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Background: This study aimed to develop a predictive model for mortality
outcomes among pediatric trauma patients usingmachine learning (ML) algorithms.
Methods: We extracted data on a cohort of pediatric trauma patients (18 years
and younger) from the National Trauma Data Bank (NTDB). The main aim was
to identify clinical and physiologic variables that could serve as predictors for
pediatric trauma mortality. Data was split into a development cohort (70%) to
build four ML models and then tested in a validation cohort (30%). The area
under the receiver operating characteristic curve (AUC) was used to assess
each model’s performance.
Results: In 510,381 children, the gross mortality rate was 1.6% (n= 8,250). Most
subjects were male (67%, n= 342,571) and white (62%, n= 315,178). The AUCs of
the four models ranged from 92.7 to 97.7 with XGBoost demonstrating the
highest AUC. XGBoost demonstrated the highest accuracy of 97.7%.
Conclusion: Machine learning algorithms can be effectively utilized to build an
accurate pediatric mortality prediction model that leverages variables easily
obtained upon trauma admission.
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Introduction

Pediatric trauma is a significant global health challenge, contributing substantially to

mortality and disability among children (1). The treatment of pediatric patients, who

differ markedly from adults in their physiological, developmental, and psychological

characteristics, requires a tailored approach. Despite advancements in pediatric trauma

care, there remains a critical need for more refined risk stratification models to better

predict patient outcomes and guide interventions. Current assessment measures often

focus on immediate clinical parameters and outcomes; however, the incorporation of

broader considerations, including post-discharge recovery, psychological support, and

long-term rehabilitation, remains largely unexplored (2).

The complexities of pediatric trauma recovery challenge clinicians to identify ways to

improve functional outcomes, one such method being the implementation of

predictive models.

Machine learning (ML) has emerged as a powerful tool in healthcare, offering the ability to

analyze vast datasets andmake predictions with high accuracy (3). Its strength is in its ability to

handle large amounts of data and describe non-linear relationships. To date, there has been

some implementation of this technology to create predictive and risk assessment models in

the setting of traumatic injuries (4). For instance, recent studies have demonstrated the
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potential of ML in predicting outcomes for pediatric traumatic brain

injury (TBI) with moderate success, such as an Area Under the

Receiver Operating Curve (AUC) of 0.78 (5). An AUC of 0.50

indicates that the model is no better at distinguishing diseased vs.

non diseased individuals than chance, while an AUC of 1.0 indicates

perfect discrimination. An AUC greater than 0.80 is considered

clinically useful, respectively (6). Other models have utilized

objective clinical data to create machine learning models that

perform risk assessment in pediatric patients with blunt traumatic

injuries (7–9). However, there is a notable gap in the literature

regarding the development of high-performing ML models to

predict mortality risk in children across a broad spectrum of

traumatic injuries (10). This study aims to address this gap by

developing an ML-based model that accurately predicts mortality

risk in pediatric trauma patients, thereby enhancing triage and

stratification processes in clinical settings.
Methods

Study design and setting

This retrospective cohort study utilized data from the National

Trauma Data Bank (NTDB), the largest repository of trauma data

globally, encompassing records from over 900 accredited trauma

centers across the United States (11). The NTDB provides a

comprehensive dataset ideal for developing predictive models due

to its extensive range of clinical and demographic variables. We

extracted data from the NTDB covering the period from 2007 to

2016, focusing exclusively on pediatric patients aged 18 years and

younger. Data processing and analysis were conducted using the

open-source R software. This study adheres to the Transparent

Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis (TRIPOD) guidelines (12).
FIGURE 1

Flow diagram detailing the selection of NTDB patients.

Inclusion criteria

The initial dataset comprised 6,580,522 patients treated for

traumatic injuries between 2007 and 2016. Exclusion criteria

were applied sequentially: 325,568 entries with missing age data

were excluded, followed by the exclusion of 208,436 records

lacking disposition information, and finally, 312,954 transfer

patients were removed to focus on primary treatment outcomes.

Our final dataset consisted of 510,381 incomplete patients.

Figure 1 represents the process by which these patients were

filtered and included in our final sample.

