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Genotype-phenotype insights of
pediatric dilated cardiomyopathy
Ying Dai, Yan Wang, Youfei Fan* and Bo Han*

Department of Pediatrics, Shandong Province Hospital Affiliated to Shandong First Medical University,
Jinan, Shandong, China
Dilated cardiomyopathy (DCM) in children is a severe myocardial disease
characterized by enlargement of the left ventricle or both ventricles with
impaired contractile function. DCM can cause adverse consequences such as
heart failure, sudden death, thromboembolism, and arrhythmias. This article
reviews the latest advances in genotype and phenotype research in pediatric
DCM. With the development of gene sequencing technologies, considerable
progress has been made in genetic research on DCM. Research has shown
that DCM exhibits notable genetic heterogeneity, with over 100 DCM-related
genes identified to date, primarily involving functions such as calcium
handling, the cytoskeleton, and ion channels. As human genomic variations
are linked to phenotypes, DCM phenotypes are influenced by numerous
genetic variations across the entire genome. Children with DCM display high
genetic heterogeneity and are characterized by early onset, rapid disease
progression, and poor prognosis. The genetic architecture of pediatric DCM
markedly differs from that of adult DCM, necessitating analyses through
clinical phenotyping, familial cosegregation studies, and functional validation.
Clarifying the genotype-phenotype relationship can improve diagnostic
accuracy, enhance prognosis, and guide follow-up treatment for genotype-
positive and phenotype-negative patients identified through genetic testing,
providing new insights for precision medicine. Future research should further
explore novel pathogenic genes and mutations and strengthen genotype-
phenotype correlation analyses to facilitate precise diagnosis and treatment of
DCM in children.
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Introduction

Dilated cardiomyopathy (DCM) in children is a myocardial disease characterized by

enlargement of the left ventricle or both ventricles, accompanied by systolic dysfunction

(1). DCM is one of the most common causes of heart failure in children, accounting

for approximately 30%–50% of cases (2). Pediatric DCM progresses rapidly and has a

poor prognosis, with a 5-year survival rate of only 50%–60% and with most deaths

resulting from progressive heart failure and its complications (3). The etiology of

pediatric DCM is diverse and includes genetic, infectious, metabolic, toxic, and

idiopathic causes. Approximately 30%–50% of pediatric patients with DCM have

pathogenic gene mutations, primarily involving genes encoding sarcomere proteins, ion

channels, Z-disc proteins, and nuclear envelope proteins (4). Currently, according to the

Human Gene Mutation Database and Online Mendelian Inheritance in Man database,

over 100 genes have been identified to be associated with monogenic hereditary DCM

among the pathogenic genes in hereditary/familial DCM. These include TTN, LMNA,
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2025.1505830&domain=pdf&date_stamp=2020-03-12
mailto:hanbo35@163.com
mailto:fanyoufei0720@126.com
https://doi.org/10.3389/fped.2025.1505830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2025.1505830/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1505830/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2025.1505830
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Dai et al. 10.3389/fped.2025.1505830
DSP, PLN, FLNC, RBM20, SCN5A, MYH7, MYBPC3, and others

(5, 6). However, after in-depth data analysis, the associations of

some of these genes with DCM were not supported. In recent

years, with advancements in research on additional genes and

genotype-phenotype correlations, phenotypic overlap and

dynamic changes in DCM phenotypes have been discovered.

Genetic heterogeneity makes it challenging to accurately classify

DCM and guide clinical decision-making, thus posing challenges

for traditional DCM diagnostic methods (7, 8). There are both

similarities and significant differences between DCM and

hypertrophic CM (HCM). There is notable phenotypic overlap

between arrhythmogenic CM (ACM) and DCM, with specific

genes such as LMNA, SCN5A, FLNC, RBM20, PLN, DSP, and

DES potentially causing ACM (9). Clarifying genotype-phenotype

relationships can enable rapid and precise interpretation of

candidate variants in pediatric DCM and greater understanding

of its specific variant spectrum, which is crucial for guiding

clinical treatment strategies and developing new therapeutic

approaches (10). Although understanding of the genotypes and

phenotypes of pediatric DCM continues to deepen, several issues

remain unresolved. This article reviews the latest advances in
FIGURE 1

The genetic architecture of pediatric DCM.
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genotype and phenotype research in pediatric DCM and

discusses future research directions with the aim of providing

new insights for precision medicine in pediatric DCM.
Genetic architecture of pediatric DCM

When comparing the genetic composition of DCM in children

and adults, although the guidelines recommend genetic testing,

there are significant differences in actual clinical practice (Figure 1).

