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Explainable machine learning
model for predicting decline in
platelet count after interventional
closure in children with patent
ductus arteriosus
Song-Yue Zhang1†, Yi-Dong Zhang1†, Hao Li1, Qiao-Yu Wang1,
Qiao-Fang Ye2, Xun-Min Wang1, Tian-He Xia1, Yue-E He1,
Xing Rong1, Ting-Ting Wu1* and Rong-Zhou Wu1*
1Children’s Heart Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou
Medical University, Wenzhou, China, 2Fujian Children’s Hospital, Fujian, China
Background: This study aimed to apply four machine learning algorithms to
develop the optimal model to predict decline in platelet count (DPC) after
interventional closure in children with patent ductus arteriosus (PDA).
Methods: Data from children with PDA who underwent successful transcatheter
closure at the Second Affiliated Hospital of Wenzhou Medical University and
Yuying Children’s Hospital from January 2016, to December 2022, were
collected. The cohort data were split into training and testing sets. DPC
following the intervention is defined as a percentage DPC ≥25% [(baseline
platelet count−nadir platelet count)/baseline platelet count]. The extra tree
algorithm was used for feature selection and four ML algorithms [random
forest (RF), adaptive boosting, extreme gradient boosting, and logistic
regression] were established. Moreover, SHapley Additive exPlanation (SHAP) to
explain the importance of features and the ML models.
Results: This study included 330 children who underwent successful
transcatheter closure of PDA, of which 113 (34.2%) experienced DPC. After 62
clinical features were considered, the extra tree algorithm selected six clinical
features to build the ML models. Amongst the four ML algorithms, the RF
model achieved the greatest AUC. SHAP analysis revealed that pulmonary
artery systolic pressure, size of defect and weight were the top three most
important clinical features in the RF model. Furthermore, clinical descriptions
of two children with PDA, with accurate predictions, and explanations of the
prediction results were provided.
Conclusion: In this study, an ML model (RF) capable of predicting post-
intervention DPC in children with PDA undergoing transcatheter closure
was established.
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1 Introduction

Patent ductus arteriosus (PDA) is one of the most common

congenital heart diseases. Transcatheter closure has become the

preferred method for treating PDA due to its non-invasive nature,

low risk, rapid recovery and reliable efficacy (1, 2). As surgical

techniques continue to advance, postoperative complications, such

as decline in platelet count (DPC), arrhythmias, haemolysis, device

dislodgment and detachment, have received increasing attention.

Mild cases of DPC may lead to gingival or skin bleeding and

severe cases can result in significant visceral bleeding and even

life-threatening situations (3, 4). Therefore, early identification of

children with PDA at risk of post-intervention DPC is of

paramount importance for clinicians.

In recent years, with the development of artificial intelligence,

machine learning (ML) has been increasingly applied in clinical

research (5). ML can analyse and interpret large volumes of data,

thereby enhancing disease diagnosis, prediction and treatment

outcomes. In contrast to conventional statistical analysis

techniques, machine learning has the capability to scrutinize

intricate nonlinear connections and uncover previously

undiscovered associations, thereby delivering more profound

insights into clinical data (6). For instance, in a study on

malnutrition following congenital heart disease surgery, the

development of an explainable ML model exhibited superior

performance in predicting malnutrition in children with

congenital heart disease 1 year postoperatively, Consequently,

facilitating clinicians in formulating personalized therapeutic and

dietary monitoring approaches (7). However, despite the

excellent predictive accuracy of ML models, their practical

clinical application is limited due to the “black-box problem”,

where the decision-making process of ML models is opaque,

making the results difficult to interpret (8, 9).

In this study, an ML model was developed to predict whether

children with PDA would experience DPC after undergoing

transcatheter closure. SHapley Additive explanation (SHAP) was

used to interpret the ML model to address its “black-box

problem” (10, 11), enabling clinicians to gain an enhanced

understanding of the decision-making process, predictions and

outcomes of the model and take timely intervention measures.
2 Methods

2.1 Data source and population

A total of 333 children with PDA who underwent successful

transcatheter closure at the Second Affiliated Hospital of

Wenzhou Medical University and Yuying Children’s Hospital

from January 2016, to December 2022, were included in this

study. All children provided informed consent and exclusion

criteria were applied as follows: (1) concomitant bleeding

disorders or haematological diseases, such as aplastic anaemia;

(2) concomitant other types of congenital heart diseases

requiring surgical intervention; (3) history of preoperative
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heparin use or long-term antiplatelet drug use; (4) concomitant

infective endocarditis or other uncontrolled infections; (5)

baseline platelet count <100 × 109/L. Data was gathered from the

subsequent two origins and employed as early prognostic

markers: preoperative and intraoperative databases. The study

variables encompassed demographic characteristics, clinical

factors, laboratory tests and ancillary examinations.

