a-3p, and miR-604
can distinguish between NEC and non-NEC

PMID: 33785202

BPD The quantity of EVs from tracheal aspirates
and the level of miR-876-3p in EVs

Cohort, in vivo Severe BPD had more EVs and lower levels of miR-876-3p PMID: 29515035

Surface proteins derived from tracheal
aspirates EV

Cohort Increased CD24 and CD14 on EV surface can predict BPD PMID: 36719083

Serum EV miR-21 Case-control,
in vivo

miR-21 in serum EV increased at 28 days in BPD preterm infants PMID: 32191117

HIE Serum EVs derived from CNS Cohort Increasing synaptopodin and decreasing lipocalin-2 in EV had
negative predictive values of 70.0% and 90.9% for HIE respectively

PMID: 34021027

IVH MiRNAs in CSF EVs (miR-9, miR-17, miR-
26a, miR-124, miR-1911)

Case-control MiRNAs in EVs from CSF can predict post-hemorrhagic
hydrocephalus in IVH patients

PMID: 30639393

WMI miR-9 in fetal CNS-EV from maternal plasma Case-control Fetal CNS-EV from maternal plasma can evaluate abnormal
proliferation and differentiation of fetal CNS stem cells

PMID: 31069822

Neuronal EVs purified from peripheral blood
samples

Cohort Neuronal EV synaptopodin from peripheral blood can be a marker of
brain injury

PMID: 29376087

Sepsis The number of EVs from plasma Case-control The amount of EVs in plasma was positively correlated with sepsis
severity

PMID: 31632618

The number of EVs from plasma Cohort Elevated plasma exosome levels were associated with organ failure
severity and predictive of mortality in sepsis patients

PMID: 32639098

miRNA in serum EV Cohort miR-1246, miR-542-3p, and miR-193a-5p levels in plasma EVs were
associated with sepsis risk and severity

PMID: 32916773

CircRNA in serum EV Case-control hsa_circRNA_104484 and hsa_circRNA_104670 from serum EV
could be novel diagnostic biomarkers

PMID: 34238972

miR-34a, miR-15a, and miR-27a from
endothelial progenitor cells EV

Case-control Elevated miR-34a and decreased miR-15a and miR-27a in EVs
predict septic shock occurrence

PMID: 26683209
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simplification, increased airway resistance, and right ventricular

hypertrophy in newborn mice, whereas those from non-BPD

infants did not cause lung injury. Premature infants, due to

incomplete lung development and inadequate surfactant

production, often require high-concentration oxygen therapy and

mechanical ventilation, both of which contribute to lung injury

(74). EVs isolated from rats exposed to high oxygen levels

exacerbate lung injury associated with BPD, and concentrations

of EV particles are elevated in tracheal aspirates of infants with

severe BPD, suggesting a role of EVs in BPD pathogenesis (75).

EVs carry specific proteins or RNA molecules relevant to lung

diseases and can serve as biomarkers for predicting BPD (Table 1).

Lal et al. (23) identified EV-derived miR876-3p as a potential

biomarker for severe BPD in premature infants, with reduced

expression at birth predicting future development of severe BPD.

Likewise, increases in EV specific surface proteins (CD24 and

CD14) during lung development are associated with elevated

BPD risk (76). Serum EV-miRNA-21 was upregulated in

premature infants with BPD, suggesting its potential as an early

biomarker for BPD development (34).

Considerable research has explored the use of EVs in BPD

treatment (Table 2). Among various delivery methods,

intratracheal administration is considered the preferred approach

for treating severe lung diseases due to its ability to directly

target the affected area, provide high local drug delivery, and

minimize systemic toxicity. Additionally, it offers a needle-free

route with rapid onset, low metabolism, and high bioavailability

(77). This method is already widely used in clinical treatments

for lung diseases in preterm infants (78). Intratracheal
Frontiers in Pediatrics 05
administration of MSC-EVs improves lung function, promotes

vascularization, and reduces inflammation in BPD animal models

(79, 80). This therapeutic effect is associated with changes in

molecular pathways, such as PTEN/Akt and miRNAs, involved

in BPD pathogenesis (81–84).