In DCM, the presence of variants of uncertain significance (VUS)

alone [odds ratio [OR] 4.0, 95% confidence interval [CI] 1.9–8.3]

and in combination with pathogenic variants (OR 5.2, 95% CI:

1.7–15.9) is associated with major adverse cardiac events (11).

Studies have shown that children with cardiomyopathy have a

higher incidence of neuromuscular diseases, congenital metabolic

defects, mitochondrial diseases, and malformation syndromes (12).

However, due to the lack of large-scale clinical studies,

understanding of the genetic composition of pediatric DCM is

limited, and the existence of child-specific DCM pathogenic genes

cannot be ruled out. Pediatric DCM exhibits high genetic
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heterogeneity with a higher number of rare variants, most of which

are VUS. This necessitates analyses using clinical phenotyping,

familial cosegregation studies, and functional validation (13).

A Finnish single-center study conducted a 20-year follow-up of 66

children with DCM and found that 39% of the cases had at least

one disease-related gene mutation. These diseases included

metabolic disorders, sarcomere-related diseases, and various other

syndromes. The predominant mutations were missense variants

(91.5%) and loss-of-function mutations (5.4%). This Finnish single-

center study reported that NRAP is a new cause of severe DCM

and other atypical clinical phenotypes in children. PPA2 deficiency

involving sudden death may lead to DCM, and junctophilin-2

variants may cause recessive DCM with childhood onset (12).

Mutations in the sarcomere-related genes (TTN, MYH7, and

MYBPC3) are common in DCM. Studies have found that

approximately 10%–13% of patients aged 2–18 years have TTN

variants. In DCM cohorts, mutations in genes such as BAG3,

CRYAB, and DES can be observed, with some children showing

evidence of skeletal muscle involvement (13, 14). These data

indicate genotype-phenotype correlations, emphasizing the

importance of genotype-directed therapy in pediatric DCM.

However, Canadian literature suggests that the incidence of

TTN-truncating variants (TTNtv) is higher in adult DCM

patients than in pediatric DCM patients. Compared to adults,

pediatric DCM patients have a lower variant burden of

channelopathy genes (15).

In a North American multi-center study, genomic testing was

conducted on 279 pediatric and adolescent patients with DCM

(<18 years old) from 14 medical institutions in the United States

and Canada. In this pediatric DCM cohort, no pathogenic/likely

pathogenic gene had a frequency exceeding 4%. The frequencies

of pathogenic/likely pathogenic variants of MYH7, MYBPC3,

TNNT2, and RBM20 were similar to those in adult DCM.

However, the frequencies of variants in TTN and LMNA were

lower than those in adult patients with DCM (13).

A retrospective analysis was conducted on 299 pediatric patients

with DCM (aged < 18 years) who received treatment at the

Children’s Hospital of Chicago in the United States between 2007

and 2016. The study found that the genetic architecture differed

from that of adults; 37% of pediatric patients with DCM had

pathogenic/likely pathogenic gene mutations in sarcomere-related

genes. Mutations in LMNA, RBM20, and PLN, which are common

in adult DCM, were found to have a lower frequency in pediatric

DCM. Additionally, the study emphasized the age-dependent risk

associated with TTNtv), which were associated with a later age of

onset (average age at initial diagnosis: 9.7 years). TTNtv carriers

had a poor prognosis, 60% of patients carrying TTNtv ultimately

die or undergo heart transplantation (14).
Genotype insights in relation to
pediatric DCM

Pediatric DCM is characterized by enlargement of the left or

both ventricles and reduced contractile function (16). TTN is

located on chromosome 2q31 and contains 364 exons. Extensive
Frontiers in Pediatrics 03
mRNA splicing can produce various titin isoforms, with N2B

and N2BA being the main cardiac-related isoforms (17). TTN

encodes titin, which is the largest protein in the muscles and is

crucial for the structure and function of cardiomyocytes (18).