The cohort data was further randomly divided into two parts:

the training set accounted for 70% and the test set for 30%. The

model was trained on the training set and hyperparameter

tuning was performed using extra tree algorithm (12).
2.2 Outcome variables

Currently, the definition of post-intervention DPC in

congenital heart disease can be categorised into three main

groups. The first category is based on the absolute value of

postoperative platelet count, classifying it as mild DPC (100–

150 × 109/L), moderate DPC (50–100 × 109/L) or severe DPC

(<50 × 109/L). The second category involves determining the

percentage DPC by using the following formula: (baseline platelet

count - nadir platelet count)/baseline platelet count × 100. In this

category, no DPC is defined as <10%, mild DPC as 10%–49%,

and severe DPC as ≥50%. The third category defines DPC as

percentage DPC25%, which has been shown to better reflect the

actual occurrence of DPC following transcatheter closure (13).

Therefore, in the present study, the definition of DPC as

percentage DPC ≥25% (DPC) was adopted and <25% (NO-

DPC) indicated absence of DPC.
2.3 Feature extraction

The study database comprised 91 features, of which 62

preoperative and intraoperative features were selected as early

predictive factors for post-intervention DPC in children with PDA

undergoing transcatheter closure. Four ML models were

established using these early predictive factors for early prediction,

as illustrated in Figure 1. Data with a missing rate exceeding 20%

were removed and relevant literature was systematically reviewed

to identify potential factors to be considered. For variables with a

missing proportion of less than 20%, the mode was used to

estimate categorical variables and the mean was used to estimate

continuous variables. Features with statistical significance (P < 0.05)

in the univariate tests were initially selected to minimise potential

overfitting caused by high-dimensional features and then extra tree

algorithm was used to select low-dimensional features for model

construction (14, 15). Ultimately, six features were chosen to

construct the ML model (Figure 2).
2.4 Model construction and interpretation

The model construction involved the utilization of the

following four supervised machine learning algorithms: logistic
frontiersin.org

https://doi.org/10.3389/fped.2025.1519002
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 1

Flowchart depicting the design and analysis process of the machine-learning model for predicting decline in platelet count following interventional
closure of patent ductus arteriosus in children. RF, random forest; XGB, extreme gradient boosting; LR, logistic regression; ADA, adaptive boosting;
SHAP, SHapley Additive exPlanation.
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regression (LR), adaptive boosting (ADA), random forest (RF) and

extreme gradient boosting (XGB). The models were evaluated using

area under the curve (AUC) (16). Extra tree algorithm was applied

to optimize the model parameters for each algorithm. SHAP was

employed to interpret the ML models. Based on cooperative

game theory, this method treats each feature variable in the

dataset as a player and fairly allocates the cooperative gains by

considering each player’s contribution to the cooperative

outcome, which, in this case, is the prediction result obtained by

training the model. In this study, SHAP was applied to observe

the effect of each feature on the prediction outcome during the

prediction process (17).
2.5 Statistical analysis

In this study, we conducted data cleaning using Python

(Anaconda distribution, version 3.8) with Pandas (version 1.5.3)

and NumPy (version 1.23.5) libraries. Feature selection was

performed using the extra tree algorithm, and base models
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including RF, XGB, LR, and ADA were built using the Scikit-

learn package (version 1.2.1). Model interpretation was

accomplished using SHAP. Statistical analysis was carried out

with SPSS 26.00. Continuous variables with a normal distribution

were presented as mean ± standard deviation and analyzed using

independent sample t-tests. Non-normally distributed variables

were described by quartiles and analyzed using the Kruskal-

Wallis-test. Categorical variables were expressed as frequency

proportions, and group differences were assessed using Chi-

squared or Fisher’s exact tests. Significance was defined as P < 0.05.
3 Results

3.1 Basic characteristics

A total of 330 children with PDA who underwent successful

transcatheter closure were included in this study. Amongst them,

113 cases (34.2%) experienced DPC after the intervention, with 6

cases having an absolute platelet count <100 × 109/L and 2 cases
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FIGURE 2

