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A high-sensitivity, high-
throughput newborn
screening assay for congenital
cytomegalovirus—is it time for
universal screening in the
United Kingdom?
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Kingdom, 2Research and Development, Revvity Inc., Turku, Finland, 3SIHMDS-Haematology, Great
Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom, 4Department of
Virology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom,
5Department of Infection, Immunity and Inflammation, Institute of Child Health, London, United
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Introduction: Congenital cytomegalovirus (cCMV) is the leading cause of
neurodevelopmental and hearing impairment resulting from in utero infection,
affecting over a million infants globally each year. Early antiviral treatment can
limit sequelae; however, most newborns are diagnosed late—or not at all—due
to the lack of universal screening. Ensuring the availability of appropriate
screening tools is critical to facilitate accurate and timely cCMV diagnosis.
Methods: A high-sensitivity, high-throughput commercial CMV PCR kit targeting
the RRP30 control gene and a conserved region of CMV DNA was provided by
Revvity and tested in three population groups: (1) leftover dried blood spot
(DBS) samples from the UK newborn screening programme, (2) DBS samples
from children with CMV viraemia unrelated to cCMV, and (3) DBS and dried
saliva samples from infants with and without cCMV.
Results: Of 3,345 anonymised newborn DBS samples analysed, CMV was
detected in 22 cases (0.66%), with a mean cycle threshold value of 36.70
(range 31.87–41.68). Assay development demonstrated a sensitivity of 2.04
CMV IU per reaction. This level of sensitivity was replicated using DBS samples
prepared from infant/child blood samples with known levels of CMV,
suggesting that the sensitivity reflects 2,000–3,000 CMV IU/mL blood.
Discussion: We demonstrated high analytical sensitivity of the qPCR assay with
an optimal extraction protocol, making it an effective strategy for cCMV
screening using DBS samples. These data suggest a potential cCMV incidence
rate of up to 0.66% in the United Kingdom, equivalent to 3,960 infants per
year, 25% of whom may develop long-term sequelae, which could be
improved through early diagnosis and treatment.
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Introduction

Cytomegalovirus (CMV) is the leading cause of

neurodevelopmental and hearing impairment from a congenital

infection globally (1). Evidence from randomised control trials

(RCTs) supports early treatment with valganciclovir to reduce

hearing loss and improve neurodevelopment outcomes (2, 3).

However, despite its prevalence, profound clinical impact, and

available treatment, newborns are not routinely screened for

congenital CMV (cCMV) (4, 5); as a consequence, many infants

experience missed or delayed diagnoses, and treatment is

frequently not initiated within the recommended timeframe of

1 month of life (6).
cCMV prevalence

cCMV affects approximately 1 million infants globally each

year, accounting for 0.67% of all births (7). In high-income

countries, the median prevalence is 0.48% (CI 0.40%–0.59%) (7).

cCMV contributes to around 10% of childhood cerebral palsy (8)

and 25% of sensorineural hearing loss (SNHL) (9) and is

increasingly recognized to be linked to sociobehavioural,
FIGURE 1

Congenital cytomegalovirus—proportion of infants with symptoms and seq
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communication, and learning difficulties (10–13). One of the

major barriers to universal screening is that while an estimated

25% of infants with cCMV develop long-term significant

sequelae, the rest do not (Figure 1) (4, 5, 11); moreover, these

sequelae may not be present in the neonatal period. SNHL can

have a late onset in 11.5% of cases (14, 15), and

neurodevelopmental outcomes can be difficult to predict.
cCMV clinical presentation

Infants are classified as symptomatic or asymptomatic, with

symptomatic infants most frequently defined as those with

abnormalities detected on physical examination, basic blood tests,

ophthalmologic evaluation, and audiologic assessment (16). Up

to 15% of babies with cCMV show symptoms at birth (4, 5);

however, unless an affected infant presents with severe

manifestations of cCMV disease, the signs and symptoms can be

subtle and often go unnoticed, resulting in fewer than 25% of

these children being diagnosed within the first month of life (6).

Features of intrauterine growth restriction (IUGR), petechiae,

anaemia, hepatosplenomegaly, jaundice, and microcephaly do not

always appear together and can be caused by other aetiologies.

This is compounded by a genuine issue of lack of awareness
uelae (created in BioRender).
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among relevant healthcare professionals: obstetricians, midwives,

neonatologists, paediatricians, and audiologists, with awareness

reported to be as low as 23% (17, 18). Among infants classified

as asymptomatic, up to 20% develop late-onset SNHL,

developmental delays, and social communication or learning

difficulties, and these infants often remain undiagnosed until

after 1 year of age (10, 19, 20).
cCMV diagnosis

cCMV is diagnosed by identification of CMV in urine, saliva,

or blood via polymerase chain reaction (PCR) within the first 21

days of life. Beyond 21 days, CMV identified may be due to

postnatal CMV, typically due to breast milk transmission. It is

critical to differentiate between postnatal and congenital CMV

because postnatal CMV in term immunocompetent infants

usually does not cause disease.