TTN mutations have the highest detection rate in pediatric

patients with DCM and are an important genetic factor in

pediatric DCM (19). TTN-related DCM usually follows an

autosomal-dominant inheritance pattern; however, complex

inheritance patterns also exist (20), with TTNtv being the most

common (21). TTNtv mutations occur predominantly in the

A-band region, with smaller proportions occurring in the

I-band, Z-disc, and M-line regions. Children with TTNtv

mutations in the A-band or M-line regions have a poor

prognosis (17). DCM caused by TTN mutations exhibits

significant phenotypic variability. Even within the same family,

there are considerable differences in disease severity and age of

onset (22). In adult patients with DCM, TTNtv are not

uniformly distributed but rather cluster in the A-band region

(p = 3.4 × 10−4p = 3.4 × 10−4) (p = 3.5 × 10−3−3p = 3.5 × 10−3).

However, this clustering is not observed in pediatric patients (15).

MYH7 encodes the myosin protein, which consists of 1,935

amino acids. Myosin is primarily expressed in myocardium and

type 1 skeletal muscle fibers and is a important component of

the human ventricular system. It plays a crucial role in supplying

energy to cardiomyocytes and in maintaining intracellular and

extracellular Ca2+ concentrations (23). MYH7 mutations can

impair myocardial contractile function, resulting in DCM (24).

In pediatric patients, pathogenic variants in the MYH7 gene are

not evenly distributed but mainly cluster in the myosin head and

neck regions (Kolmogorov–Smirnov goodness of fit test:

p = 8.4 × 10−4, p = 8.4 × 10−4). In adults, variants are primarily

concentrated in the myosin head and neck regions, but also

appear in the tail region, similar to the reference population (15).

MYBPC3 encodes myosin-binding protein C and is the second

most common pathogenic gene in DCM after MYH7. It plays a

crucial role in maintaining myocardial sarcomere structure and

regulating myocardial contraction (25). Mutations in MYBPC3

can lead to the abnormal binding of protein C, resulting in

myocardial contraction and relaxation dysfunction (26). TNNT2

and TNNI3 encode troponins T and I, respectively. These genes

encode key proteins involved in myocardial contractions.

Mutations in these genes typically lead to impaired myocardial

contractile function, thereby causing DCM (27, 28). TPM1

encodes the cardiac-specific α-chain of tropomyosin. Mutations

in this gene affect the assembly and function of myofilaments,

leading to decreased myocardial contractility (29). Variants in

MYBPC3 cluster mainly in the C5, C7, and C10 regions, with no

significant differences between children and adults (15).

LMNA is located on chromosome 1q21.1–21.3, and contains

12 exons. It encodes type A nuclear lamins, primarily lamins A/

C. Vertebrate nuclear lamins include A and B forms. Human

lamin A/C produces three type A isoforms through alternative

splicing (30, 31). Mutations in LMNA can lead to various

cardiac diseases, including DCM, arrhythmias, and conduction

system diseases (32). LMNA-related DCM typically has an

earlier age of onset, faster disease progression, and poorer
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prognosis. DCM caused by LMNA mutations is often

accompanied by arrhythmias and conduction system

abnormalities, which increase the risk of sudden death in

patients (33). Currently, the treatment for LMNA-related DCM

includes standard heart failure therapy and implantable

cardioverter-defibrillator (ICD) implantation to prevent sudden

death. LMNA is the only gene in the current guidelines with a

Class I recommendation for ICD implantation (34).

FLNC encodes the actin-binding protein filamin C, which plays

important structural and signaling roles in muscle cells (35).

Mutations in FLNC can lead to abnormal myofilament structures

and muscle cell dysfunction, resulting in cardiomyopathy (36).

Studies have shown that FLNC mutations are significantly

associated with pediatric DCM. Compared to the average clinical

course of DCM, FLNC-related DCM is more malignant and

characterized by a high risk of ventricular arrhythmias, myocardial

fibrosis, and sudden cardiac death. The average age of onset is

39.7 ± 14.5 years, and FLNC-related DCM is more commonly

found in adults (37). However, a pediatric study discovered

biallelic FLNC variants in a family with previously unreported

pediatric DCM. Biallelic FLNC variants can lead to congenital

DCM (38). Understanding the role of FLNC may provide new

insights for the development of targeted therapeutic strategies (39).

