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Bronchopulmonary dysplasia (BPD) remains a significant complication of
prematurity, impacting approximately 18,000 infants annually in the United
States. Advances in neonatal care have not reduced BPD, and its management
is challenged by the rising survival of extremely premature infants and the
variability in clinical practices. Leveraging statistical and machine learning
techniques, predictive analytics can enhance BPD management by utilizing
large clinical datasets to predict individual patient outcomes. This review
explores the foundations and applications of predictive analytics in the context
of BPD, examining commonly used data sources, modeling techniques, and
metrics for model evaluation. We also highlight bioinformatics’ potential role
in understanding BPD’s molecular basis and discuss case studies
demonstrating the use of machine learning models for risk prediction and
prognosis in neonates. Challenges such as data bias, model complexity, and
ethical considerations are outlined, along with strategies to address these
issues. Future directions for advancing the integration of predictive analytics
into clinical practice include improving model interpretability, expanding data
sharing and interoperability, and aligning predictive models with precision
medicine goals. By overcoming current challenges, predictive analytics holds
promise for transforming neonatal care and providing personalized
interventions for infants at risk of BPD.
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1 Introduction

Bronchopulmonary dysplasia (BPD) is a chronic lung disease primarily caused by

inflammation and lung injury due to mechanical ventilation and supplemental oxygen

therapy (1). This condition disrupts the growth and development of alveoli and

pulmonary vasculature and plays a significant role in the prognosis and long-term
Abbreviations

AI, artificial intelligence; AUC-ROC, area under the receiver operating characteristic curve; BPD,
bronchopulmonary dysplasia; CNNs, convoluted neural networks; CPAP, continuous positive airway
pressure; EHRs, electronic health records; GBDTs, Gradient Boosting Decision Trees; GDPR, general data
protection regulation; HIPPA, health insurance portability and accountability Act; ML, machine learning;
NICHD, national Institute of Child Health and Human Development; NRN, neonatal research network;
PMA, postmenstrual age; RNNs, recurrent neural networks; XAI, explainable AI.
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TABLE 1 Key components of predictive analytics in BPD management.

Component Description Examples
Data sources Integration of clinical,

imaging, real-time
monitoring, and genomic data
to enhance prediction
accuracy.

EHRs, MRIs, lung
ultrasounds, vital signs, and
genomic datasets

Machine learning
techniques

Advanced algorithms for
identifying patterns and
predicting outcomes in
neonates at risk of BPD.

Logistic regression, random
forests, convolutional neural
networks (CNNs), recurrent
neural networks (RNNs),
multi-layer perceptrons
(MLPs)

Model evaluation
metrics

Metrics used to evaluate
predictive performance, such
as accuracy, sensitivity,
specificity, and AUC.

AUC > 70.0 preferred for
clinical use; balanced
sensitivity and specificity

Applications Predicts BPD risk and
severity, enables early
interventions, and guides
personalized care.

Japan GBDT model; Korean
two-stage MLP model

Challenges Barriers include data
fragmentation, overfitting,
lack of model interpretability,
and bias in predictions.

Standardized data sharing
needed, explainable AI to
ensure model transparency

Opportunities Enhancing precision medicine
and encouraging multi-

Early interventions using
respiratory monitoring,
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outcomes of premature neonates (2). Despite advances in neonatal

care and improved survival of premature infants, BPD rates remain

high, affecting as many as 18,000 infants annually in the US (1).

Definitions of BPD have evolved since it was first described in

1967, with the National Institute of Child Health and Human

Development (NICHD) and the Neonatal Research Network

(NRN) adopting severity-based grading systems based on

respiratory support at 36 weeks postmenstrual age (PMA) (3, 4).

Some studies suggest defining BPD at 40 weeks PMA may better

predict serious long-term respiratory outcomes (5).

Managing BPD remains challenging due to the rising survival

rates of extremely premature infants and variability in clinical

practices. Current strategies include non-invasive ventilation,

surfactant therapy, and early caffeine administration (6).