Studies on infants with cCMV in the first few weeks to months

of life have shown reduced effector cytokine responses and

markedly lower polyfunctionality of newborn CD4 and CD8

T cells (21, 22). These data infer a reduced ability to control

CMV, thereby reinforcing the importance of early initiation of

antiviral therapy.
cCMV treatment

Treatment for cCMV involves twice-daily oral valganciclovir

for 6 months, although a 6-week course may now be considered

sufficient for mildly affected infants (16). However, side effects,

including neutropenia or transaminitis, can occur in 20% of

infants (2, 3), requiring blood test monitoring throughout their

treatment on at least a monthly basis. While animal data suggest

a theoretical risk of oncogenesis and infertility secondary to

valganciclovir, no such effects have been seen in humans,

although 6-month treatment regimens have only been

commenced after 2015 (3). In view of these potential side effects,

decisions to start treatment need to be pragmatic and evidence-

based, supported by international guidelines (16).
Targeted testing for cCMV

Targeted testing for cCMV in infants with confirmed hearing

loss is increasingly performed by audiologists (23, 24) using a

saliva swab sent for CMV PCR analysis; however, treatment

initiation is still not timely because many infants are diagnosed

with CMV after 21 days of age (25). It will then take a further

2–4 weeks before being seen by paediatric infectious diseases

specialists, investigated accordingly, and started on treatment if

required (6), resulting in considerable delays in initiating

treatment. In some areas, newborn hearing screeners are testing

for CMV after the first failed hearing test and referring directly

to paediatrics thereafter, although this is not a routine national

practice (27).
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Potential for universal screening for cCMV

There are two potential universal screening approaches:

antenatal maternal serological screening in early pregnancy and

neonatal screening after birth. A few European countries perform

CMV serology in early pregnancy since significant long-term

sequelae are limited to first-trimester infections, and there is an

effective maternal antiviral treatment to prevent CMV

transmission to the foetus (27). The main limitations of this

approach are that CMV serology should be performed very early

in pregnancy (i.e., 6–8 weeks) (16) and can only identify primary

infections, which may reflect less than half of CMV infections

during pregnancy in European settings (28).

Infant dried blood spot (DBS) samples collected on day 5 of life

in the United Kingdom are used to screen for diseases such as

cystic fibrosis, sickle cell anaemia, hypothyroidism, severe

combined immunodeficiency, and certain rare metabolic

disorders. The DBS presents an opportunity for early screening

of cCMV, facilitating timely treatment initiation. Many of the

standardised criteria required for universal screening have already

been reached for cCMV e.g., (1) the condition is significant in

both frequency and severity; (2) it often presents with mild, pre-

symptomatic, or asymptomatic manifestations that might not be

otherwise identified; (3) there is an agreed policy for further

investigation (16); and (4) cost-effective treatment interventions

supported by RCT are available (2, 3) and, importantly, should

be commenced early, at least before 1 month of age. The use of

the DBS as a screening tool is largely acceptable to the general

population and has recently been used in universal screening

programmes for cCMV in the United States and Canada (29–31).

The reasons given by the UK National Screening Committee

(UK-NSC) for not providing screening for cCMV are: (a) the

uncertainty regarding whether screening tests can identify infants

with cCMV who will develop long-term neurodevelopmental and

hearing problems; (b) lack of evidence that early treatment

following screening leads to better outcomes than later treatment

after symptoms appear; (c) uncertainty over whether

asymptomatic infants require treatment; and (d) concern regarding

the identification of a large number of infants with cCMV, leading

to further investigations, parental anxiety, and cost to the NHS (32).
Addressing the UK-NSC concerns raised
against universal screening for cCMV

Can screening tests identify infants with cCMV
who will develop long-term sequelae?

Yes. The use of DBS for cCMV screening has a relatively high

analytical sensitivity of 85.7%, along with 100% specificity and a 98%

positive predictive value (33) compared to saliva testing, thereby

identifying the majority of cCMV cases and those more likely to

develop sequelae. Up to 20% of asymptomatic infants develop long-

term sequelae, amounting to 69% (170/245, Figure 1) of all infants

with cCMV. Universal screening would enable identifying these

infants who might otherwise be missed. Notably, recent experience
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in Canada demonstrated thatmost symptomatic caseswould have been

missed without universal screening (31). After case identification, a

paediatrician would be required to determine whether these infants

are at risk of longterm disease. This evaluation would include a

physical examination, full blood count, alanine transaminase

measurement, cranial ultrasound, audiology, and ophthalmology

performed to detect any signs of disease (34).