SCN5A encodes the α-subunit of the cardiac sodium channel,

which plays a crucial role in determining the action potential of

cardiomyocytes (40). Mutations in the SCN5A gene have been

confirmed to be associated with DCM. These mutations can lead

to abnormal sodium channel function, thereby affecting

myocardial contraction (41). Pediatric patients with DCM carrying

SCN5A mutations may present with symptoms such as ventricular

enlargement, reduced contractile function, and arrhythmias (42,

43). Certain SCN5A mutations may also be associated with more

severe disease progression and poorer prognosis, emphasizing the

importance of early genetic testing (44).

DSP encode desmoplakin, a protein that plays a crucial role in

cell-cell junctions. DSP-related DCM typically follows an autosomal

dominant inheritance pattern, although autosomal recessive

inheritance has also been reported (45, 46). Cardiomyopathy caused

by DSP mutations is usually associated with arrhythmogenic right

ventricular cardiomyopathy (ARVC) or DCM. DCM caused by

DSP mutations may be accompanied by skin and hair

abnormalities, such as curly hair and palmoplantar keratoderma

(47). Although DSP mutation-related DCM can occur at any age,

cases of childhood-onset have been increasingly reported (48).

RBM20 is located on chromosome 10 and contains 14 exons. It

encodes a protein of 1,227 amino acids that is primarily expressed

in striated muscle, with the highest expression in cardiac muscle

and almost no expression in non-muscle tissues. DCM-related

RBM20 gene mutations often occur in the arginine/serine-rich

(RS) region, leading to loss of function in the expressed protein.

Mutations in other regions occur less frequently than those in

the RS region but can also reduce RBM20 gene-splicing activity,

affecting the expression of regulated genes and leading to DCM

(49, 50). Pediatric patients with DCM carrying RBM20 mutations

may present with early onset heart failure and arrhythmias,

particularly, an increased risk of ventricular arrhythmias (51–53).
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Research has shown that most genes primarily cause DCM

through autosomal-dominant inheritance patterns. Additionally,

there have been a few reported cases of DCM caused by autosomal

recessive, X-linked, or mitochondrial inheritance patterns (54).

Various methods have been applied to further explore new

pathogenic genes and mutations. Currently, the main gene-

testing strategies include: third-generation sequencing (NGS),

genome-wide association studies (GWAS), whole-exome

sequencing (WES), and whole-genome sequencing (WGS) (55, 56).

NGS is a targeted sequencing method that resolves genomic

structural variations and complex regions. Customized DCM

gene panels can cover 25–50 known DCM genes, including

MYH7, MYBPC3, TTN, and LMNA (57). However, NGS cannot

cover all known DCM genes and cannot detect new genes.

GWAS can discover new gene loci associated with the disease by

analyzing genotype and phenotype data from a large number of

samples, but may miss the effects of rare variants (58). WES and

WGS can rapidly identify rare pathogenic variants (59). Among

these, WES is currently the preferred genetic diagnostic method

for hereditary DCM. In addition, traditional methods, such as

family linkage analysis, also play an important role in identifying

pathogenic genes in familial DCM.
Phenotypic diversity

Pediatric DCM exhibits significant genetic heterogeneity, and

its clinical manifestations also show notable heterogeneity. The

main phenotypic feature of DCM is myocardial injury, with

the most prominent characteristics being significant dilation of

the left ventricle or both ventricles and progressive decline in

cardiac function (60). Some children experience symptoms of

heart failure, including shortness of breath, fatigue, and reduced

exercise tolerance (61). Additionally, some children may present

with various types of common arrhythmias such as atrial

fibrillation and ventricular tachycardia, which can potentially

exacerbate symptoms or lead to sudden events (62).

In addition to cardiac manifestations, DCM can lead to

multisystem involvement. When the nervous system is affected, it

can cause motor disorders and cognitive decline (62). Studies

have also found that some patients may exhibit skeletal muscle

involvement such as muscle fatigue, weakness, and elevated

muscle enzyme levels, providing an important perspective for

understanding the role of the muscle-heart axis in hereditary

diseases (63). Furthermore, DCM may indirectly affect the

endocrine system, particularly through fluid and electrolyte

imbalances caused by heart failure (64).