To address missing data in this cohort, multiple imputation

was performed using R, with imputation rates ranging from 5%–

10%. We initially applied a threshold of <20% missingness as the

criterion for imputing data. Any variables with >20% missing

values were excluded from the analysis to ensure data integrity

and reduce the risk of bias from excessive imputation. We

employed predictive mean matching and simple bootstrapping

methods, implemented via the Hmisc package (v.4.6-0), to handle

missing data for continuous and categorical variables,
Frontiers in Pediatrics 02
respectively. This approach was chosen due to its robustness in

preserving variable distributions. Missing values were imputed

iteratively (n = 10 times), and the results were assessed for

consistency. To verify the imputation’s robustness, we conducted

sensitivity checks by comparing the percentages and distributions

of imputed vs. original data, confirming that the distributions

before and after imputation were nearly identical. This ensured

that the imputation process did not introduce significant biases

or distort the underlying data patterns.
Outcomes and predictors

The primary outcome of this study was in-hospital mortality.

The features used to make these predictions were based on data

available at the time of emergency department arrival. These
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predictors included age, gender, race, mechanism of injury, type of

injury (blunt vs. penetrating), intent of injury, location of injury,

Injury Severity Score (ISS), systolic blood pressure, respiratory

rate, temperature, and Glasgow Coma Score (GCS).
Statistical analysis

Baseline characteristics between survivors and non-survivors

were compared using the Wilcoxon rank-sum test for continuous

variables, reported as medians with interquartile ranges (IQRs),

and the Chi-square test for categorical variables, reported as

frequencies and percentages. Statistical significance was defined as

a p-value < 0.05. A 10-fold cross-validation scheme was employed,

repeated five times for enhanced generalization and to reduce

variability in performance metrics. The trainControl function

from the caret package was configured with twoClassSummary as

the summary function to compute key evaluation metrics (e.g.,

sensitivity, specificity, and AUC) for binary classification tasks.

The dataset was randomly partitioned into a training set (70%)

and a testing set (30%) to evaluate model performance. Four

distinct machine learning models were used to analyze the

predictors outlined earlier in this paper: multivariate adaptive

regression spline (MARS), partial least squares (PLS), deep neural

networks (Nnet), and eXtreme gradient boosting (XGBoost).

• MARS is a non-parametric regression technique that models

complex relationships by combining simple linear splines (13).

MARS models are well suited to uncover complex, non-linear

patterns among predictor variables without requiring

transformation of data.

• PLS is a dimensionality reduction technique that models the

relationship between independent variables and outcomes in

high-dimensional datasets (14). PLS models are effective at

reducing the dimensionality of datasets with collinear

predictors (e.g., vital signs, GCS, mechanism of injury, etc), a

common finding in trauma datasets.

• Nnet is an artificial neural network algorithm that mimics brain

neuron connections to identify patterns and make predictions

(15). Its ability to model relationships between input variables
TABLE 1 Demographics.

Characteristic N Overall, N= 510,38
Age 510,381 13.0 (6.0, 16.0)

Gender 510,381

Female 167,810 (33%)

Male 342,571 (67%)

Race 510,381

White 315,178 (62%)

Asian 10,037 (2.0%)

American Indian 3,616 (0.7%)

Black or African American 106,708 (21%)

Native Hawaiian or Other Pacific Islander 1,410 (0.3%)

Other Race 73,432 (14%)

ISS 510,381 5.0 (4.0, 10.0)

aDetails the format of the column as listed below it. “n (%)” is the format used in the mechanis
bReferences to the tests used to generate these p-values.
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and outcomes makes it especially relevant for prediction of

outcomes in trauma patients

• XGBoost is an ensemble method using gradient boosting of

decision trees, known for its high performance and efficiency in

handling large datasets (16). These models provide scalability and

high predictive accuracy in the analysis of large amounts of data.
These models represent a diverse array of methodologies and

perspectives that collectively address the multifaceted nature of

trauma outcome prediction, ensuring a comprehensive analysis that

leverages the strengths of each approach. Furthermore, each of these

models is well suited for handling large datasets. The area under

curve (AUC) was used to measure the effectiveness of the models, as

it maps specificity (x) vs. sensitivity (y) to distinguish between two

given parameters. Youden’s index was utilized to determine an

optimal threshold value to evaluate the sensitivity and specificity (17).
Results

Characteristics of study population

Table 1 demonstrates the demographics of our patients. The

study included a total of 510,381 pediatric patients who sustained

traumatic injuries between 2007 and 2016. The median age of the

patients was 13 years (IQR: 6–16). The majority of the cohort were

male (67%, n = 342,571) and White (62%, n = 315,578). The

median ISS was 5 (IQR: 4–10), with significant differences

observed between survivors and non-survivors. Specifically,

survivors had a median ISS of 5 (IQR: 4–9), whereas non-survivors

had a significantly higher median ISS of 29 (IQR: 25–41; p < 0.001).