Long-term sequelae from cCMV arise predominantly due to

CMV transmission during the first trimester of pregnancy (35, 36),

which is the primary phase of embryological development and

immunological immaturity. Increasingly, cCMV research focuses

on ways to identify first-trimester infections and predict infants at

risk of long-term disease, equipping clinicians with the necessary

information to guide treatment initiation (37). Infants with cranial

ultrasound abnormalities undergo brain magnetic resonance

imaging (MRI), with findings assessed using a cCMV-specific MRI

brain score (38–40). This score aligns with physical outcomes (41)

and is being validated for functional development in ongoing

studies. Additional biomarker research includes gene signatures

predictive of late-onset SNHL (42), reduced or absent CMV-

specific immune responses (21, 43), markers of bone marrow

function (44), and virological factors (45–47).

Does early treatment lead to better outcomes?
RCTs have demonstrated reduced SNHL and improved

developmental outcomes in symptomatic infants, particularly those

with central nervous system (CNS) disease, after initiating

treatment within 28 days of life (2, 3). Subsequent non-

randomised studies suggest that starting treatment up to 2 months

of age may be similarly effective, but these studies had only 6

months of follow-up (48). A recent RCT initiating valganciclovir

treatment in children aged between 4 weeks and 4 years of age

did not demonstrate benefit from a 6-week course despite 70% of

participants having CNS disease (49). In contrast, the Concert

study, although not an RCT, demonstrated improvement in

hearing but not development at 20 months after 6 weeks of

treatment with valganciclovir in infants with isolated SNHL aged

up to 12 weeks (50). Overall, these findings suggest that for

infants with more severe CNS disease, earlier treatment remains

critical, aligning with their limited inability to control CMV in the

neonatal period. In contrast, infants with isolated SNHL appear to

benefit from treatment even when started up to 12 weeks of age

(50). The benefit of universal screening for these infants is easier

differentiation between congenital and postnatal CMV, the latter

of which does not require treatment in term infants.

Do asymptomatic infants require treatment?
A European consensus of experts does not recommend treating

infants with isolated IUGR without other manifestations of cCMV

at birth (16). Due to poor recruitment, RCTs have not been able to

address the treatment of infants considered asymptomatic (51–53).

However, two observational studies have demonstrated abnormal

brain MRI findings in almost half of the infants considered

asymptomatic, either picked up through targeted screening or

research screening programmes (54, 55). A retrospective study

demonstrated that up to 18% of children with asymptomatic
Frontiers in Pediatrics 04
untreated cCMV exhibited neurocognitive abnormalities at 6

years of age, which was significantly higher than CMV-

uninfected children (10). These studies suggest that the

long-term impact of cCMV may be greater than previously

recognised, and this raises the question of whether asymptomatic

infants with evidence of CNS disease should be considered for

treatment. Historically, asymptomatic infants have included those

with SNHL, and as mentioned above, the Concert study has

suggested that treatment could be beneficial for this population (50).

Would universal screening result in unjustified
parental anxiety and cost to the NHS?

As universal screening programmes are underway in the

United States and Canada, it has become evident that concerns

regarding parental anxiety should not be a deterrent. Parental

attitudes have been overwhelmingly supportive and in fact

revealed frustration over the lack of public, particularly pregnant

women’s awareness of cCMV and the possibility of prevention

(56). The benefits of newborn screening (NBS) for cCMV would

be experienced by the affected infant receiving timely diagnosis

and treatment, maximising their potential development during

early childhood. It would also be experienced by the affected

families through the reduction in the significant psychological

impact of the “diagnostic odyssey” that has frequently been

described (57, 58). Screening for cCMV is not only ethical and

rightly beneficial for affected infants and families but also

financially prudent, as cases of cCMV are estimated to cost the

UK economy £750 million pounds annually, encompassing both

NHS expenses and societal costs (57, 58); the cost-effectiveness

of screening for cCMV has been proposed (59).

Collectively, these data have begun to address the concerns

raised by the UK-NSC, and there is growing recognition of the

pressing need to improve the care provided to infants with

cCMV. As barriers to screening are addressed and universal

screening strategies are increasingly being embraced worldwide,

appropriate screening tools must be made available to facilitate

accurate diagnostics. Our study aimed to demonstrate the use of

two potential screening approaches, dried blood spots and dried

saliva spots, for the timely identification of infants with cCMV.
Methods

CMV quantitative PCR assay development

A dilution series was prepared using a CMV viral preparate

(WHO International Standard for Human Cytomegalovirus for

Nucleic Acid Amplification Techniques, NIBSC) containing 0.68

(CMV1), 2.04 (CMV2), 3.4 (CMV3), 6.8 (CMV4), and 340

(CMV5) IU/reaction. A sample without the CMV preparate was

used as a control (CMV0). A research use-only commercial kit

was developed to identify CMV in infant DBS samples by

targeting a conserved region of CMV DNA and the RRP30

control gene (Eonis CMV qPCR kit, Revvity Inc.). The dry

chemistry real-time qualitative PCR (qPCR) kit contains the

reagents needed to assess the cCMV status by qPCR, utilising a
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simple one-step DNA elution process. To each well, 100 µL of

elution solution (Revvity Inc.) was added; the plates were sealed

with adhesive foil seals and incubated at 70°C for 20 min while

being agitated at 700 rpm to elute DNA from the DBS samples.