Extra tree selection predictive features. PAH, pulmonary arterial hypertension; PAP, pulmonary artery pressure.
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having an absolute platelet count <50 × 109/L. Between the latter 2

cases, one exhibited skin bleeding and another showed skin and

gingival bleeding. However, neither of them experienced visceral

bleeding nor death. Table 1 presents the baseline characteristics

of all children. In the NO-DPC group, the baseline platelet count

was 305 × 109/L, with a platelet count change of 39 × 109/L.

Meanwhile, in the DPC group, the baseline platelet count was

358 × 109/L, with a platelet count change of 111 × 109/L. The

children who developed DPC after the intervention were

younger, lighter in weight, had higher brain natriuretic peptide

levels (NT-BNP) and had faster pulmonary valve velocities.

Factors, such as size of defect, residual shunt, and pulmonary

artery hypertension (PAH) were identified as risk factors for

DPC. The differences between the two groups were statistically

significant (P < 0.05).
3.2 Model evaluation

The extra tree algorithm was used to select the top six features

and four ML models were established to predict the occurrence of

post-intervention DPC in children with PDA: RF, XGB, ADA and

LR. The extra tree algorithm was utilized for the adjustment of

model hyperparameters. The RF model demonstrated superior

performance within the training dataset, as presented in

Figure 3A. Furthermore, when applied to the test dataset, the RF

model achieved an AUC value of 0.71, as illustrated in Figure 3B.

Notably, this AUC value closely resembled that observed within
Frontiers in Pediatrics 04
the training dataset, signifying the absence of overfitting

concerns. Consequently, the RF model was designated as the

primary model for subsequent investigation within this study.

The baseline clinical features of the training and testing sets are

shown in Table 2.
3.3 Feature importance of RF model

The importance scores of various features used to establish the RF

model for early prediction of post-intervention DPC in children with

PDA were calculated (Figure 4). The Y-axis represents the feature

importance. These features included systolic pulmonary artery

pressure (PAP), size of defect, weight, mean PAP, pulmonary valve

velocity and age. Amongst them, systolic PAP, weight and

pulmonary valve velocity ranked as the top three in terms of

importance. SHAP was applied in this study to gain further insights

into the significance of these features. SHAP values can help

understand the individual effect of each feature on the model. In

Figure 4, the magnitude of the SHAP values directly corresponds to

the extent of their impact on the model. The X-axis within the

figure portrays the SHAP values, color-coded on a spectrum from

blue to red, symbolizing low to high SHAP values, respectively. For

instance, patients with higher systolic PAP (depicted as red dots on

the graph) and lower weight (shown as blue dots on the graph) are

more prone to post-intervention DPC. Similarly, children with

larger size of defect, younger age, and higher pulmonary valve

velocity are more likely to develop post-intervention DPC.
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TABLE 1 Baseline clinical characteristics of children.

NO-DPC
(<25% n= 217)

DPC
(≥25% n= 113)

P-value

Characteristics of the children
Age (m) 36 (24, 60) 25 (14, 36) <0.001

Female, % 141 (65%) 79 (69.9%) 0.367

Weight (kg) 13.5 (11.0, 18.5) 11.0 (8.5, 14.5) <0.001

Body mass index
(kg/m2)

15.4 (14.0, 16.8) 15.3 (13.6, 17.1) 0.732

Length of hospital stay
(day)

6.9 (6.0, 7.0) 6.9 (6.0, 7.4) 0.803

Pre-admission medications
Aspirin, % – – –

Heparin, % – – –

Laboratory parameters (preoperative)
Baseline platelet count
(109/L)

309 (266, 352) 348 (292, 421) <0.001

Change in platelet count
(109/L)