Moreover, human milk feeding has been linked to a reduced

incidence of BPD in infants, with HMEVs playing a protective

role in lung epithelial cells in rats (85–87). Circulating RNA

molecules, such as circDNAJB6 and circABPD1 derived from

HMEVs, have shown potential in alleviating BPD pathology (88, 89).
7 Extracellular vesicles and perinatal
brain injury

Premature infants face a heightened risk of perinatal brain

injury, with the likelihood of long-term neurological impairment

increasing as gestational age decreases, reaching a lifetime

disability rate of up to 5.2% among extremely premature infants

(90). The pathophysiological mechanisms underlying brain injury

in premature infants are multifaceted, involving prenatal factors

such as intrauterine infections and chorioamnionitis, perinatal

factors such as birth asphyxia, and postnatal factors including

hemorrhage, infection, and mechanical ventilation. EVs serving

as intercellular messengers significantly influence the

pathophysiology, diagnosis, and treatment of perinatal brain

injury in premature infants (Tables 1, 2). The roles of EVs in

several types of perinatal brain injury are summarized as follows.
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TABLE 2 Application of extracellular vesicles in the treatment of preterm infant diseases.

Condition Extracellular vesicle
source

Study
design

Key findings Reference

NEC BM-MSCs in vitro, in vivo Alleviating tissue damage and protecting intestinal barrier function PMID: 7015901

BM-MSCs Case-control,
in vivo

Improvement of I/R-induced intestinal damage via the Snail/Claudins
signaling pathway

PMID: 2603821

BM-MSCs, AF-MSCs, AF-NSCs,
E-NSCs

in vivo Reduce the incidence of NEC PMID: 9661576

Human milk in vitro Support epithelial barrier function by facilitating cell migration via the p38
MAPK pathway

PMID: 33732416

Human milk in vitro Inhibit intestinal epithelial cell death PMID: 9991305

Human milk in vitro Protect intestinal stem cells from oxidative stress PMID: 2193954

Human milk in vitro, in vivo Decreased inflammation and NEC-induced mucosal injury PMID: 1713717

Human milk in vivo Inhibit inflammation and improve intercellular tight junctions by miR-
148a-3p/p53/SIRT1 axis

PMID: 5091894

Human milk in vivo lncRNA and miRNA in EVs reduce disease severity and promote intestinal
cell proliferation

PMID: 36448375

Human milk in vitro, in vivo Induces epithelial regeneration, reduces inflammation and fibrosis, and
regulates immune response

PMID: 38054009

BPD MSCs in vivo MSC-EVs improved lung function and vascularization and reduced
inflammation in BPD animal models

PMID: 33502939,
PMID: 28853608

Human umbilical cord MSC in vivo Alleviate lung injury in BPD rat model by affecting cell survival and
angiogenesis

PMID: 33040709

BM-MSCs in vitro miR-425 in EVs inhibits hyperoxia-induced lung injury by targeting PTEN
and upregulating the PI3 K/AKT axis

PMID: 33264631

Adipose MSCs in vitro, in vivo Adipose MSC-EVs carrying miR-21-5p alleviated hyperoxia-induced lung
injury via the SKP2/Nr2f2/C/EBPα axis

PMID: 34882302

BM-MSCs in vivo BM-SC-EVs miR-34c-5p reduced lung injury and inflammation in BPD by
blocking the OTUD3/PTEN axis

PMID: 37310728

Human milk in vitro HMEV inhibit type II alveolar epithelium cell apoptosis to prevent BPD PMID: 35833257

Human milk in vitro, in vivo HMEV-circDNAJB6 reduced damage and suppressed the proliferation of
alveolar epithelial cells in the BPD model

PMID: 38244155

Human milk in vitro HMEV-circABPD1 protected against BPD by promoting cell proliferation,
reducing oxidative stress, and alleviating lung injury via the miR-330-3p/HIF1α
axis