Afterward, the plates were cooled at room temperature for

10 min and briefly centrifuged. Next, 20 µL of eluate was

transferred to dry chemistry qPCR plates containing the dried

qPCR reagents (Revvity Inc.), and the plates were sealed with an

optical PCR seal. The plates were vortex-mixed, briefly

centrifuged, and then subjected to qPCR using a qTower qPCR

instrument (Analytic Jena) under the following conditions: 95°C

for 3 min, 45 cycles of 95°C for 10 s and 61°C for 1 min, with

fluorescence measurement for FAM (control gene RRP30) and

ROX (CMV). Post-run analysis was performed using LEDTest 96

software (version 1.0).
Study populations

This study was approved by the Health Research Authority

(IRAS: 296570) and the Research Ethics Committee (REC: 21/EM/

0241), and the assay was tested on three population groups: (1)

DBS samples taken on Guthrie cards were collected as part of the

routine NBS programme in the United Kingdom, and leftover

DBS material was used for cCMV testing; (2) leftover blood from

children known to have CMV viraemia (not due to congenital

infection) was applied to DBS cards and used as positive controls;

and (3) blood and saliva samples were collected from newborn

infants with and without cCMV as part of an affiliated study and

applied to DBS cards (IRAS: 302667, REC: 22/PR/0895).
Population 1: leftover DBS samples from Guthrie
cards

Following routine screening on Guthrie cards collected

between September 2022 and March 2023, DBS samples were

stored at room temperature with a desiccant for up to 10 days to

allow for the reporting of routine NBS results. The DBS samples

were then punched and used in the assay. These DBS samples

were obtained from the Great Ormond Street Hospital (GOSH)

NBS laboratory, which serves Northeast London, most of Essex

and Hertfordshire, and some of Bedfordshire and Kent and

reflects a highly diverse ethnic population.
Population 2: leftover blood from children known
to have CMV viraemia

Children aged up to 5 years with suspected CMV infection (not

due to congenital CMV) were tested following standard practice at

the routine clinical laboratory at GOSH (60). DNA was extracted

from ethylenediaminetetraacetic acid (EDTA) blood samples, and

CMV DNA levels were measured using qPCR (61), with levels

reported as IU/mL. Fifty microlitres of leftover EDTA blood from

these children was applied to standard Whatman 903 DBS cards

to prepare CMV-positive DBS samples. These samples were dried

at room temperature for at least 24 h prior to testing. Once

prepared, these DBS samples were stored at −20°C with a desiccant.
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Population 3: infants with and without cCMV
cCMV was confirmed in infants based on at least two positive

samples from blood, urine, or saliva obtained before 21 days of age.

These infants were identified due to symptomatic disease or failed

newborn hearing screening. Infants without cCMV, aged up to 3

months, were recruited from outpatient clinics while undergoing

routine blood tests for non-infectious conditions, e.g., renal

anomalies, prolonged jaundice, etc. Control infants were

confirmed to be CMV-uninfected, with no CMV detectable in

both blood and saliva samples. Blood was collected by

venepuncture in EDTA tubes, and within 24 h of collection,

50 µL was applied to DBS cards. Saliva samples were collected

using Sigma Virocult cotton swabs, approved for clinical use,

placed in viral transport media, and then applied to the DBS

card within 24 h. Both saliva and blood DBS cards were frozen

at −20°C with a desiccant. All samples were anonymised, and

the laboratory and analysis team were blinded to whether the

samples belonged to cases or controls.
DBS preparation, DNA elution, and qPCR

The research use-only commercial kit, as described above, was

used to identify CMV in infant DBS samples and dried saliva

samples from the three populations. A 3.2-mm punch was taken

from each DBS and transferred into individual wells of a 96-well

plate alongside a negative and positive control provided by

Revvity Inc. DNA was eluted using a one-step process in 100 µL,

and 20 µL of the elute was transferred to dry chemistry qPCR

plates containing the dried qPCR reagents (Revvity Inc.); the

plates were sealed with adhesive foil, incubated at 70°C for

20 min, agitated at 700 rpm, cooled at room temperature for

10 min, briefly centrifuged, and then subjected to qPCR, as

described previously. The experiment was performed as three

individual assays using different blood donors and differing

sample replicate numbers.
Results

Analytical sensitivity

The analytical sensitivity was determined using five samples

with varying CMV levels from crude blood extracts and to be

2.04 CMV IU/reaction, equivalent to 3,000 CMV IU/mL of

blood. This was the lowest sample level, with over 95% of

replicates detected positive for CMV and a low Ct-value standard

deviation within sample groups (Table 1). RPP30 was

successfully amplified from every sample replicate.
Internal quality control

For internal quality control, as provided by Revvity Inc., the

expectation was to observe the positive control to show the

amplification for both the housekeeping gene Ribonuclease
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TABLE 1 Analytical sensitivity in crude blood extract samples.