Patient characteristics and mechanisms of injury are described

in Table 2. We identified 8,250 (1.6%) patients who died during

their hospitalization. Motor vehicle collisions were a major cause

of mortality accounting for 60.9% (n = 5,024) of the deaths.

Injuries sustained by firearms were particularly deadly,

accounting for 3.8% (n = 19,394) of the total cohort’s injuries but

comprising 20% (n = 1,620) of all deaths. SBP, respiratory rate,

temperature, and GCS were all significant predictors of mortality.
1a Survived, N= 502,131a Died, N= 8,250a p-valueb

13.0 (6.0, 16.0) 16.0 (11.0, 17.0) <0.001

<0.001

165,503 (33%) 2,307 (28%)

336,628 (67%) 5,943 (72%)

<0.001

310,850 (62%) 4,328 (52%)

9,891 (2.0%) 146 (1.8%)

3,573 (0.7%) 43 (0.5%)

104,335 (21%) 2,373 (29%)

1,391 (0.3%) 19 (0.2%)

72,091 (14%) 1,341 (16%)

5.0 (4.0, 9.0) 29 (25, 41) <0.001

m of injury column and “Median (IQR)” is the format used for the variables below.
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TABLE 2 Mechanism of injury and patient characteristics.

Characteristic N Overall, N = 510,381a Survived, N= 502,131a Died, N = 8,250a p-b

Mechanism of Injury 510,381 <0.001

Cut/pierce 18,792 (3.7%) 18,622 (3.7%) 170 (2.1%)

Fall 118,932 (23%) 118,617 (24%) 315 (3.8%)

Firearm 19,464 (3.8%) 17,844 (3.6%) 1,620 (20%)

MVT Motorcyclist 8,057 (1.6%) 7,897 (1.6%) 160 (1.9%)

MVT Occupant 190,033 (37%) 186,395 (37%) 3,638 (44%)

MVT Other 1,749 (0.3%) 1,698 (0.3%) 51 (0.6%)

MVT Pedal cyclist 9,846 (1.9%) 9,645 (1.9%) 201 (2.4%)

MVT Pedestrian 30,361 (5.9%) 29,471 (5.9%) 890 (11%)

MVT Unspecified 1,313 (0.3%) 1,230 (0.2%) 83 (1.0%)

Pedal cyclist, other 17,912 (3.5%) 17,875 (3.6%) 37 (0.4%)

Pedestrian, other 2,285 (0.4%) 2,219 (0.4%) 66 (0.8%)

Struck by, against 35,599 (7.0%) 35,389 (7.0%) 210 (2.5%)

Transport, other 25,133 (4.9%) 24,861 (5.0%) 272 (3.3%)

SBP 510,381 124 (112, 137) 124 (113, 137) 108 (72, 136) <0.001

Pulse 510,381 99 (84, 115) 99 (84, 115) 103 (67, 133) 0.016

RR 510,381 20.0 (18.0, 24.0) 20.0 (18.0, 24.0) 16.0 (0.0, 20.0) <0.001

Temperature 510,381 36.7 (36.2, 37.0) 36.7 (36.2, 37.0) 36.0 (35.0, 36.7) <0.001

GCS 510,381 15.0 (15.0, 15.0) 15.0 (15.0, 15.0) 3.0 (3.0, 3.0) <0.001

n (%); Median (IQR).
Pearson’s Chi-squared test; Wilcoxon rank sum test.
aDetails the format of the column as listed below it. “n (%)” is the format used in the mechanism of injury column and “Median (IQR)” is the format used for the variables below.
bReferences to the tests used to generate these p-values.

FIGURE 2

Area under the curve (AUC) by model.

Deleon et al. 10.3389/fped.2025.1522845
ML prediction of death outcome

The four machine learning models evaluated in this study

demonstrated high predictive accuracy. The AUC for the models

ranged from 92.7% to 97.7% (Figure 2). XGBoost outperformed

the other models, achieving an AUC of 97.7% (95% CI:
Frontiers in Pediatrics 04
97.4%-98.0%), with a sensitivity of 94.7% and a specificity of

92.9% at the optimal threshold determined by Youden’s index.