PMID: 37660980

HIE MSCs in vivo MSC-EVs can improve brain functional impairment, reduce seizure
frequency and duration, and restore subcortical white matter myelination

PMID: 3991170

MSCs in vivo MSC-EVs comparably protected neonatal mice from HIE-induced brain
tissue atrophy

PMID: 7069694

MSCs in vivo EV modulation of the PI3 K/AKT signaling pathway to inhibit calcium
overload and neuronal cell death

PMID: 36147480

MSCs in vivo MSC-EVs have a neuroprotective effect by preventing HIE-induced blood-
brain barrier leakage via Annexin A1

PMID: 30682787

BM-MSCs in vivo BM-MSCs can regulate the polarization and inflammatory response of
microglia in HIE patients

PMID: 35259691

Astrocyte in vivo Astrocyte-EVs inhibited hippocampal immune cells by delivering miR-
124-3p in HIE mice

PMID: 37748110

BM-MSCs in vivo miR-410 from BM-MSC EVs inhibits neuronal apoptosis induced by HIE PMID: 29562785

MSCs in vivo miR-21a-5p fromMSC-EVs exert anti-inflammatory and anti-apoptotic effects PMID: 32619670

Wharton’s jelly MSCs in vitro EV-derived miR-let-7-5p prevent and resolve HIE-induced apoptosis PMID: 29562785,
PMID: 32858071

Astrocyte in vivo Astrocyte-derived EVs containing miR-17-5p alleviate neuronal apoptosis
and inflammation in HIE neonatal rats

PMID: 33309839

BM-MSCs in vitro miR-93 delivered by BM-MSC-EV alleviates neuronal apoptosis and
inflammation in HIE mice through JMJD3-dependent p53/KLF2 axis

PMID: 35952773

NSCs in vitro miR-150-3p in NSC-EV inhibits neuronal apoptosis and promotes
proliferation after HIE by targeting CASP2

PMID: 35436510

NSCs in vitro NSC-EV promote neuronal survival, inhibit apoptosis, enhance Nrf2
nuclear translocation to counter oxidative stress, and foster axonal growth
and angiogenesis

PMID: 32437794

IVH MSCs in vivo, in vitro MSC-EV attenuated neuronal cell death and severe IVH-induced brain
injury via brain-derived neurotrophic factor

PMID: 33319929

BM-MSCs in vivo miR-146a-5p-enriched BM-MSC-EVs protect neurons and improve
function after IVH by reducing apoptosis, inflammation, and microglial M1
polarization

PMID: 32821084

(Continued)
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TABLE 2 Continued

Condition Extracellular vesicle
source

Study
design

Key findings Reference

WMI Wharton’s jelly-MSCs in vitro, in vivo EVs from Wharton’s jelly-MSC have anti-inflammatory effects on
microglia-mediated neuroinflammation in perinatal brain injury

PMID: 30898154

MSCs in vivo MSC-EVs ameliorate inflammation-induced cellular damage in a rat model
of preterm brain injury

PMID: 27847282

Wharton’s jelly-MSCs in vivo MSC-EVs rescued normal myelination, mature oligodendroglial, and
neuronal cell counts, which were impaired after perinatal brain injury

PMID: 31398924

PAIS MSCs in vivo MSC-EVs accumulate in the ipsilateral hemisphere of occluded neonatal
stroke, preventing perinatal arterial ischemic stroke through interactions
with microglia

PMID: 34235636

ROP BM-MSCs in vivo Intravitreal administration of MSC-EVs reduced the severity of ROP PMID: 28636406

MSCs in vitro, in vivo MSC-EVs alleviate neuroinflammation and cell apoptosis induced by ROP
injury

PMID: 30654160

Microglial cells in vivo miR-24-3p derived from microglia EV can reduce photoreceptor damage of
ROP and promote normal blood vessel formation

PMID: 31163320

Lymphocytic microparticles in vitro, in vivo miR-181a in lymphocyte microparticles can inhibit ROP retinal
angiogenesis