Sample CMV IU/
reaction

CMV RPP30

Mean Ct SD Ct Replicates CMV detected
(%)

Mean Ct SD Ct Replicates RPP detected
(%)

CMV0 0.00 No ct 0.00 36 0 28.72 0.71 36 100

CMV1 0.68 39.92 1.01 19 74 26.35 1.61 19 100

CMV2 2.04 37.8 1.18 31 97 27.24 1.68 31 100

CMV3 3.40 37.49 0.79 31 100 27.37 2.00 31 100

CMV4 6.80 36.36 0.66 19 100 26.02 1.25 19 100

CMV5 340 30.48 0.21 19 100 25.23 0.39 19 100

Crude blood extract samples negative for CMV (CMV0) or containing various amounts of CMV preparate (CMV1-5) were analysed to determine the analytical sensitivity of the Eonis CMV

qPCR kit (Revvity Inc.). The presented data are a compilation of three individual experiments with varying sample replicates. The mean and standard deviation (SD) of RRP30 and CMV cycle

threshold (Ct) are given for each replicate. The percentage of each CMV and RPP30-positive replicate with detectable CMV and RPP are provided.

FIGURE 2

Frequency of DBS results for RPP30, housekeeping gene (a) and CMV (b). (a) Histogram showing the normally distributed data for the 3,345
anonymised DBS samples. RRP30 Ct values (x-axis) and incidence of these Ct values (y-axis). The cycle threshold (Ct) value represents the
number of PCR cycles required before the amplification of the target. RPP30 is the housekeeping gene, which demonstrates that the DBS
punching and DNA elution have been successful. (b) Histogram showing the distribution of positive CMV Ct values for 22 anonymised DBS (x-axis)
and incidence of these Ct values (y-axis).

Payne et al. 10.3389/fped.2025.1543132
P protein subunit p30 (RPP30) and CMV. The negative control was

expected to show amplification for RPP30 but not CMV. All

positive kit controls show successful amplification for RPP30 and

CMV, and the negative kit controls show amplification for

RPP30 but not CMV. The average cycle threshold (Ct) values for

the positive kit controls were 27.38 for RPP30 (range 23.90–

30.77, standard deviation 1.71) and 29.35 for CMV (range 28.34–

30.78, standard deviation 0.55).
Population 1: leftover DBS samples from
Guthrie cards

In total, 3,345 anonymised DBS samples from newborn infants

in the United Kingdom were obtained and analysed. No clinical

data were available for these infants. All samples showed

successful amplification for the RPP30 control gene. The mean

cycle threshold (Ct) value for RRP30, representing the number of

PCR cycles required before amplification of the target, was 27.41

(range 20.10–34.63), showing a normal distribution (Figure 2a)

across all runs. Of the 3,345 anonymised unknown samples, 22
Frontiers in Pediatrics 06
exhibited detectable CMV levels (0.66%, Figure 2b). The mean

Ct value for CMV was 36.70 (range 31.87–41.68).
Population 2: leftover blood from children
known to have CMV viraemia

Ten known CMV-positive EDTA blood samples were used to

create DBS samples with varying CMV levels (viral load range

1,228–640,145 IU/mL, Table 1). No other data were available for

these samples, and they were added randomly throughout the

various PCR runs. All samples showed successful RPP30

amplification. CMV was detected in all replicates for 7 of the 10

samples, with the lower limit for reliable CMV detection being

10 CMV IU/reaction while no detection was observed above 1.27

IU/reaction (Table 2). These findings are consistent with assay

development results, which demonstrated a sensitivity limit of

2.04 CMV IU/reaction. The remaining three samples either

showed no amplification in any replicate (P3) or only partial

amplification in some of the replicates (P1 and P2), and these

samples had the lowest CMV levels, implying that the reliable

limit of CMV detection of this test is likely between 2,000 and
frontiersin.org
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TABLE 2 Details of the laboratory-created CMV-positive DBS samples.