The phenotypic diversity of DCM is reflected in its

pathogenic mechanisms, clinical manifestations, genetic

background, and treatment responses, making it a complex and

variable clinical challenge. Complex regulatory mechanisms

underlie this process, such as the influence of genetic modifiers

and environmental factors on the phenotype (65). A deeper

understanding of the molecular mechanisms underlying the

phenotypic heterogeneity of DCM will facilitate the development

of targeted therapeutic approaches.
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Genotype-phenotype correlation
studies

After reviewing a 76-year timeline in relation to studies on

DCM-related gene mutations, the discovery of new DCM-related

genes, gene-specific DCM outcomes, and insights into

variant-environment interactions was found to have significantly

advanced this field. The expansion of genomic phenotype analysis

and integration of a series of prognostic factors into the variant

environment are crucial (65). In Table 1, we summarized

genotype and related phenotype in pediatric dilated cardiomyopathy.
Different genotypes have different
prognoses

Mutations in different genes can lead to variations in disease

progression and prognosis. In pediatric DCM, MYH7-related

DCM is characterized by early onset, high phenotypic expressivity,

a low incidence of left ventricular reverse remodeling, and

frequent progression to end-stage heart failure (66). Truncating

mutations in MYBPC3 result in loss of protein function,thereby

accelerating the progression of cardiomyopathy, which may be

significantly associated with disease severity and early onset (67).

Patients with DCM carrying FLNC mutations may exhibit

symptoms such as early onset heart failure and arrhythmia (68,

69). TTNtv mutations exhibit incomplete and age-dependent

penetrance, with variable prognosis in affected children, reaching

100% penetrance by the age of 70 years; the same mutations have

also been detected in unaffected relatives (70). Although TTNtv

are less frequently found in pediatric cases, studies have shown a

similar prevalence in adolescents and adults, suggesting that

multiple clinical and genetic risk factors rather than a single

TTNtv are required for its manifestation (71). Hasselberg et al.
TABLE 1 Genotype and related phenotype in pediatric dilated cardiomyopath

Functional
Group

Gene
symbol

Gene Name Mode of
inheritance

Cl

Sarcomere TTN Titin AD

MYH7 Myosin Heavy Chain 7 AD

MYBPC3 Myosin Binding Protein
C 3

AD

Nuclear Envelope LMNA Lamin A/C AD

Cytoskeleton FLNC Filamin C AD

DES Desmin AD

Ion channels SCN5A Sodium Voltage-Gated
Channel Alpha Subunit 5

AD

Desmosomes DSP Desmoplakin AD

Sarcoplasmic
reticulum

PLN Phospholamban AD

Z-disk BAG3 BAG Cochaperone 3 AD

Transcriptional
regulation

RBM20 RNA Binding Motif
Protein 20

AD
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(33) found that LMNA mutation-related DCM is a highly

pathogenic and age-dependent malignant disease, with affected

children prone to arrhythmias and sudden death. These patients

have a high incidence of adverse cardiac events and rapid disease

progression, with some developing arrhythmias before left

ventricular systolic dysfunction is observed. This indicates that

genotype information can predict the clinical outcomes in affected

children, aiding in the development of individualized

treatment strategies.
Heterogeneity exists in the same genotype

There may be significant differences in the phenotypic

expression even among individuals carrying the same gene

mutation. This phenotypic heterogeneity can be caused by various

factors including environmental factors, epigenetic regulation, and

genetic background (72). For example, Tharp et al. (17) found that

the phenotype and severity of DCM are related to the location of

TTNtv, with TTNtv mutations frequently occurring in the A-band

region. In terms of sex, males carrying TTNtv were found to be

associated with more severe clinical phenotypes and adverse

clinical outcomes than females. Furthermore, patients with

variants in the exon 11 region (c.2721–2760) of RBM20 had a

higher probability of developing DCM than those with variants in

the exon 9 region (c.1881–1920) (51). Male carriers of RBM20

variants were more likely to progress to end-stage heart failure

than female carriers (73). However, sex differences were not

significant in pediatric and adolescent cohorts. In addition,

chemotherapeutic drugs can induce or exacerbate TTNtv

mutation-related DCM in children. Nonsense variants of TTN are

more common in patients with DCM, whereas frameshift

termination and missense variants are more common in patients

with neuromuscular and myocardial skeletal disorders (73).
y.

assification Phenotype Ref.