PMID: 31163320,
PMID: 29608244

Sepsis BM-MSCs in vitro miR-17 derived from BM-MSC-EVs regulates BRD4-mediated EZH2/
TRAIL axis to inhibit inflammation

PMID: 33915488

Adipose tissue, bone marrow, and
umbilical cord MSCs

in vitro, in vivo MSC-EVs alleviate systemic inflammatory response and protect lung tissues
in sepsis

PMID: 35265265

Adipose MSCs in vitro, in vivo Adipose MSC-EV inhibited IL-27 secretion in macrophages and alleviated
sepsis-induced acute lung injury

PMID: 35013123

Chen et al. 10.3389/fped.2025.1550115
7.1 Hypoxic-ischemic encephalopathy

Hypoxic-ischemic encephalopathy (HIE) in newborns is a

primary cause of perinatal brain injury, arising from hypoxia-

ischemia during the perinatal period, culminating in devastating

consequences. In developed nations, HIE’s incidence is estimated

at 1–6 cases per 1,000 live births, constituting 15%–35% of all

neonatal brain disorders (91, 92), with a mortality rate

accounting for 23% of global neonatal deaths (93). Therapeutic

hypothermia is currently the most effective method for treating

HIE. However, even with hypothermia therapy, approximately

30% of survivors endure long-term severe neurodevelopmental

disorders, including sensory, cognitive, and neuropsychological

deficits (94, 95).

Throughout the pathophysiological cascade of HIE, involving

ischemia-hypoxia and subsequent ischemia-reperfusion, neuronal

cell damage particularly affects oligodendrocytes. Neuronal EVs

likely exert regulatory roles in HIE pathogenesis. Chiang et al.

(96) observed significant differences in expression levels of 45

EV-derived miRNAs between normoxic and ischemic/reperfused

neuronal models. Functional analysis of these differentially

expressed EV-miRNAs implicated their involvement in various

pathways related to cell survival and death, neuronal signaling,

and dendritic growth, underscoring a pivotal role of EVs in HIE

pathogenesis (96).

Research on the use of EVs as diagnostic biomarkers for

neonatal HIE is limited. Pineles et al. (39) purified central

nervous system-derived EVs from serum of term and near-term

infants treated with hypothermia. The protein levels of EVs at

different time points significantly correlated with the severity of

HIE, with decreased levels of synaptic proteins between 0 and

12 h after birth and increased levels of lipocalin-2 between 12
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and 48 h after birth (39). The negative predictive values for

increased synaptic proteins was 70% and decreased lipocalin-2

was 91%, suggesting that the content of central nervous system

EVs in peripheral blood can serve as a biomarker for the severity

of HIE and response to hypothermia therapy (39).

Currently, the only proven effective therapy for HIE is

therapeutic hypothermia, but due to the short treatment window

(within 6 h after birth) and unsuitability for premature infants

with gestational age <35 weeks (97), researchers are exploring the

combined use of EVs to improve HIE treatment and outcomes.

In an HIE sheep model, human MSC-EVs ameliorated brain

function impairment, reduced seizure frequency and duration,

and restored subcortical white matter myelination (98).

Intranasally administered EVs derived from immortalized

mesenchymal stromal cells mitigate neuronal damage in neonatal

HIE by suppressing neuroinflammation and fostering

neuroregeneration, thereby attenuating long-term cognitive

deficits and behavioral abnormalities (99, 100). These protective

effects are mediated through EV modulation of the PI3K/AKT

signaling pathway, which inhibits calcium overload and neuronal

cell death (101), prevention of HIE-induced blood-brain barrier

leakage via targeting the membrane-associated protein A1/

formylpeptide receptor axis (102), and immunomodulation (103).