Control Viral load IU/mL IU/reaction RRP30 CMV Replicates run CMV detected (%)

Mean SD Mean SD
P8 6,40,145 435.30 27.51 N/A 33.15 N/A 1 100

P7 1,28,514 87.39 25.65 0.66 32.68 1.19 2 100

P6 1,22,407 83.24 24.90 1.93 35.49 1.17 5 100

P9 77,317 52.58 26.03 N/A 32.07 N/A 1 100

P10 38,462 26.15 25.18 N/A 31.84 N/A 1 100

P5 14,962 10.17 25.10 1.92 34.16 2.18 7 100

P4 14,834 10.09 25.94 0.69 35.89 1.55 5 100

P3 1,872 1.27 23.38 0.48 0 N/A 2 0

P2 1,690 1.15 24.59 0.42 41.10 5.49 2 50

P1 1,228 0.84 25.88 0.95 35.86 0.57 6 33

Each DBS was run in a single well within a plate, and where sample volume permitted, more than one replicate was run in separate plates for each DBS. The mean and standard deviation (SD)
of RRP30 and CMV cycle threshold (Ct) are given for replicates of each DBS. The percentage of each CMV positive replicate with detectable CMV is provided.

TABLE 3 Characteristics of infants with and without cCMV.

Characteristics cCMV cases, CMV- p-Value
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14,000 IU/mL; e.g., a sample with 1,872 IU showed no detectable

CMV with this test, while a sample with 14,834 IU was reliably

detected with a Ct value of 35.89.

n= 7 Med
[IQR], n (%)

uninfected
controls, n = 4
Med [IQR], n (%)

Gestational age
(weeks)

37 [37–39] 39.9 [39.1–40.5] 0.06

Male 4 (57%) 4 (100%) <0.0001

Birth weight, grams 2,950
[2,300–3,025]

3,687 [3,653–3,727] <0.001

Head circumference
(cm)

33.6 [31.5–36.5] 36 [35.3–36] 0.20

Age at sample
(days)

56 [45.5–72.5] 44.5 [6.25–83.75] 0.33

Diagnosis age
(days)

3 [1–19.5] NA NA

Age started treatment
(days)

31 [12.5–43.5] NA NA

On treatment at
sample

4 (57%) NA NA

CMV viraemia at
sample

5 (71%) NA NA

“At sample” refers to the time at which the DBS and saliva samples were taken. Where
applicable, characteristics were compared using an unpaired t-test.
Population 3: infants with and without
cCMV

The median age was 56 (IQR 45.5–72.5) days for cases and 44.5

(IQR 6.25–83.75) days for controls (Table 3). There were no

significant differences in gestational age at birth, sample age, and

head circumference; however, infants with cCMV had a lower

birthweight, and controls were more likely to be boys. Among

infants with cCMV, 71% (5/7) had faetal abnormalities, 57% (4/7)

had IUGR, 43% (3/7) had SNHL, and 57% (4/7) had an abnormal

brain MRI. Bone marrow and liver function tests were normal.

Two infants were known to have a primary first-trimester

infection, three had a reinfection or reactivation, and in two

infants, the type of congenital infection was unknown. At the time

of DBS and saliva sampling for this study, four infants (57%) were

on treatment, and five (71%) had detectable CMV viraemia.

All DBS and saliva samples from seven infant cases and four

controls showed successful RPP30 amplification, with a mean Ct

of 29.49 (range 24.41–31.58) for DBS and a mean Ct of 29.49 for

saliva (range 25.57–31.57; Table 4). Only one of seven of the DBS

samples from infants with cCMV detected CMV, with a Ct value

of 37.16, and this DBS sample belonged to an untreated infant

with the highest CMV blood viral load of 2,340 IU/mL. This result

is consistent with the limit of detection in assay development

(Table 1) and the findings from laboratory-created CMV-positive

DBS samples (Table 2). Two infants had undetectable CMV

viraemia, and three infants had CMV levels below than the

detection threshold of the assay. The one infant detected (B5,

Table 4) had 1.64 CMV IU/reaction, which was below the lower

limit suggested by the assay development experiments.

All seven saliva samples showed positive CMV amplification,

with a mean Ct of 29.52 (range 19.83–35.01) for CMV-positive

saliva samples (Table 3), regardless of blood viraemia and

treatment status. All CMV-uninfected infants were confirmed to

have no CMV detectable in their saliva.
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Discussion

This is the first retrospective study to examine the use of DBS

to determine the incidence of cCMV in the United Kingdom, and it

represents the largest prevalence study since 1983 (62). The UK

prevalence of cCMV has not been reported since 1991, when it

was estimated as 0.33% (95% CI 0.15–0.62) (63). However, our

study demonstrates a potential cCMV rate of 0.66% among the

examined infant population using the high-sensitivity assay on

DBS. With the current rate of annual births of approximately

600,000 in the United Kingdom (64) the rate of 0.66% may

reflect 3,960 infants with cCMV each year, a quarter of whom

may develop long-term sequelae.

The assay offers a single-step DNA elution and processing

approach that efficiently streamlines CMV PCR analysis for NBS.

The cCMV NBS assay is a DNA-based assay as per the widely

adopted SCID and SMA NBS tests; however, the cCMV assay
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TABLE 4 Dried blood spots and dried saliva spots taken from infants confirmed to have cCMV.