Definitive Cardiomyocyte dysfunction, Left ventricular reverse
remodeling, Neuromuscular disorders, Myopathy

(18, 73,
81, 87)

Definitive Myocardial contractile dysfunction, Left ventricular
reverse remodeling, Heart failure

(12, 66,
87)

Limited Systolic and diastolic dysfunction (26)

Definitive Arrhythmias and conduction system disorders, Sudden
cardiac death, Neuromuscular disorders, Myopathy

(32, 33,
80)

Definitive Muscle cell dysfunction, Ventricular arrhythmias,
Myocardial fibrosis, Sudden cardiac death, Left
ventricular regional wall motion abnormalities

(36, 37,
79)

Definitive Muscle cell dysfunction (9, 13)

Definitive Ventricular enlargement, Decreased myocardial
contractility, Arrhythmia

(42, 43)

Definitive Skin and hair abnormalities, Malignant arrhythmia (47, 79)

Moderate Arrhythmia (9)

Definitive Skeletal muscle disorders (13, 14)

Definitive Early-onset heart failure, Ventricular arrhythmia (51–53)
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Genotype and electrocardiogram (ECG)
abnormalities

Numerous children with DCM exhibit ECG abnormalities,

such as T-wave changes, left bundle branch block,

atrioventricular conduction abnormalities, and supraventricular

arrhythmias (74). Children with ECG abnormalities have a

higher mortality rate. Certain genetic causes of DCM result in

malignant arrhythmic phenotypes. Autonomic nervous system

imbalance and impaired myocardial repolarization homogeneity

are two major underlying mechanisms of arrhythmia in patients

with DCM (75). Laminopathies are often associated with

prolonged PR intervals on ECG, which are indicators of

cardiac conduction disorders. DCM associated with DSP

mutations typically has a poor prognosis and may lead to

malignant arrhythmias.

Patients with DCM carrying variants of LMNA, PLN, FLNC,

and RBM20 have an increased risk of developing arrhythmias.

Younger patients with LMNA-related DCM and RBM20-related

DCM show increased expression levels of arrhythmia-related

cardiomyopathy. LMNA-related DCM exhibits a highly penetrant

arrhythmic phenotype accompanied by multiple muscle

involvement. Taylor et al. (76) reported that patients with

LMNA-related DCM simultaneously experienced muscle

involvement and arrhythmias, particularly chronic arrhythmias.

LMNA variants account for up to 33% of DCM cases with

atrioventricular conduction block (77). Similarly, patients

carrying the PLN R14del founder variant typically develop

ventricular arrhythmia and end-stage heart failure at a young age

(78). Studies have found that left ventricular regional wall

motion abnormalities are more common in DSP/FLNC

genotypes, and these genotypes cause extensive regional left

ventricular damage (79).
Genotyping and neuromuscular diseases

The dilated phenotype is the most common cardiomyopathic

manifestation in neuromuscular diseases (1). In pediatric

neuromuscular diseases (NMD), particularly in dystrophies,

abnormalities in the splicing of the CUG binding protein (CUG-

BP) and muscle blind-like protein (MBNL) interfere with cellular

signaling, resulting in toxic effects on muscle metabolism and

RNA processing. This may cause changes in the cardiac structure

and function, potentially resulting in the early onset of dilated

cardiomyopathy (DCM) (80). Children with DCM who carry

specific genotypes are prone to developing concurrent skeletal

myopathies. Relevant neuromuscular symptoms in patients or

relatives are important criteria for genetic analysis, because

variants of LMNA are associated with DCM related to

neuromuscular diseases (limb-girdle muscular dystrophy) (81).

Emery-Dreifuss muscular dystrophy (EDMD) is closely related to

dilated cardiomyopathy (DCM). In a study of 53 patients,

mutations in LMNA were identified as a major cause, with 12

patients exhibiting significant cardiac involvement and 41

exhibiting muscle weakness. Therefore, screening for LMNA
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mutations is crucial in familial and sporadic cases associated with

EDMD and DCM (82).

The impact of TTNtv extends beyond the heart, with 46%–57%

of children with DCM and congenital heart disease exhibiting

TTN-related neuromuscular diseases of varying severity (83).

