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Bacteriological diagnosis of
osteoarticular infections caused
by Kingella kingae; a narrative
review
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Christina Steiger1, Romain Dayer1 and Dimitri Ceroni1*
1Pediatric Orthopedic Unit, Pediatric Surgery Service, Geneva University Hospitals, Geneva, Switzerland,
2Faculty of Medicine, University of Geneva, Geneva, Switzerland
In recent years, advancements in modern laboratory diagnostics have identified
Kingella kingae (K. kingae) as the major cause of osteoarticular infections in early
childhood. The introduction of novel diagnostic methods has ushered in a new
era, transitioning from underrated infections to recognizing K. kingae as the
primary etiology of skeletal system infections in children. This article provides
a new perspective on K. kingae, exploring innovative diagnostic methods that
have improved and will continue to transform the management of
these infections.
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1 Introduction

Since 1988, Pablo Yagupsky, a Professor of Pediatrics and Clinical Microbiology at the

Ben-Gurion University of the Negev, Israel, has been warning the scientific community

about the significant role played by Kingella kingae (K. kingae) in osteoarticular

infections. His discovery, which he modestly defined as serendipitous, sparked

exponential interest in K. kingae, leading to significant advances in its microbiological

diagnosis over the last two decades. The number of cases of osteoarticular infections

(OAIs) attributed to K. kingae has drastically increased, particularly since the 2000s.

K. kingae is now regarded as the leading bacterial cause of osteoarticular infections,

especially in children under 48 months of age (1–3). In addition to classical acute

hematogenous osteomyelitis and septic arthritis, this pathogen can cause atypical

osteoarticular infections, including spondylodiscitis (4–10), subacute osteomyelitis (11,

12), pyomyositis (13), bursitis (14), and tendon sheath infections (15–17). Regardless of

the infection site, K. kingae OAIs are typically characterized by mild clinical

presentations and modest inflammatory responses, often resulting in few symptoms

evocative of OAI (1–3, 18–20). In view of the poor recognition of OAI due to K. kingae

and the difficulties in establishing their diagnosis, research over the last 2 decades has

focused on ways to improve recognition of these infections. This narrative review tries

to summarize more than 20 years of observations of OAI caused by K. kingae, focusing

specifically on all the strategies that have been developed to establish the bacteriological

diagnosis. To do this, we have identified the most pertinent and recent literature on this

specific topic using recognized and relevant databases such as Pubmed, Embase and the

Cochrane Database of Systematic Reviews. The relevant literature was thereafter

analyzed and we provided a critical discussion of it, trying to identify new insights.
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2 The limitations of gram stain in
K. kingae diagnosis

Still today, the traditional Gram stain remains of current

practice in osteoarticular infections since it combines technical

simplicity, inexpensive equipment, and rapid execution time (21).

Gram staining is routinely performed on osteoarticular samples

like synovial fluid or bone tissue aspirates to confirm infection,

suggest the presence of a specific species, and guide the initial

antibiotic therapy (21). However, Gram staining has proven

ineffective in diagnosing K. kingae-related OAIs. In fact, Gram

stains are rarely positive in K. kingae cases, likely due to the low

bacterial concentration in samples (an average of 15 CFUs per

ml) (22). Moreover, Gram stains may yield misleading results, as

the Gram-negative coccobacilli can be difficult to distinguish

from fibrin clumps (22–25). Therefore, when the clinical

presentation and biological parameters strongly suggest K. kingae

OAI, performing a Gram stain may be not recommended, as it is

likely to be negative and it will waste part of the precious sample.
3 The inadequacy of conventional
bacteriological techniques

K. kingae is a facultative anaerobic, β-hemolytic, Gram-

negative organism that is notoriously difficult to grow on routine

solid cultures of blood or body fluids such as bone exudates or

synovial fluid (25). Its isolation rate in standard cultures is less

than 10% in confirmed cases (9). To overcome this issue, clinical

specimens should be inoculated into aerobic blood culture vials

(BCV), specifically onto trypticase soy agar with 5% sheep blood,

or chocolate agar. The inoculation of a small sample into a large

volume of liquid medium dilutes potential inhibitory factors,

improving bacterial survival and detection (26).

Thus, a variety of automated or manual blood culture systems,

such as BACTEC (Becton Dickinson, Cockeysville, MD, USA),

BacT/Alert (OrganonTeknika Corporation, Durham, NC,USA),

Isolator 1.5 Microbial Tube (Wampole Laboratories, Cranbury,

NJ, USA), or Hemoline DUO (bioMérieux, Lyon, France), were

developed for improving the the yield of cultures (26, 27). No

controlled study has been performed to identify the best blood

culture system for this purpose (21).