Study ID Control or case Dried blood spot Dried saliva spot On treatment Known CMV viraemia IU/ml CMV IU per reaction

Ct Detected Ct Detected

RPP30 CMV RPP30 CMV RPP30 CMV RPP30 CMV
B1 Control 27.37 No Ct POS NEG 30.86 No Ct POS NEG NA NA NA

B2 Control 31.4 No Ct POS NEG 30.37 No Ct POS NEG NA NA NA

B3 Control 24.41 No Ct POS NEG 31.27 No Ct POS NEG NA NA NA

B4 Control 31.58 No Ct POS NEG 31.57 No Ct POS NEG NA NA NA

B5 Case 29.52 No Ct POS NEG 29.17 19.83 POS POS No Yes
2094

1.46

B6 Case 26.98 No Ct POS NEG 25.57 27.4 POS POS Yes No
<242

NA

B7 Case 27.98 37.16 POS POS 29.6 30.97 POS POS No Yes
2340

1.64

B8 Case 25.61 No Ct POS NEG 28.82 27.6 POS POS No Yes
444

0.31

B9 Case 28.37 No Ct POS NEG 28.75 32.81 POS POS Yes Yes
80

0.06

B10 Case 30.14 No Ct POS NEG 29.85 33.02 POS POS Yes No
<34.5

NA

B11 Case 29.06 No Ct POS NEG 28.54 35.01 POS POS Yes
72

0.05

Cycle threshold (Ct) value, represents the number of PCR cycles required before amplification of the target. RPP30 is the house-keeping gene which allows for quantification of the DNA present in each reaction. RPP30 or CMV detected is represented by “POS”, and

RPP30 or CMV not detected is represented by “NEG“. CMV viraemia was performed in NHS laboratories as per clinical care, measured in international units per ml blood. The limitation of the NHS CMV PCR assay varies between runs hence the lowest detectable level

is not consistent. CMV IU / reaction reflects how many IU of CMV were in the DNA PCR reaction well based on the volume of blood applied to the DBS (50µl) and the size of the DBS punch (2.3mm diameter), therefore equivalent to 3.5µl blood, 20% of which was used

for qPCR.
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used here is dry chemistry-based, reducing hands-on time, and

requires only DNA extraction from the DBS, already done in

many labs, followed by a manual transfer to the qPCR plate. The

approximate hands-on time for running one 96-well plate after

DBS punching is 30 min, with the whole process taking around

3 h. Therefore, overall costs, including staff labour, are expected

to be less than those of SCID or SMA NBS.

The analytical sensitivity of the assay is notable at 2.04 CMV

IU/reaction. In addition, the low Ct-value standard deviation

demonstrates high sample uniformity and assay repeatability in

crude blood extract samples. The criteria used in this study were

that any amplification of CMV would be considered a positive

result, regardless of Ct value. However, without verification using

a separate clinical sample, such as urine or saliva, we cannot be

certain that this reflects the true prevalence rate. No clinical data

were available for the infants whose DBS samples were analysed;

therefore, it was not feasible within the design of this study to

verify the cCMV diagnosis and clinical outcomes. By running a

prospective study with sample verification, it would be possible

to determine the precise cut-off level needed for cCMV diagnosis

that is relevant for clinical care.

We attempted to verify the sensitivity of the DBS samples by

testing 17 infant/child samples with known CMV viral loads

confirmed in routine clinical laboratories, ranging from 34.5 to

640,145 IU/mL. The NBS assay reliably detected CMV at levels

down to 2,340 IU/mL. CMV levels below this threshold were not

detected in every replicate due to a dilutional effect and differing

quantities of CMV estimated per PCR reaction; however, it was

evident that detection was possible even at 1.64 CMV IU/reaction.

Thus, the sensitivity limit appears to be between 2,000–3,000

CMV IU/mL. This is lower than the reported sensitivity of 500 IU/

mL achieved by nested PCR and currently in use by Health

Service Laboratories in London (65), where retrieved DBS samples

are tested after a clinician’s request in an attempt to confirm

cCMV diagnosis in infants presenting beyond 21 days of age.

Ct values above 37.16 were less reliably reproduced in known

viral load titrations. These were blood samples from children up

to 5 years old and processed in real time, without a

corresponding storage period. It is possible that all CMV-positive

cases in the anonymised DBS samples tested were true CMV

positives, suggesting that the incidence of cCMV in the

population is now higher than previously estimated. Of the DBS

samples obtained from the NBS laboratory, nine had a Ct value

of 37.16 or higher, so an alternative possibility is these might

represent false positives. If we use 37.16 as the cut-off value to

reliably determine CMV-positive from CMV-negative cases, this

adjusts the cCMV incidence of our population to 0.39%, aligning

more closely with the incidence estimates of the 1991 study (60).