Although postnatal steroid therapy aids in weaning neonates

from mechanical ventilation, studies have not demonstrated a

significant reduction in overall BPD rates (7). Individualized care

is crucial given the multifactorial nature of BPD, with factors

such as oxygen therapy, ventilation methods, medications,

nutrition, and genetics influencing outcomes. Predictive analytics

holds promise for developing more targeted and personalized

therapies to improve the management and prognosis of BPD.
institutional collaboration
through predictive models.

integration of genomic data
for personalized care

BPD, bronchopulmonary dysplasia; EHR, electronic health record; MRI, magnetic resonance

imaging; AUC-ROC, area under the receiving operator curve; GBDT, gradient boosting
decision tree; AI, artificial intelligence.
2 Foundations and techniques of
predictive analytics

Predictive analytics in healthcare encompasses a variety of

statistical and machine learning techniques aimed to forecast

predictions about future outcomes based on historical data (8, 9).

The central idea is to utilize past clinical trajectories of large

cohorts to predict outcomes for patients with similar clinical

characteristics. In this regard, supervised machine learning

techniques are commonly used for predictive modeling, where

algorithms are trained on labeled datasets to understand the

relationship between input features (e.g., clinical data) and

known outcomes. In contrast, unsupervised machine learning is

used to discover patterns or clusters within data without

predefined labels, offering insights into developing clinical

phenotypes (8, 10).
2.1 Commonly used data sources and types
in predictive modeling

Predictive modeling leverages multi-modal data sources to

enhance clinical outcomes and optimize care strategies (Table 1).

Primary data sources are from electronic health records (EHRs)

(9), which provide comprehensive, longitudinal data on patient

demographics, medical history, treatment plans, and clinical

outcomes. Imaging data, such as ultrasounds and MRI scans

(11, 12), also play a critical role in diagnosing and predicting the

progression of various disorders. Additionally, real-time

monitoring data, capturing vital signs such as heart rate,

respiratory rate, and oxygen saturation, are increasingly being

integrated into predictive models (13–15). This high frequency,
Frontiers in Pediatrics 02
time-series data is instrumental in the early detection of

conditions like sepsis or respiratory distress. Other valuable data

sources include genomic data and other bioinformatics, which

can provide insights into congenital conditions and inform

personalized treatment plans.
2.2 Techniques and algorithms for
predictive analytics

Multiple methods can be utilized to develop predictive

algorithms in healthcare. A common approach involves defining

a time period before the event is predicted (usually called the

pre-deterioration class) and identifying a time period where no

event occurs (the control class) (13). Standard classification

algorithms can then be applied to distinguish between these two

classes, resulting in an algorithm capable of detecting the pre-

deterioration state that occurs before the event of interest.

Linear regression, logistic regression, and Cox proportional

hazards models are commonly used as a first step (10). For

larger and more complicated datasets, more sophisticated

machine learning approaches, such as decision trees, random

forests, and support vector machines, offer enhanced robustness

and accuracy in predictions (8, 9). Deep learning, a subset of

neural network machine learning, has also gained prominence

due to its ability to model intricate patterns in data through

neural networks (16–18). Convolutional neural networks (CNNs)

are particularly effective in image analysis (11, 12, 19), while
frontiersin.org
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recurrent neural networks (RNNs) are particularly effective in

handling time-series data (20). Additionally, ensemble methods,

which combine multiple algorithms to improve predictive

performance, are also frequently utilized (17). The choice of

predictive model depends on the amount and complexity of data,

with more advanced models typically required for larger and

more intricate datasets.
2.3 Evaluation metrics for predictive models

Evaluating the performance of predictive models is critical to

ensuring their reliability and efficacy in clinical settings.

Common evaluation metrics include alert rate, accuracy,

sensitivity, specificity, precision, and the area under the receiver

operating characteristic curve (AUC-ROC) (13, 17, 18). Accuracy

measures the proportion of correct predictions out of the total

predictions, providing a general sense of model performance.