Sofie et al. (84) found that TTNtv carriers had a higher skeletal

muscle fat content than patients with non-TTNtv hereditary

DCM. Muscle biopsies in 62% of TTNtv carriers showed

characteristics of skeletal muscle involvement, manifesting as

well-aligned Z-lines and T-tubules, but with uneven and

discontinuous M-lines, accompanied by excessive glycogen

deposition. This was surrounded by autophagosomes, lysosomes,

and mitochondrial autophagy with abnormal mitochondria,

suggesting that patients with DCM with monoallelic TTNtv

simultaneously have mild skeletal myopathy. Phenotype overlap

may also occur in genes such as DES and LMNA, where DCM

may be accompanied by skeletal myopathy (85).
Treatment strategies and future
research directions

Over the past few decades, while significant progress has been

made in the treatment of DCM, many challenges remain.

Transcription factors play a crucial role in dilated

cardiomyopathy (DCM),may represent novel therapeutic

targets.For instance, GATA4 and MEF2C are involved in the

regulation of cardiac remodeling, and changes in their expression

may lead to alterations in myocardial structure and function

(86). Recent studies have also identified a correlation between

mutations in the TBX5 gene and an increased risk of cardiac

developmental defects and DCM. Additionally, TBX5 is

associated with certain neuromuscular diseases, which often

involve cardiac complications, including DCM (87, 88).

Cardiovascular magnetic resonance can help identify the

subclinical forms of the disease, facilitating a deeper

understanding of the diverse phenotypes of DCM (89, 90) and

the genes affecting pediatric DCM, with gene therapy offering a

potential avenue for treating pediatric DCM (91). Cardiac

function can be improved by modifying or replacing pathogenic

genes in the cardiomyocytes to restore normal gene function.

However, gene therapy is still in its early stages, and more

clinical trials are necessary to verify the efficacy and safety of

these therapeutic strategies (5).

Personalized medicine is becoming increasingly important in

the treatment of pediatric DCM. Studies have indicated that

patients with different phenotypes respond differently to specific

treatments. For example, Verdonschot et al. (92) found

differences in prognoses among different phenotype groups in

DCM. Among the four phenotypic groups identified in their

study, the arrhythmic group had the poorest prognosis and was

highly susceptible to life-threatening malignant arrhythmias.

After 12 months of regular drug therapy, 52.5% of patients

experienced left ventricular reverse remodeling (LVRR), with the

severe systolic dysfunction group showing the highest LVRR rate.

Therefore, developing individualized treatment plans based on
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FIGURE 2

The genotype and phenotype of pediatric DCM.
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phenotypes and comorbidities of different patients can significantly

improve treatment efficacy and patient quality of life.

Regarding future research directions, efforts should be made to

expand sample sizes and establish more extensive genetic and

phenotypic databases to achieve comprehensive assessments (93).

At the same time, long-term follow-up of patients with DCM is

crucial. Simultaneously,long-term follow-up allows for the

evaluation of the effect of how different genotypes on disease

progression and enables timely adjustments to treatment plans,

thereby improving prognosis (94).
Conclusion

Pediatric DCM exhibits significant genetic heterogeneity, with

variations in the expression of multiple genes being closely

associated with its development in childhood (2). These genes

affect myocardial function through different pathways and can

lead to diverse clinical phenotypes (65). This variability may

result from the combined effects of gene-environment

interactions, epigenetic regulation, and other unknown genetic

factors (Figure 2). Personalized treatment plans targeting specific

genotypes are promising for improving the prognosis and quality

of life of affected children. The development of technologies such

as GWAS and NGS has considerably advanced understanding of

the action mechanisms of pediatric DCM (95). Gene therapy has
Frontiers in Pediatrics 07
shown promising results in animal models (96). However, their

safety and efficacy require further validation through clinical

trials. In the future, large-sample multicenter prospective cohort

studies will help deepen the understanding of the genetic

mechanisms underlying pediatric DCM.

In conclusion, research on the genotypes and phenotypes of

pediatric DCM provides crucial perspectives and information for

understanding its pathological mechanisms, thereby offering new

hope for children with DCM. However, major challenges remain.

We anticipate that as research progresses, these challenges can be

addressed with the development of new therapeutic approaches

for this complex disease.
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