Additionally, miRNAs encapsulated within EVs are potent

mediators of neuroprotection against HIE-induced neuronal

damage. EVs derived from astrocytes deliver miR-124-3p to

inhibit abnormal activation of hippocampal immune cells in HIE

(104). MiR-410 from bone marrow MSC EVs inhibits neuronal

apoptosis induced by HIE (105). EVs containing miR-21a-5p

exert anti-inflammatory and anti-apoptotic effects (106). Human

MSC-EV cargo miR-let-7-5p has neuroprotective and anti-

inflammatory effects; pretreatment with hydrogen sulfide
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enhances their neuroprotective capabilities (105, 107). Astrocyte-

derived EVs containing miR-17-5p alleviate neuronal apoptosis

and inflammation in HIE neonatal rats (108). Additionally, miR-

93 in MSC-EVs inhibits HIE-induced neuronal damage through

the JMJD3-dependent p53/KLF2 signaling axis, while miR-

150-3p in neural stem cell-derived EVs protects the central

nervous system from ischemia-reperfusion injury (109, 110). EVs

derived from neural stem cells promote neuronal survival, inhibit

apoptosis, enhance Nrf2 nuclear translocation to counter

oxidative stress, and foster axonal growth and angiogenesis (111).
7.2 Intraventricular hemorrhage

Intraventricular Hemorrhage (IVH) is one of the most

common neurological complications in premature infants,

occurring in an estimated 25%–30% of VLBW infants (112). The

pathophysiology of IVH is related to the inherent fragility of the

germinal matrix in premature infants and disruption of cerebral

blood flow (113). Increased severity of intraventricular

hemorrhage (IVH) increases risk of adverse neurodevelopmental

outcomes. The most common complications after IVH are post-

hemorrhagic hydrocephalus (PHH) and periventricular

leukomalacia (PVL). Analysis of EVs from cerebrospinal fluid

(CSF) in patients with PHH found enrichment of miRNAs such

as miR-9, miR-17, miR-26a, miR-124, and miR-1911, suggesting

that miRNAs in EVs from CSF of IVH patients could be used as

biomarkers for predicting PHH (114). Studies have found that

EVs also have neuroprotective effects against IVH. Brain-derived

neurotrophic factor in MSC-EVs can mitigate IVH-induced

neuroinflammation and cell apoptosis, and prevent the

progression of post-hemorrhagic hydrocephalus, improving

prognosis (115). After intracerebral hemorrhage, MiR-146a-5p in

MSC-EVs can inhibit neuronal apoptosis and provide

neuroprotection and functional improvement by suppressing the

expression of IRAK1 and NFAT5, thus inhibiting inflammation

associated with M1 polarization of microglia (116).
7.3 White matter injury

Various perinatal insults culminate in focal cystic necrosis and/

or diffuse white matter injury (WMI) in the central nervous system,

with astrocyte hypertrophy (gliosis), microglial activation,

decreased white matter volume, and impaired myelination (117).

The incidence of WMI in premature infants is 33%, which

increases with decreasing gestational age (118). WMI correlates

with adverse cognitive, language, and behavioral outcomes in

premature infants (119) and is a major contributor to cerebral

palsy (120).

The etiology of WMI in premature infants is multifactorial,

with inflammation playing a pivotal role in its pathogenesis

(121). Systemic inflammation activates microglia and astrocytes

with production of pro-inflammatory mediators disrupting the

blood-brain barrier, allowing systemic proinflammatory

molecules to further exacerbate brain injury (122). During WMI,
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EVs from astrocytes enter the peripheral circulation (123),

promoting leukocyte migration into the brain by inhibiting

peroxisome proliferator-activated receptor α, thereby inducing

inflammation in brain. EVs from microglia containing abundant

TNF-α can induce reactive astrocyte transformation and

demyelination (124).

Fetal central nervous system EVs can traverse the blood-brain

barrier and placental barrier to enter the maternal circulation,

rendering them potential early biomarkers for perinatal brain

injury (125). After ethanol exposure in early pregnancy, such

EVs derived from the fetal central nervous system and isolated

from maternal plasma predicted adverse fetal neurological

outcomes (126). Similarly, a biomarker for acute brain injury can

be levels of synaptotagmin in neuron-derived EVs purified from

peripheral blood samples (127).