Sensitivity (or recall) assesses the model’s ability to identify true

positive clinical events correctly, to ensure that at-risk patients

are accurately detected. Specificity evaluates the model’s ability to

identify true negatives correctly, preventing the misdiagnosis of

healthy individuals. Precision, which is the proportion of true

positives among the predicted positives, reflects the model’s

reliability in identifying true positive predictions.

The AUC-ROC provides a comprehensive measure of model

performance across different threshold settings, balancing

sensitivity and specificity to give an overall picture of the model’s

discriminatory ability. In clinical settings, an AUC value above

0.70–0.75 is generally considered acceptable, while values above

0.80–0.85 are preferred, indicating a strong ability to differentiate

between patients who will and will not experience the outcome.

Alert rate is the number of alerts that are generated per patient

per day, which is important to understand from a clinical

workload management perspective (i.e., you can have high

performance, but if it comes at the cost of hundreds of alarms

per patient per day, the model is not clinically viable). These

metrics offer a robust framework for assessing and validating

predictive models, ensuring their clinical utility and effectiveness.

Performance metrics are calculated and reported on both a

training data set and a separate independent data set for

validation purposes. Importantly, the validation data set is not

used in the initial training of the model. Validation testing is

required to ensure that these machine learning models are not

overfitting the training data. Model overfitting occurs when the

training process of the algorithm essentially allows the model to

memorize the inputs and outputs for a given data set. This can

occur if there are a large number of input variables (also called

model input features) and a low number of observations. A

model that performs well on both training data and independent

validation data sets at the same time is considered to have good

generalization, which is critical to a successful clinical

deployment. A workflow for predictive analytics in healthcare

can be seen in Figure 1.
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3 Predictive modeling and
bioinformatics

3.1 Predictive models for risk stratification
and prognosis

Previous studies have attempted to develop functional

predictive models for BPD, with varied results (Table 2) (49–51).

These models usually consisted of formulas or web calculators

based on demographic factors such as birth weight, gestational

age, and sex. While many of these studies described a high

predictive performance, they were often inconsistent with one

another for various reasons. Among these were differences in

their definitions of BPD, such as the outcome, small sample

sizes, and poor handling of missing data. Of note, a recent meta-

analysis of seven studies using lung ultrasound scores in neonates

to predict BPD showed significant diagnostic accuracy in

predicting BPD at 7 & 14 days of life (52).

In 2022, the National Institutes for Child Health and

Development updated a previous model for calculating BPD in

infants with gestational ages between 23 and 28 weeks (31, 53).

This estimator now includes factors such as antenatal steroid

administration and the occurrence of surgical necrotizing

enterocolitis. Unfortunately, these predictive models do not yet

incorporate omics data, as this study area is still under research.

However, integrating omics data could significantly enhance the

predictive power of these models.

In recent years, researchers have begun using artificial

intelligence (AI) or high computational analyses to decipher large

data (54, 55). These AI models serve as rapid tools that can be

leveraged for predictive modeling that can optimize accuracy.

This capability could also be applied to precision medicine on a

patient-by-patient basis. For example, an AI-powered predictive

model integrated into a hospital’s electronic health system could

quickly and affordably assess an individual patient’s genome,

vital sign capture, or mechanical ventilator data for BPD risk

factors, offering real-time decision support based on personalized

risk factors.
3.2 Bioinformatics

Bioinformatics plays a significant role in understanding the

molecular mechanisms underpinning BPD. Omics could

participate in precision medicine in two ways: prediction and

treatment. The integration of omics data enables the

development of predictive models that can identify preterm

infants at higher risk for BPD. By using genomic changes

observed in the first few days of life, researchers can categorize

neonates based on their risk profiles. This stratification can help

during clinical trial selection by recruiting neonates at high risk

for BPD, making sure that treatments are tested on individuals

most likely to benefit. In addition, with a better understanding of

the dysregulated pathways, new therapies can be developed to

specifically target modifiable mechanisms, aiding in the
frontiersin.org
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FIGURE 1