39 (13.3, 65.8) 111 (93, 155) <0.001

NT-BNP (pg/ml) 105.0 (63.5, 193.3) 174 (79, 484) <0.001

Echocardiography (preoperative)
Size of defect (mm) 2.4 (2.0, 3.0) 2.8 (2.1, 4.0) <0.001

EF, % 69.8 ± 24.4 71 ± 24 0.327

Pulmonary valve velocity
(m/s)

1.0 (0.9, 1.2) 1. 2 (1.0, 1.4) <0.001

Left atrial diameter
(mm)

25 (23, 28) 26 (24, 28) 0.813

Intraoperative
Size of occluder (mm) 8 (6, 8) 8 (6, 10) <0.001

Systolic PAP (mmHg) 28 (25, 33) 32 (28, 42) <0.001

Diastolic PAP (mmHg) 16 (13, 19) 18 (14, 22) 0.001

Mean PAP (mmHg) 22 (19, 26) 25 (21, 33) <0.001

PAH,% 59 (25.7%) 59 (52.2%) <0.001

Residual shunt,% 10 (4.7%) 14 (12.4%) 0.011

Postoperative
Postoperative fever, % 41 (18.9%) 33 (29.2%) 0.033

Postoperative bleeding, % – 3 (2.7%) 0.039

Hemolysis, % – – –

NO-DPC, no decline in platelet count; DPC, decline in platelet count; PAH, pulmonary

arterial hypertension; PAP, pulmonary artery pressure; EF, left ventricular ejection

fraction. P-value <0.05.

Zhang et al. 10.3389/fped.2025.1519002
3.4 SHAP values of individual prediction for
interpretation

In this investigation, SHAP was employed to elucidate

predictions for both the entire cohort and individual children,

thus enhancing our understanding of the forecasted outcomes.

For the two children correctly predicted in this study, SHAP was

applied to interpret the prediction model and results. For child 1,

who did not experience DPC, the model predicted a low

likelihood of post-intervention DPC (Figures 5A,B). Meanwhile,

for child 2, who experienced DPC, the model predicted a high

likelihood of post-intervention DPC (Figures 5C,D).

Child 1 was a male admitted at 36 months of age, with a weight

of 14.7 kg and a pre-intervention platelet count of 471 × 109/L.

Echocardiography revealed a 2 mm size of defect and a
Frontiers in Pediatrics 05
pulmonary valve velocity of 0.8 m/s. During the procedure, the

catheter-measured systolic PAP was 23 mmHg and the mean

PAP was 18 mmHg. The patient underwent successful PDA

closure with a 4–6 mm ADO occluder, resulting in no residual

shunt. However, a decline of 18% in platelet count was

observed compared with the pre-procedure levels. The RF

model predicted a risk of 0.16 for post-intervention DPC for

this patient, with systolic PAP, size of defect, weight and

pulmonary valve velocity showing significant contributions to

the model.

Child 2 was a male admitted at 60 months of age, with a weight

of 14.2 kg and a pre-intervention platelet count of 220 × 109/L.

Echocardiography revealed a 5.2 mm size of defect, a pulmonary

valve velocity of 1.3 m/s and a moderate-to-severe PAH. During

the procedure, the catheter-measured systolic PAP was 64 mmHg

and the mean PAP was 51 mmHg, both indicating moderate-to-

severe PAH. The child underwent PDA closure with a 14 mm

ADO occluder, resulting in residual shunt with a flow velocity of

2.4 m/s. The post-intervention platelet count reached a minimum

value of 31 × 109/L, accompanied by bleeding in the gums and

skin. However, no visceral bleeding was observed. After

treatment with vitamin K injections, haemostatic agents and

vitamin C injections, the platelet count recovered to 64 × 109/L

after 10 days. The RF model predicted a risk of 0.61 for post-

intervention DPC for this child, with size of defect, systolic PAP,

pulmonary valve velocity and mean PAP showing significant

contributions to the model. In actuality, this patient experienced

severe platelet decline, decreasing by 85.9% compared with the

pre-procedure baseline value.
4 Discussion

This study aimed to develop an ML model to early predict the

occurrence of DPC after intervention closure in children with PDA.

Comparison of four ML models showed that the RF model

performed the best and could more accurately predict post-

intervention DPC. SHAP was applied for interpretation to

further understand this ML model. The results revealed that the

top six ranked features in the RF model were systolic PAP, size

of defect, weight, mean PAP, pulmonary valve velocity and age.