Current treatments for WMI primarily focus on promoting

neural recovery, but EVs exhibit neuroprotective effects against

WMI. In response to lipopolysaccharide activation of microglia

in vitro, MSC-EVs reduce the production of pro-inflammatory

cytokines (128). In an animal model of inflammation-induced

WMI, MSC-EVs reduced inflammation-induced neuronal cell

degeneration, reduced microglial proliferation, and prevented

reactive astrocyte proliferation (129). MSC-EV administration

restored short-term myelination defects and long-term

microstructural abnormalities in white matter, thereby improving

persistent cognitive function (129). In a model of hypoxia

combined with inflammation-induced white matter injury,

MSC-EVs promoted normal myelination of damaged neurons,

facilitated oligodendrocyte maturation, and supported

regeneration of neuronal cells, significantly enhancing learning

ability in animals with WMI (130).
7.4 Perinatal arterial ischemic stroke

Perinatal arterial ischemic stroke, with an incidence of

approximately 1 in 2,300, is associated with severe long-term

neurological and cognitive deficits, including cerebral palsy and

developmental disorders (131). Arterial ischemic stroke is an

occlusive cerebrovascular event, usually thrombotic in nature,

with an unclear pathogenesis. One study reported that MSC-EVs

administered via intraventricular or intranasal routes accumulate

in the ipsilateral hemisphere of occluded neonatal stroke,

preventing perinatal arterial ischemic stroke through interactions

with microglia (132).
8 Extracellular vesicles and retinopathy
of prematurity

Retinopathy of Prematurity (ROP), a potentially blinding

vascular proliferative retinal disease, is the second leading cause

of blindness in children in the United States (133). Two main

factors contributing to the pathogenesis of ROP are immaturity

of retinal vasculature and oxidative damage caused by hyperbaric

oxygen exposure (134). Prematurity can include retinal vascular
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immaturity, making it susceptible to retinal damage when exposed

to high oxygen levels, sometimes even in ambient air. Hypoxia-

inducible factor 1α is reduced by elevated oxygen levels, reducing

levels of VEGF and IGF-1, thereby inhibiting retinal vascular

growth. Impaired retinal vascular growth decreases retinal

oxygenation and increases vascular signaling, promoting leakage

and dysregulated proliferation of immature retinal vessels, which

can result in vitreoretinal traction and retinal detachment (135).

Current treatment options for ROP include laser

photocoagulation, VEGF inhibitors, and, in severe cases, scleral

buckling and/or vitrectomy. All of these carry risks of vision-

threatening complications. Less invasive and more effective

therapies for ROP are needed. In an oxygen-induced retinopathy

model, MSC-EV treatment preserved retinal blood flow,

attenuated neovascularization, reduced retinal thinning, and

exhibited good tolerability without requiring immunosuppression

(136). Intravitreal injection of MSC-EVs alleviates

neuroinflammation and cell apoptosis induced by retinal

ischemia-reperfusion injury. MSC-EV proteomic analysis

detected survival-promoting proteins, such as those involved in

the cAMP response element-binding protein pathway (137).

Insufficient cAMP response element-binding protein signaling is

associated with retinal ischemia and alterations in retinal

neurotrophic and inflammatory systems (138). In a preterm

retinopathy animal model, EVs derived from microglia can

alleviate photoreceptor damage, promoting normal vascular

formation, perhaps mediated by miR-24-3p (139). Lymphocyte

microparticles attenuate oxygen-induced retinopathy by reducing

retinal neovascularization and macrophage infiltration.

Lymphocyte microparticle miR-181a may play a regulatory role

in retinal vascular neogenesis (140).
9 Extracellular vesicles and sepsis

Neonatal sepsis, an invasion of pathogenic microorganisms

such as bacteria, triggers a systemic inflammatory response

syndrome in the body, leading to potentially severe sequelae and

multi-organ damage. Neonatal sepsis is categorized into early-

onset sepsis (EOS) and late-onset sepsis based on the time of

onset. About 16% of the 2.8 million newborn deaths worldwide

are attributed to sepsis (141). Early-onset sepsis accounts for 8%

of deaths within the first 7 days of life, while late-onset sepsis is

responsible for 37% of deaths occurring after 7 days (141).