Overview of the machine learning (ML) pipeline in healthcare, illustrating the key stages from data collection to model deployment and continuous
improvement. The process begins with Data Collection and Sources (Step 1), including clinical data such as MRIs, genomics, and oxygen saturation
metrics. Data Preprocessing (Step 2) involves cleaning datasets and addressing missing values across healthcare institutions. In Model Development
and Training (Step 3), algorithms like Random Forests, CNNs, RNNs, and gradient boosting decision trees (GBDTs) are utilized, with ensemble methods
aiding in model selection. Validation and Evaluation (Step 4) ensures performance reliability through metrics such as AUC, sensitivity, and specificity,
alongside bias audits. Deployment in Clinical Settings (Step 5) introduces real-time monitoring tools and alerts for high-risk patients. Feedback and
Continuous Improvement (Step 6) and Ongoing Model Calibration (Step 7) ensure sustained performance and adaptability in evolving clinical
environments.
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development of new therapies. The following are examples of

bioinformatic studies used to better understand BPD:

• Transcriptomics: Genes involved in ferroptosis and T-cell

immunity have been associated with BPD (25, 56).

• Metabolomic: Pathways, including the citrate cycle, alanine,

aspartate, and glutamate metabolism have been linked with

BPD (57).

• Microbiomics: Increased Proteobacteria and decreased

Firmicutes in the gut modulate systemic inflammatory

levels of IL-1β, IL-6, and TNF-α, impacting lung health (58).

4 Case-Based example of using
predictive analytics in BPD

Two recent studies illustrate the practical application of ML

models in predicting BPD risk and severity.
4.1 Gradient boosting model for early BPD
prediction

This study presented the application of machine learning,

specifically gradient boosting decision trees (GBDT), to predict

the immediate postnatal risk of death or BPD in very preterm
Frontiers in Pediatrics 04
and very low birth weight infants using data from a nationwide

Japanese database (59). The GBDT algorithm, trained on clinical

variables available at birth (e.g., gestational age, birth weight,

Apgar scores, and maternal factors), accurately identified infants

at high risk for adverse outcomes, enabling for potential early

intervention strategies.

The clinical implications of this study are significant, as early

and accurate risk stratification can be a powerful tool for

clinicians. The ability to predict death or BPD shortly after

birth enables healthcare providers to better allocate resources,

such as assigning high-risk infants to specialized teams,

tailoring respiratory support, and optimizing nutritional

strategies. Moreover, the GBDT model’s interpretability aids

clinicians in identifying key risk factors, enhancing decision-

making and parental counseling. This level of personalized

risk assessment also aligns with the push towards precision

medicine in neonatology, where interventions can be targeted

to those who need them the most. Implementing such

predictive models in clinical practice could improve outcomes

by enabling earlier interventions for infants at risk of BPD or

death. However, successful integration requires model

validation across diverse populations beyond Japan, and

seamless implementation into clinical workflows with proper

staff training.
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TABLE 2 Examples of predictive modeling approaches for BPD.

Study Outcome Timing of model
assessment

Analysis
sample size

C-Statistic External
validation?

Chioma 2024 (21) BPD/death (2018 definition) D7 99 Echocardiographic data + clinical data
0.98 [0.96–1.00]

No

Chou 2024 (22) BPD (2018 definition) Before 24h 480 Chest radiography No

Gao 2023 (23) Mild/moderate/severe BPD (2001
definition)

Unclear 237 Clinical data
0.9051

Yes

Kostekci 2023 (24) Moderate/severe BPD/death (2001
definition)

D1, D7, D14, D28 124 Clinical data
day 1–0.564–0.797
day 7–0.751–0.935
day 14–0.791–0.886
day 28–0.791–0.881