Larger systolic PAP, mean PAP, size of defect and pulmonary

valve velocity were associated with a higher risk of post-

intervention DPC, whereas older age and heavier weight were

associated with a lower likelihood of DPC.

Post-intervention DPC in children with PDA has drawn

clinical attention but the underlying mechanisms remain unclear.

A survey involving 299 patients with congenital heart disease

found that 135 of them experienced platelet decline, including 10

cases of severe decline (<50 × 109/L), with two cases exhibiting

major bleeding. However, all patients survived. Further analysis

suggested that size of occluder, residual shunt, mean PAP and

age were independent risk factors for post-intervention DPC

(18). Another study involving 1,581 patients with PDA
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FIGURE 3

Receiver operating characteristic (ROC) curves illustrating the performance of the machine-learning model developed with the training (A) and testing
(B) datasets for the prediction of DPC following interventional closure of PDA. RF, random forests; XGB, extreme gradient boosting; LR, logistic
regression; ADA, adaptive boosting; DPC, decline in platelet count; PDA, patent ductus arteriosus.

TABLE 2 Baseline clinical characteristics of the training and testing sets.

Total (n= 330) Train (n= 231) Test (n = 99) P-value

Characteristics of the children
Age (m) 35 (18, 48) 33 (16, 48) 31 (16, 48) 0.842

Female, % 110 (33.33%) 153 (66%) 66 (67%) 0.939

Weight (kg) 13 (10, 17) 13 (9, 18) 13 (9, 16) 0.884

Body mass index (kg/m2) 15.33 (13.94, 16.79) 15.38 (13.86, 17.3) 15.38 (14.1, 16.57) 0.453

Length of hospital stay (day) 6.9 (6.0, 7.0) 6.92 (6.00, 7.00) 6.96 (6.00, 7.00) 0.883

Pre-admission medications
Aspirin, % – – – –

Heparin, % – – – –

Laboratory parameters (preoperative)
Baseline platelet count (109/L) 316 (273, 369) 317 (273, 373) 323 (274, 374) 0.884

Change in platelet count (109/L) 65 (30, 98) 65 (24, 102) 53 (15, 94) 0.154

NT-BNP (pg/ml) 118 (67, 259) 107 (63, 266) 137 (73, 283) 0.228

Echocardiography (preoperative)
Size of defect (mm) 2.5 (2.0, 3.2) 2.40 (1.90, 3.20) 2.60 (2.00, 3.25) 0.43

EF, % 70 (66, 74) 70 (66, 74) 71 (67, 75) 0.171

Pulmonary valve velocity (m/s) 1.0 (0.9, 1.2) 1.00 (0.90, 1.20) 1.00 (0.90, 1.20) 0.333

Left atrial diameter (mm) 25 (23, 28) 25 (23, 28) 25 (23, 27) 0.609

Intraoperative
Size of occluder (mm) 8 (6,8) 8 (6, 8) 8 (6, 8) 0.957

Systolic PAP (mmHg) 29 (25, 35) 29 (25, 35) 30 (25, 36) 0.486

Diastolic PAP (mmHg) 17 (14,20) 16 (14, 20) 17 (14, 20) 0.484

Mean PAP (mmHg) 23 (19, 27) 22 (19, 27) 23 (19, 27) 0.641

PAH, % 118 (35.76%) 76 (33%) 42 (43%) 0.085

Residual shunt, % 24 (7.27%) 18 (7.9%) 6 (6.1%) 0.581

Postoperative
Postoperative fever, % 74 (22.42%) 57 (25%) 17 (17%) 0.134

Postoperative bleeding, % 3 (0.91%) 3 (1.3%) – 0.557

Hemolysis, % – – – –

NO-DPC, no decline in platelet count; DPC, decline in platelet count; PAH, pulmonary arterial hypertension; PAP, pulmonary artery pressure; EF, left ventricular ejection fraction.

P-value < 0.05.