The deep neural network (Nnet) model also performed well, with

an AUC of 96.2% (95% CI: 95.7%–96.6%), a sensitivity of 93.0%,

and a specificity of 91.6%. The performance metrics for each

model are summarized in Table 3.
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TABLE 3 Predictors of performance.

Model AUC (95% CI) Youden’s Index

Sensitivity Specificity
XGBoost 97.7 (97.4–98.0) 94.6% 92.9%

Neural Network 96.2 (95.7–96.6) 93.0% 91.6%

MARS 95.9 (95.4–96.4) 94.7% 90.8%

PLS 92.7 (92.0–93.5) 92.2% 86.9%

Deleon et al. 10.3389/fped.2025.1522845
Variable importance

Glasgow Coma Score (GCS) consistently emerged as the most

significant predictor of mortality across all models, with an

importance score of 100%. For the XGBoost model, the top five

predictors were GCS, systolic blood pressure, respiratory rate,

temperature, and mechanism of injury (with firearm-related

injuries being particularly influential). The MARS model

identified GCS, systolic blood pressure, pulse, temperature, and

mechanism of injury as the most informative variables,

highlighting the complex interplay between these factors in

predicting in-hospital mortality (see Figure 3).
Discussion

In this study, we successfully developed and validated machine

learning models to predict mortality in pediatric trauma patients

using variables readily available at the time of emergency

department (ED) admission. Among the four models tested,
FIGURE 3

Variable importance by model.
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XGBoost demonstrated superior performance with an AUC of

97.7%, underscoring its potential utility in clinical settings for

real-time risk stratification. With an importance of nearly 100%

in each of our four models, GCS was identified as a crucial

factor in understanding and predicting outcomes. GCS is a

widely used clinical tool for assessing a patient’s level of

consciousness following a traumatic injury. Its proven

effectiveness in predicting mortality, combined with its ease of

use and simplicity, makes it well suited for use in machine

learning model prediction (18–20).

This study revealed significant sociodemographic discrepancies

in patient outcomes. Our results showed a lower mortality rate for

White patients (1.37%) when compared to Black patients (2.22%).

In a similar review, Hakmeh et al. found that Black pediatric

trauma patients experienced higher mortality rates (7%) than

White pediatric trauma patients (4%). This discrepancy was

further exacerbated by the insurance status of the patients (21).

Uninsured patients had a higher mortality rate than those with

health insurance, which may be linked to the fact that Black

patients are more likely to be uninsured than White patients

(11% of Black patients were uninsured compared to 7% of White

patients in 2021) (22). Black patients may face unique barriers to

healthcare, such as fewer trauma centers in their geographic

areas or limited resources at the facilities they are able to access

(23). This population also suffers more penetrating and

nonaccidental trauma (24). In the setting of pediatric trauma, the

observation of a disparity in outcomes for White vs. Black

patients is consistent with the findings of similar models that

have analyzed NTDB data. This finding further validates the
frontiersin.org
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efficacy of our machine learning model as a predictor of patient

outcomes. These findings call for providers to deliver culturally

competent care to trauma patients, regardless of racial or

cultural differences.

The data used in this study was from the NTDB and included

70,781 patients with ISS > 8, which is a moderate-risk group for

mortality. Firearms were found to be the deadliest mechanism of

injury, accounting for 20% of deaths despite comprising only 3.8%

of total cases. This finding was corroborated by Lee et al., who

reported that children and youth in the United States succumb to

firearm injuries at a rate of more than 10 times that of all other

developed countries (as designated by the Organization for

Economic Cooperation and Development) combined (25).

Furthermore, this study concluded that firearm homicides and

suicides in US youth have increased by 14% and 39% respectively,

which emphasizes the need for optimization of treatment strategies.

Although motor vehicle collisions are a major cause of injury in

the pediatric age group, this could be attributed to the sheer

number of cases rather than the lethality of the mechanism itself.

A total of 241,359 motor vehicle related cases were observed in

this study compared with 19,464 firearm related cases. A study

by Theodorou et al. found that firearm and motor vehicle

collisions are two of the most common causes of injury among

children and adolescents, yet firearm violence has a case fatality

rate 50 times higher than injuries caused by motor vehicle

collisions (26). This further emphasizes the point that although

injuries caused by both firearms and motor vehicle collisions are

the cause of a majority of the deaths in the pediatric age group,

firearm injuries are inherently the most lethal mechanism of

injury: based on our results, a pediatric patient with a firearm-

related injury is significantly more likely to die than a patient

sustaining injuries from a motor vehicle collision.