Although these techniques have improved the detection of

pathogens, a significant number of purulent specimens seeded onto

solid media still resulted in negative cultures (25). Consequently,

the etiology of invasive diseases caused by K. kingae, such as septic

arthritis and osteomyelitis, remained undetected in young children,

leading probably to their classification as “culture-negative bone

infections of unknown origin” (25).
4 The advent of nucleic acid
amplification assays

Since the early 2000s, nucleic acid amplification assays

(NAAAs) have enabled the detection of infinitesimal quantities
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for identifying bacteriological agents in clinical samples (28,

29). These molecular techniques can detect the pathogen

within hours, regardless of the pathogen’s viability, or previous

antibiotic exposure (21). Initially, NAAAs targeted the 16S

rRNA gene, which is present in all bacteria. The prokaryotic

16S rRNA gene is approximately 1,500 bp long, with nine

variable regions interspersed between conserved regions (21).

Variable regions of the 16S rRNA gene are frequently used for

phylogenetic classification of genus or species in diverse

microbial populations.

However, the sensitivity of PCR tests targeting the 16S rRNA

gene proved insufficient for detecting OAIs caused by K. kingae

[sensitivity 300 CFUs/ml (30)], since K. kingae is often present in

very low concentrations in synovial fluid aspirates (on average

15 CFUs/ml) (30, 31).

Subsequent advances in NAAAs have significantly improved

detection, with species-specific real-time PCR assays developed

to target genes unique to K. kingae, including the rtxA and the

rtx B genes that encodes the RTX toxin (30), the groEL gene

(also called cpn60) that encodes the chaperonin 60 protein (32),

and the mdh gene (malate dehydrogenase) (33). A comparative

study suggested that PCR test targeting the mdh gene is

probably more sensitive than those targeting the groEL

gene and the rtx locus, making it the preferable molecular

diagnostic assay (33). These molecular methods can also detect

antibiotic-resistance-associated genes, rendering traditional

cultures methods obsolete and enabling targeted antimicrobial

therapy (32). Since its availability, this new diagnostic approach

has provided irrefutable evidence that K. kingae has become the

most common pathogen guilty for primary infections in bones,

joints, intervertebral discs, and tendon sheaths, especially

among children aged 6–48 months old (1–3, 34).
5 Detecting oropharyngeal K. kingae
carriage as a diagnostic tool

Real-time PCR assays targeting oropharyngeal samples have

shown high sensitivity and specificity for detecting K. kingae

colonization. Since K. kingae colonization of the oropharynx is

a prerequisite for bloodstream invasion and subsequent

musculoskeletal infection, some researchers have proposed

non-invasive diagnostic on detecting oropharyngeal carriage

(35). The sensitivity and the specificity of the test were 100%

and 90.5%, while its accuracy was estimated to be 93% (35).

These assays have proven especially useful in diagnosing OAIs

in cases where small joints are affected or when sampling is

contraindicated, such as during spondylodiscitis (4, 7, 10).

However, the predictive value of the test is limited, as the

oropharyngeal carriage rate is 10%–12% among the young

pediatric population, reducing by the same the predictive value

of the NAAT result (21). This notwithstanding, many

emergency centers have adopted this diagnostic strategy which

reconciles technical simplicity, inexpensive equipment, and

rapid execution time.
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6 The rise of metagenomic next-
generation sequencing (mNGS)?

Over the last years, the experience has shown us that even

when sensitive NAATs were employed, failure to identify a

pathogen could occur in a large fraction of bone and joint

infections (1–3), indicating that novel diagnostic methods proved

essential for improving the recognition of their bacterial etiology.

This problem is even more pronounced for K. kingae, because

the bacterial load present in the samples can be very low (31).

The introduction of next-generation sequencing (NGS)

technology has marked a major step forward in identifying

microorganisms (28). NGS is a technique that makes possible the

fast sequencing of the base pairs in entire genomes or in targeted

regions of RNA or DNA samples.