No

Moreira 2023 (25) BPD (2001 definition) D5 97 Blood biomarkers
0.961 [0.897–1.00]

No

Ou 2023 (26) Mild/moderate/severe BPD (2001
definition)

D7 102 Clinical data + blood biomarkers
0.96 [0.90–1.00]

No

Shen 2023 (27) Mild/moderate/severe BPD (2001
definition)

D7, D14 542 Clinical data
0.925 [0.902–0.948]

No

Ahmed 2022 (28) Moderate/severe BPD (supplemental
O2 at 36w)

Before 72h 42 Urinary proteomics
2 protein panel—0.92 [0.84–1.00]
3 protein panel—0.94 [0.86–1.00]

No

Alonso-
Ojembarrena 2022
(29)

Moderate/severe BPD (any
respiratory support at 36w)

D1, D3, D7, D14 133 LUS score + blood biomarkers + clinical
data

day 1–0.41 [0.33;0.50]
day 3–0.52 [0.43;0.61]
day 7–0.83 [0.75;0.89]
day 14–0.85 [0.77;0.90]

Yes

Bhattacharjee 2022
(30)

Severe BPD (>30% O2 or PPV/CPAP
at 36w or discharge)

D3 64 RSS score
day 3–0.61 [0.47;0.75]

Yes

Greenberg 2022
(31)

Grades 1–3 BPD/death (2019
definition)

D1, D3, D7, D14, D28 9,181 Clinical data
Range from 0.629 to 0.741 depending on
DOL and variable used for prediction

No

Kindt 2022 (32) Moderate/severe BPD (2001
definition)

First week 52 Plasma proteomics + clinical data
3 protein panel + GA—0.87

No

Umapathi 2022
(33)

Moderate/severe BPD/death
(supplemental O2 at 36w)

First week 98 Echocardiographic data + GA
0.97 [0.93;0.99]

No

Zayat 2022 (34) Moderate/severe BPD (supplemental
O2 or respiratory support at 36w)

D14 3662 Clinical data median of 10 datasets 0.82,
range 0.819–0,823

No

Aldecoa-Bilbao
2021 (35)

Moderate/severe BPD (supplemental
O2 or PPV at 36w)

D7 89 LUS score + clinical data
day 7–0.80 [0.70;0.90]

Yes

Alonso-
Ojembarrena 2021
(36)

BPD 36w (Walsh testa) D0, D3, D7, D14 298 Modified LUS score + clinical data
day 3–0.77 [0.68;0.85]
day 7–0.80 [0.74;0.85]
day 14–0.77 [0.69;0.83]

Yes

Baud 2021 (37) Moderate/severe BPD/death
(respiratory support at 36w, Walsh
test if FiO2 22–29%)

At birth 523 Clinical data
0.73 [0.68;0.77]

Yes

Dai 2021 (38) Severe BPD or death due to
respiratory insufficiency (NICHD
definition)

Unclear 245 Genetics + clinical data
0.915 [0.843;0.987]

No

Gerull 2021 (39) BPD/death at 36w D7 229 Clinical data + blood biomarkers
0.86 [0.76;0.95]

Yes

Khurshid 2021 (40) BPD/death (supplemental O2 or PPV
at 36w)

D1, D7, D14 9,006 (day 1) to
3,899 (day 14)

Clinical data
Range of model performance in infants

<33w GA
day 1–0.811–0.862
day 7–0.812–0.886
day 14–0.815–0.884

Range of model performance in infants
<29w GA

day 1–0.699–0.782
day 7–0.706–0.783
day 14–0.708–0.790

No

Liu 2021 (41) BPD (2019 definition) D1, D2, D3, D6, D9, D12 130 LUS score + clinical data
day 1–0.65 [0.56;0.74]
day 2–0.72 [0.64;0.80]

Yes

(Continued)
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TABLE 2 Continued

Study Outcome Timing of model
assessment

Analysis
sample size

C-Statistic External
validation?