The variables used in our models have been previously used to

construct robust and validated models. In a similar study analyzing

NTDB data to predict trauma mortality, Tsiklidis et al. used systolic

blood pressure, heart rate, respiratory rate, temperature, oxygen

saturation, gender, age, and GCS to build a gradient boosting

model with an AUC of 0.924 (27). In comparison to this study,

our study demonstrates several advantages. While the Tsiklidis

study also used NTDB data, their data was confined to one

single year (2016) whereas we looked at data across multiple

years. Another well-known study implemented machine learning

models to predict clinical outcomes in the emergency room

setting (28). Using a dataset of 135,470 adult patients, this study

created four highly accurate machine learning models that

outperformed a reference logistic regression model in predicting

hospitalization and critical care needs, as well as providing a net

benefit in accurately triaging patients. Although our primary

outcomes are different (admission outcome vs. mortality), their

most important variables were similar to ours. However, our

study demonstrates some advantages. Our sample size of over

500,000 patients vs. their 135,740 patients gives our models

stronger credibility. Additionally, the range of our AUCs

(92.7–97.7) was comparably higher than this particular study’s

(81.0–86.0). Another relevant study has used machine learning

algorithms to predict mortality in pediatric warzone patients with
Frontiers in Pediatrics 06
a performance of up to 97.5% (29). While these models

performed similarly to ours, they were trained using a small

group of 2,007 pediatric trauma patients sustaining injuries in an

austere setting. Lastly, we identified one large Korean study that

created artificial intelligence models to predict mortality in

emergency department patients of all ages (30). While these

models performed exceptionally well with an AUC as high as

99.7%, the predictions relied heavily on the Korean Triage and

Acuity Scale (KTAS) and did not incorporate GCS. To the

authors’ knowledge, our study represents the first machine

learning model created to predict mortality in pediatric trauma

patients sustaining a broad range of injuries in the United States.

The strengths of our study include a large sample size from a

large national data bank, while adhering to all 22 checklist items

of the TRIPOD guidelines (12). Our analysis included data from

entries across a span of 10 years, providing us with the

opportunity to analyze a highly diverse group of patients.

Additionally, our model was successfully internally validated and

demonstrated higher accuracy in predicting mortality, with an

XGBoost AUC of 0.977, when compared to other published

models, such as the model by Tsiklidis et al. with an AUC of

0.924 or the Raita model with an AUC of 0.81–0.86. Our model

uses variables that are readily available at the time of ED

admission, making the deployment of this model for clinical use

a realistic possibility. The advantage of our model is not only in

mortality prediction, but also in its ability to identify variables

that could serve as early warning signs in trauma patients. Early

identification of such warning signs may not only assist

physicians with patient assessment and triage, but also may aid

in efforts to improve the efficiency of trauma systems (31). The

simplicity of measuring our variables in the hospital setting

makes our models highly efficient and transparent methods of

predicting mortality. In a fast-paced trauma setting, such a model

can be utilized by providers to identify key factors contributing

to the instability or imminent deterioration of a trauma patient.

There are a few limitations to our study. Our models were only

validated internally, not externally. Although internal validation is a

relatively accurate method of validating a machine learning model,

external validation further highlights the real-world applications of

the model. Additionally, this study included retrospective data.

Although we feel that this dataset is an accurate representation of

current trauma data, a prospective study would provide a more

complete sample set and possibly yield a higher performing

predictive model. While we attempted to isolate some of the most

crucial variables in determining clinical outcomes, it is possible

that data points not included in the NTDB could be significant

predictors of mortality, such as co-morbidities. We anticipate that

future studies analyzing additional factors, such as economic and

insurance status, may also shed light on this issue.

Overall, this study was able to develop a highly accurate

prediction model for mortality in pediatric trauma patients using

easily accessible variables upon ED admission. Identifying key

predictors of mortality can help providers in the prioritization and

structure of treatment in the acute trauma setting. The application

of these models may lead to the development of quality

improvement measures that address the observed disparities in the
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delivery of treatments. Our model proved to be more accurate than

other high-performing models, providing a valuable tool for

medical professionals to use in their decision-making processes. In

the future, it is our hope that such a machine learning model may

be converted to a web-based app that can accept clinical variables

and predict mortality in real time. This may provide investigators

with the unique opportunity to conduct prospective studies using a

machine learning model. Additional investigations are also

warranted to identify the performance of a machine learning

model as patient treatment progresses through time.
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