EVs feature prominently in sepsis. Bacteria, the primary

infectious agents, release bacterial outer membrane vesicles

carrying endotoxins into septic patients’ circulatory systems,

exacerbating inflammatory responses (142). Increased quantities

of host-derived EVs upon bacterial stimulation correlate with

sepsis severity (143). In septic mouse serum, EVs encapsulate

numerous cytokines and chemokines, and EV inhibitors reduce

EV formation and inflammatory cytokine release (144). EVs

contribute to multi-organ damage in sepsis, with miR-1262 from

septic patients’ EVs inhibiting glycolysis and promoting

cardiomyocyte apoptosis (145). Acute lung injury and acute

respiratory distress syndrome have upregulated bronchoalveolar
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lavage fluid and circulating EVs (146). LPS injection in mice

increases pulmonary alveolar macrophage EV release, activating

NLRP3 inflammasomes and exacerbating sepsis-induced

inflammation (147). After LPS stimulation, choroid plexus

epithelial cells secrete EVs containing inflammatory proteins and

miRNAs, which effect the central nervous system (148).

Diagnosis of early neonatal sepsis requires sensitive and specific

biomarkers due to its atypical clinical presentation. Plasma EV levels

correlate with organ failure severity and patient outcomes (149). In

sepsis, EV-miRNA expression correlates with risk, severity, and

prognosis (150). In septic patients’ serum, upregulated circRNA-

104484 and circRNA-104670 EVs have diagnostic potential (151).

Elevated miRNA-34a and decreased miR-15 and miR-27a in EVs

predicts septic shock occurrence (152).

Inhibiting EV generation reduces inflammation and improves

the prognosis of septic patient survival (144). Modifying miRNAs

in cell derived EVs can modulate the sepsis cytokine storm (153).

MSC-EVs carrying anti-inflammatory miRNAs such as miR-17

mitigate LPS-induced inflammation and apoptosis (154).

miR30b-3p in MSC-EVs inhibits LPS-induced pulmonary

inflammation and enhances cell proliferation (155). MSC-EVs

alleviate systemic inflammatory response, improve mouse

survival, and protect lung tissues in septic mice (156). LPS-

activated macrophages engulf adipose-derived MSC exosomes,

inhibiting IL-27 secretion (157).
10 Limitations/challenges

To enable the increased use of EVs for their widespread clinical

application in the diagnosis and treatment of diseases in premature

infants, some key areas that warrant further research include

the following:
10.1 Isolation methods

The complexity of sample physicochemical properties presents

significant challenges for the isolation of EVs (158). Current

methods for EV isolation include centrifugation, ultrafiltration,

chromatography, immunoseparation, and some commercial kits

(159). Alternative isolation methods for EVs have limitations and

may affect EV purity and biological activity. For example, the

most used differential centrifugation method may not effectively

purify EVs from viscous fluids (160), and high-speed

centrifugation may lead to co-precipitation of EVs with protein

aggregates and apoptotic bodies, resulting in decreased EV purity

(161). Ultrafiltration may cause a decrease in EVs yield due to

entrapment of exosomes in the pores of the filter membrane, and

the force applied to the sample passing through the filter

membrane may damage, deform, and rupture large vesicles (162).