day 3–0.73 [0.65;0.81]
day 6–0.77 [0.69;0.84]
day 9–0.84 [0.76;0.90]
day 12–0.83 [0.76;0.89]

Mohamed 2021
(42)

BPD (supplemental O2 or respiratory
support at 36w)

D3, D7, D14 152 LUS score + clinical data
day 3–0.96 [0.94;0.99]
day 7–0.97 [0.94;0.99]
day 14–0.95 [0.92;0.98]

Yes

Shim 2021 (43) Moderate/severe BPD (NIH
definition)

D0 4,600 Clinical data
0.84 [0.84;0.84] (BPD only)
0.78 [0.78;0.79] (BPD/death)

Yes

Song 2021 (44) Moderate/severe BPD/death (NIH
definition)

D7 556 Clinical data + blood biomarkers
0.861 [0.819;0.903]

No

Soullane 2021 (45) BPD (supplemental O2 or respiratory
support at 36w or at discharge)

D10 191 Clinical data
0.76

No

Ushida 2021 (46) BPD (supplemental O2 at 36w) D0 20,771 Clinical data
0.84 [0.84;0.85] (BPD)

0.85 [0.85;0.86] (BPD/death)

Yes

Woods 2021 (47) Moderate/severe BPD (respiratory
support at 36w)

D1, D3, D7 96 LUS score + clinical data
day 1–0.56 [0.44;0.67] (moderate/severe
BPD) or 0.59 [0.47;0.70] (grade II/III

BPD)
day 3–4–0.64 [0.52;0.74] or 0.77

[0.66;0.85]
day 7–0.61 [0.49;0.72] or 0.67

[0.55;0.77]

Yes

Zhang 2021 (48) BPD (2019 definition) D3, D7, D14 414 Clinical data
day 3–0.832
day 7–0.876
day 14–0.880

No

D, day of life; LUS, lung ultrasound; PPV, positive pressure ventilation.
aWalsh test: oxygen reduction test to determine oxygen dependency in infants at 36w; if baby can maintain SpO2 at >90% for 30 min under room air conditions, they are considered not to

have BPD.
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4.2 Two-stage neural network model for
BPD severity prediction

Using a two-stage machine learning approach, Hwang et al.

took data from a nationwide cohort of VLBWs to build

predictive models that help in the early identification of those at

high risk of developing BPD (60). The first stage involved

training models to predict moderate to severe BPD, and the

second stage focused on predicting the presence and severity of

BPD based on new clinical data gathered later in the neonatal

period. By incorporating longitudinal data, the model aimed to

enhance prediction accuracy by reflecting changes in the infant’s

condition over time.

The study used clinical and demographic data to create its

prediction model. They included gestational age, birth weight,

respiratory support requirements, and other indicators known to

influence the risk of BPD in preterm infants. The results

demonstrated that the two-stage learning-based approach could

outperform traditional single-stage models, achieving higher

predictive accuracy and identifying at-risk infants with good

sensitivity and specificity.

This study’s clinical relevance lies in early BPD prediction,

enabling targeted interventions and resource allocation in NICUs.
Frontiers in Pediatrics 06
The model helps clinicians identify infants for preventive

strategies like optimized ventilation and early treatments. Its two-

stage approach mirrors real-world decision-making, making it

adaptable and valuable in dynamic NICU settings, ultimately

improving patient outcomes with personalized care.
5 Challenges and limitations of
predictive analytics

Predictive modeling in healthcare holds significant promise;

however, various challenges and limitations can affect the

accuracy and reliability of these models.
5.1 Data gaps

5.1.1 Incomplete and unstandardized data
Missing data, often resulting from incomplete records or data

entry errors, can introduce bias into model predictions (61–65),

reducing its accuracy and reliability. Further, the data may vary

greatly in size, form, and format; they are often complex,
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heterogeneous, poorly annotated, and frequently unstructured,

preventing effective modeling (66).