This revolutionary technology, which offers speed, scalability,

and ultra-high throughput, enables the rapid sequencing of every

genome present in a clinical sample (usually blood, CSF, or other

normally sterile body fluids), obtaining millions of DNA strands,

and thus reducing the requisite for the traditional cloning

methods used in previous genome sequencing techniques (28). In

theory, mNGS arbitrarily amplify all the germs present in a

clinical sample; it can detect any pathogen, and, about it, this

technology can currently unambiguously identify >1,400 species,

whereas the turnaround time has been shortened to 1–2 days

(36). Interestingly, the detection and identification can be

performed without a priori knowledge of the suspected etiologic

agent, and, since a comprehensive database grounded on single

nucleotide polymorphisms is available, a resolution at the

subspecies or strain level can be achieved (37). NGS will

probably become indispensable in microbiology since it will

replace, with its genomic definition of pathogens, the

conventional characterization of pathogens by staining properties,

study of morphology, and metabolic criteria. The characterization

of the pathogens’ genomes better will define what they are and

will be able to bring crucial information about drug sensitivity.

We can expect that NGS will move towards a more focused

amplification of specific genomic regions of interest instead of

massive simultaneous parallel sequencing as soon as the

pathogens most frequently incriminated in OAI will be

recognized. Thus, this future more selective sequencing will end

up achieving better specificity and improved sensibility and faster

identification of suspected pathogens, thereby reducing the

overall costs of the investigations (28).
7 Liquid biopsy as a non-invasive
diagnostic approach

Identifying the pathogen responsible for an infection is

essential since this is a precondition to tailoring a definitive

antibiotic treatment regarding the therapy type, route, and

duration (38, 39). In addition, recognition of the pathogen and

its virulence factors may also condition the need and indication

for complementary surgical treatment (38). Currently, the
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surgical procedure that we would like to be able to avoid in

certain circumstances. Thus, the need to identify the pathogen

responsible for an OAI seems to constitute a sufficient element

for performing, at least, an arthrocentesis or a bone punction (38).

Liquid biopsy, which involves detecting pathogen DNA in

plasma using mNGS, represents a revolutionary approach to

diagnosing OAIs caused by K. kingae, without invasive

procedure. The mNGS method performed in plasma samples can

detect not only pathogens circulating in the bloodstream but also

those responsible for focal infections (40). In fact, DNA from

infected joints, bones, or other musculoskeletal tissues is released

into the bloodstream, where it can be detected and identified

using mNGS (40). For K. kingae, the pathogen’s DNA will be

released from infected sites as joints, bone or other osteoarticular

tissues to the patient’s blood where it can be potentially detected

and identified with certainty and security (41). A multicenter

study recently demonstrated the efficacy of liquid biopsy in

diagnosing K. kingae spondylodiscitis in infants, where

conventional blood cultures failed to identify the pathogen (41).

About it, mNGS performed in plasma with a commercially

available test, Karius test, Redwood city, CA, USA, allowed the

detection of K. kingae in 10 infants with spondylodiscitis. Thus,

the detection of K. kingae’s DNA by liquid biopsy enabled

an adapted and adjusted antibiotic treatment in 90% of infants

with spondylodiscitis (41).

This method has the potential to eliminate the need for source

sample collection via invasive and costly surgical procedures, and

this is especially true since most of OAIs caused by K. kingae do

not require surgical procedures for their treatment.
8 Nanotechnology-based diagnostic
tools: future perspectives

Nanotechnology-based biosensors have demonstrated

increased sensitivity in detecting various analytes, including

bacterial species (42–44). The typical biosensors consist generally

of immobilized bio-sensitive materials as recognition moieties

(a part of a specific molecule) and physical or chemical

transducers that translate the recognition information into

measurable signals. Commonly employed bio-recognition

elements involve antibodies, nucleic acid derivatives, peptides,

enzymes, or whole cells (45, 46). The targets of nanoparticle-

based biosensors (NPB) for the detection of pathogens can be

therefore either specific purified proteins or receptors on the

surface of pathogen microorganisms (47), bacterial virulence

factors (48, 49), the whole cells (50). To date, a considerable

number of biosensors, answering to the name aptamers, have

been developed and selected against versatile pathogenic species.

Although no biosensors have been developed exclusively for

K. kingae, the technologies used for other bacterial microorganisms

may be adapted to this specific osteoarticular pathogen. Despite

these encouraging advances, major challenges remain and revolve

mainly around the need to standardize diagnostic methods and to

ensure their accessibility in healthcare settings.
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9 Conclusions

This review examines the roles and utility of traditional and

modern diagnosis methods in managing K. kingae OAIs in

children. While conventional culture methods remain insufficient,

advances in molecular techniques, particularly NAAAs and

mNGS, have greatly improved pathogen detection. The future of

K. kingae diagnosis probably lies in the continued development of

non-invasive methods such as liquid biopsy and nanotechnology-

based sensors, which promise to enhance diagnostic accuracy

while minimizing the need for surgical procedure.
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