Immunoseparation is expensive, and it is generally used for

isolating cell-free samples because cells or tissues may express

similar exosomal membrane markers (163). Therefore,

understanding the influence of different isolation methods on the

biological activity of EVs is crucial. Developing a unified,
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efficient, and low-cost method for purifying and scaling up EVs

from various samples is crucial.
10.2 Therapeutic dose

The therapeutic effect of EVs is dose dependent (164), so

quantification of EVs is needed to accurately assess the side

effects and therapeutic effects of EV administration. Current

quantitative methods include concentrations of reporter proteins,

dynamic light scattering, tunable resistive pulse sensing, and

nanoparticle tracking analysis; each of these has its advantages

and limitations (21). There is currently a lack of uniformity in

the quantification of EVs because different researchers often use

different parameters to calculate EV doses. Furthermore, subtle

variations in tissue culture conditions not only affect the quantity

of EVs but also their composition. EVs may be confused with

fragments, aggregates, and contaminants, leading to difficulties in

quantification. Therefore, rigorous and effective analysis of pre-

isolation EVs is needed for accurate quantification (165).
10.3 Route of administration

The distribution pattern of EVs in the body depends on the

route of administration. Relative to intravenous injection,

intraperitoneal and subcutaneous injections have less

accumulation of EVs in the liver and spleen but more

accumulation in the pancreas and gastrointestinal tract (166).

Therefore, defining the optimal administration route for

different diseases in premature infants would maximize

therapeutic efficacy.
10.4 Effects of stimuli on EV contents

Different sources of EVs and differences in the stimuli

experienced by a cell type may cause major differences in EV

contents, affecting their diagnostic and therapeutic value. For

example, preconditioning rat bone marrow MSC under high

oxygen conditions in vitro has stronger therapeutic effects on

lung injury than untreated MSCs (167). Therefore, it is necessary

to further compare the therapeutic differences of EVs from

different sources and the changes in the contents of EVs under

different treatment conditions of the same cells, as well as their

effects on the therapeutic efficacy of diseases in premature infants.
10.5 Long-term safety and toxicity

Assessing the long-term effects of EVs on

immunocompromised premature infants is essential. Large-

sample cohort studies and randomized controlled trials are

needed to evaluate the long-term effects of EVs on immune

function and neurological development.
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By addressing these and other unresolved issues, we can

maximize our ability to use EVs toward improving the health

outcomes of premature infants.
11 Future directions

As the field of EVs in preterm-related diseases grows, key

areas of research are essential to bridge the gap between

laboratory findings and clinical applications. Developing

efficient, reproducible, and cost-effective methods for isolating

and characterizing EVs is critical (168). Current techniques

often compromise purity or yield, requiring advancements in

high-throughput technologies to address these challenges (161).

Disease-specific EV-derived molecules hold promise for early

and non-invasive diagnosis. However, it is not uncommon for

specific biomarkers identified in the preclinical phase to fail

miserably during clinical validation. Large-scale prospective or

multi-cohort studies are warranted to validate diagnostic EV

performance and to determine the context of use before

integrating it into routine diagnostic workflows (169). For

therapeutic purposes, better understanding the molecular

mechanisms of selective cargo sorting for miRNAs and proteins

is essential for designing tailored EV therapies and optimizing

their composition for enhanced functionality (13). Moreover,

research should focus on combining EVs with emerging

technologies to enhance cargo loading, tissue targeting, and

stability, while evaluating their safety, immunogenicity, and

long-term effects in preterm infants (170).
12 Conclusion

With the recent profound advances in neonatal medicine,

including improved survival of very low birthweight premature

infants, our Neonatal Intensive Care Unit populations have

expanded dramatically. The consequent related morbidity has

surged annually, emerging as the leading cause of child

mortality and impacting long-term prognoses. EVs are pivotal

in intercellular signal transduction, which is a key component

in early development. Thus, EVs exert crucial regulatory roles

in the pathophysiological processes of spontaneous preterm

birth and associated conditions in premature infants. Their

unique biological characteristics render EVs promising in

disease diagnosis and treatment. However, their widespread

clinical application is limited by the current dearth of

information regarding composition of various EVs, scaled up

EV production, the dose-response relationship of EVs, specifics

of treatment modalities, and safety and efficacy of EVs and

their components. In the future, we will focus on optimizing

EV isolation and characterization techniques, uncovering their

biogenesis and cargo sorting mechanisms, developing

EV-based non-invasive diagnostic biomarkers, and advancing

their therapeutic applications in preterm-related diseases.
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