Zhang et al. 10.3389/fped.2025.1519002

Frontiers in Pediatrics 06 frontiersin.org

https://doi.org/10.3389/fped.2025.1519002
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 4

Feature importance ranked using sHapley additive exPlanation (SHAP) values in the RF model. Features are ranked based on the cumulative SHAP
values across all individuals, representing the impact of each feature on RF model predictions. In the visualization, red denotes high feature values,
while blue indicates low values. The x-axis represents the influence of SHAP values on model predictions. The higher the x-axis value, the greater
the likelihood of DPC after interventional closure of PDA. PAP, pulmonary artery pressure; DPC, decline in platelet count; PDA, patent
ductus arteriosus.
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confirmed size of defect and residual shunt as independent risk

factors for post-intervention DPC (3). Zhou et al. found that

amongst 336 patients with congenital heart disease, 21

experienced severe platelet decline and the size of occluder and

post-intervention residual shunt were independent influencing

factors. Additionally, bone marrow puncture was performed on

four patients with platelet count <50 × 109/L after congenital

heart disease intervention closure, showing that the mechanism

of DPC was due to excessive platelet consumption rather than

decreased platelet production (19). Although the risk of post-

intervention DPC in children with congenital heart disease is

low, the severity of such decline may lead to significant bleeding,

making early prediction crucial. Currently, there are no reports

on whether early intervention for thrombocytopenia can

significantly improve clinical prognosis. Future research should

focus on multi-center, large-scale prospective studies to further

validate the impact of early prediction and intervention for

thrombocytopenia on clinical outcomes.

In recent years, ML models have played an essential role in

disease prediction (20). However, for clinicians, understanding

how to establish ML models and how these features affect the

model’s decision-making process remain unclear. Hence,

explaining ML models is crucial for clinical practitioners

(8, 21). In the present study, SHAP was used to interpret the

RF model. Based on game theory, this method calculated

the SHAP values for each feature and explained their effect

on the model (9, 17). The results showed that systolic PAP,

mean PAP and size of defect had a positive correlation with

the RF model, consistent with previous research findings.

Additionally, age and weight had a negative correlation with
Frontiers in Pediatrics 07
the RF model. Whilst previous studies suggested that older age

was associated with a higher risk of post-intervention DPC

(18), the present study focused on a paediatric population and

children with younger age and lighter weight may undergo

more significant surgical trauma, thus increasing the likelihood

of DPC. Moreover, a faster pulmonary valve velocity increased

the risk of post-intervention DPC, which has not been

reported in previous studies. A higher pulmonary valve

velocity may indicate faster pulmonary artery blood flow,

leading to increased mechanical consumption of platelets upon

contact with the occluder. Furthermore, previous studies

showed that residual shunt is an independent risk factor for

post-intervention DPC (3, 19). In the present study, residual

shunt was not included in the model construction due to the

limited sample size and the low number of children with

residual shunt. As a result, it was not considered in the

analysis. Further studies with a larger sample size are needed

to investigate its role in post-intervention DPC. The present

study provided explanations for two correctly predicted

children, as well as an explanation for constructing the

RF model, offering an enhanced understanding of the

decision-making process and the effect of features for

individual predictions.

However, this study has some limitations. Firstly, it is a single-

centre study with data from only 330 children, necessitating the

inclusion of more cases from multiple centres to construct and

validate the model. Secondly, although the predictive capability

of the optimal model was satisfactory, external validation using

an independent cohort is still needed before clinical application.

Lastly, post-intervention DPC was examined only in children
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FIGURE 5

SHAP explanation force plots (A) and decision plot (B) of patient No. 1 (NO-DPC). SHAP explanation force plots (C) and decision plot (D) of Patient No.
2 (DPC). The force plots illustrate the individual feature contributions to class classification (prediction paths). The decision plot demonstrates how
each feature contributes to the transition of the decision score from the base value to the classifier’s predicted value. PAP, pulmonary artery pressure.
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with PDA and interventions for other types of congenital heart

disease were not investigated.
5 Conclusion

In conclusion, an ML model was established to predict the

risk of post-intervention DPC in children with PDA. SHAP

was used to interpret the model, revealing the significant

effect of systolic PAP, size of defect, weight, mean PAP,

pulmonary valve velocity and age on the model’s

performance. The research findings are valuable for clinical

practitioners to early predict whether children with PDA

would experience DPC after intervention, enabling timely

intervention measures.
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