Other new NBS tests introduced into health systems often review

cut-offs and algorithms as large population datasets are

uncovered [e.g., for the SCID NBS assay (66)]. However, since

the purpose of this assay is screening rather than diagnosis, we

suggest using a generous cut-off to avoid missing low-level

cCMV cases in newborns. Diagnosis could then be confirmed

using CMV PCR from urine or saliva without incurring

significant costs.
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CMV was identified from the DBS in one of the seven infants

with confirmed cCMV, five of which had CMV viraemia. The

assay detected CMV in the infant with the highest viral load of

2,340 IU/mL but not in four infants with known CMV viraemia

ranging from 72 to 2,094 IU/mL. However, all four of these

infants had CMV levels below the lower limit of the assay in the

PCR reaction. The median age of testing in this population was

33 days, and some infants were already under treatment.

Therefore, this sample population does not perfectly reflect

testing in the context of NBS, where CMV viral loads may be

higher closer to birth, on day 5 when the heel-prick blood test

for NBS is usually performed. This is also a very small sample

set that was tested once only; therefore, these results may be

influenced by replicate variability at low viral loads and reflected

by existing data, suggesting a DBS sensitivity of 81–83.9% (67)

for cCMV diagnosis. Importantly, all our cases needed treatment,

so universal screening using DBS might have missed six of these

seven infants and would have relied upon these infants being

identified by other means (as was the case in reality). While the

assay demonstrates high analytical sensitivity, maximising the

clinical sensitivity of CMV detection from DBS in NBS may need

different DNA extraction protocols, e.g., purification methods

allowing more DNA molecules in the reaction through

concentration of target analytes or utilisation of two DBS

punches would be practical and feasible.

In contrast, all saliva samples from infants with confirmed

cCMV accurately detected CMV to a maximum Ct value of

35.01, and correspondingly, none of the saliva samples from the

controls showed CMV. This implies that saliva may be the

preferable sample type for cCMV testing compared to blood and

aligns with literature that recognises even high-sensitivity DBS

assays can identify only up to 81% of infants since not all infants

with cCMV exhibit CMV viraemia at diagnosis (67). It was

previously thought that viraemic infants may be at a higher risk

of developing symptoms and more severe SNHL (68, 69).

However, recent data using saliva-based screening approaches

illustrate that 46% of asymptomatic infants had abnormal brain

imaging (54), including two aviraemic cases. These infants would

not have been identified by other means and would have missed

the opportunity for treatment.

Saliva is known to have higher viral loads, which makes it more

suitable for screening. One caveat is the limitation that saliva must

be taken at least 1 h after breastfeeding to prevent breast milk

contamination and false positive results (70). Although using

saliva on a Guthrie card would require changes in collection

practice, we demonstrate that applying saliva to a DBS card is a

simple, effective, and potentially highly sensitive method for

universal cCMV screening. In addition, parental acceptability of

saliva-based CMV screening after a failed hearing test has

already been demonstrated in the United Kingdom (71, 72).

A large-scale Israeli study demonstrated the feasibility,

efficiency, and cost-sparing approach of pooled saliva testing for

CMV identification, with an insignificant loss of sensitivity (73).

Pooled saliva from DBS cards using this high throughput

commercial assay presents a potentially cost-effective approach

for CMV NBS. Further work is required to verify the use of
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dried saliva spots and assess the absolute sensitivity of this

commercial assay in saliva, alongside a UK-equivalent cost-

effectiveness analysis. Although cCMV had been confirmed

previously, our study used clinical samples from infants over 21

days old. Future work should verify this assay using samples

from 5-day-old infants when the Guthrie test is performed.

Thereafter, a pilot study could be conducted to confirm practical

feasibility, parental acceptability, and no loss of sensitivity when

pooling saliva from DBS cards.

Our study demonstrates a high-sensitivity commercial assay for

the detection of cCMV to be used alongside the NBS heel-prick

blood test performed at 5 days of age. Additionally, dried saliva

spots to test for CMV showed even higher sensitivity with this

assay, presenting a potentially cost-effective approach in the

context of pooled testing. Using either approach would help

address the enormous unmet clinical need for the timely

identification of cCMV in the neonatal period.

Analysis of more than 3,345 stored newborn DBS samples

revealed a potential cCMV prevalence of 0.66% in the United

Kingdom. Parallel clinical analysis of these infants is required to

ascertain whether the diagnosis of cCMV could be confirmed in

urine or saliva and whether these infants have cCMV disease

that requires treatment. However, this could reflect up to 1,000

infants each year in the United Kingdom who need early

treatment that could improve their health outcomes. Considering

this significant morbidity burden, that research is increasingly

addressing the previous concerns of the UK-NSC, and that both

antenatal and neonatal screening programmes have been

demonstrated to be effective, now is most certainly the time for

the United Kingdom to reconsider the feasibility of universal

screening for cCMV.
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