5.1.2 Data collection bias
Certain populations may be underrepresented in datasets,

causing biased predictions that fail to generalize effectively across

diverse patient groups (67). As a result, the trained model may

perform poorly for these underrepresented populations.

5.1.3 Infrequent updates
Medical records or patient data may be updated inconsistently.

If a model is trained on outdated information, it might not

accurately capture current trends or changes in patient conditions.
5.2 Real-Time data integration challenges

5.2.1 Heterogeneous data
Heterogeneous data poses another challenge; variations in data

entry practices, the use of different types of data sources (e.g.,

EHRs, wearable devices, and medical imaging), and incompatible

formats and standards from different healthcare systems can

hinder the seamless exchange and integration of data (64, 65, 68–70).

5.2.2 High volume and high velocity data
The high volume of data can overwhelm traditional data

processing systems, while the high velocity of real-time data from

wearable devices and monitoring systems demands rapid

processing and analysis to maintain clinical relevance (70).

5.2.3 Delay in data availability
The laboratory results or diagnostic imaging reports may

experience processing delays, hindering the ability to make

accurate real-time predictions.

5.2.4 Constantly changing data
Additionally, the dynamic nature of healthcare data introduces

further complexity; as healthcare knowledge and practices evolve,

maintaining up-to-date models becomes challenging (71).

Moreover, patient health conditions can also change rapidly,

requiring models to adapt in real time (71, 72).

5.2.5 Heterogeneous data source platforms
Often, the data source platforms used by the institutions vary,

creating a barrier for effective real-time data integration (73).

5.2.6 Data privacy and security
Real-time integration of data involves handling sensitive

healthcare data, which raises concerns about privacy and security

(74). Strict compliance with regulations like the US Health

Insurance Portability and Accountability Act (HIPAA) can

complicate data usage, sharing, and integration. Ensuring

compliance with regulations like HIPAA is essential to mitigate

risks of unauthorized access or breaches of sensitive data.

Institutions must also incorporate legal safeguards that align with

emerging global frameworks, such as the EU’s General Data
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Protection Regulation (GDPR), which emphasizes data

minimization and user control.
5.3 Model complexity and interpretability

While predictive modeling has a significant impact on

healthcare, the complexity and interpretability of these models

pose challenges and limitations. Advanced predictive models,

particularly those built with AI and ML, often result in “black-

boxes” with intricate internal workings that are not easily

interpretable by clinicians (75). This lack of clarity raises

concerns about trust, as it becomes difficult to understand or

validate how these models generate predictions. As a result,

healthcare professionals may hesitate to adopt these tools at the

bedside, fearing errors, misjudgments, or liability issues without

being able to challenge or explain the recommendations.

The interpretability problem becomes especially critical in high-

stakes environments, such as diagnosing life-threatening conditions

or determining optimal treatment plans (76). A predictive model’s

lack of transparency can undermine clinician confidence, especially

when it suggests withholding treatment or recommending

experimental interventions. This uncertainty affects decision-

making and complicates patient consent, as families may be

uneasy trusting decisions without clear human explanations.

Another challenge with these complex models is the risk of

overfitting, where a model learns patterns from training data too

precisely, including noise or irrelevant correlations (77). While

this may produce highly accurate predictions on known datasets,

the model’s performance may worsen when applied to new, real-

world data. This poor generalization can lead to biased

predictions, especially if the training data does not represent the

diversity of patient populations adequately. For example, a model

trained primarily on data from urban hospitals might struggle to

provide accurate predictions for rural or underserved communities.

Ensuring robustness and reliability in predictive models also

requires balancing complexity with simplicity. While deep

learning models may offer superior predictive power, simpler

algorithms—such as logistic regression or decision trees—might

be more suitable in clinical settings because they are easier to

interpret. Explainability plays a crucial role in integrating

predictive analytics into healthcare.
5.4 Resource, cost constraints, disparities in
care, and regulatory and ethical concerns

Predictive analytics in healthcare introduces various ethical and

regulatory challenges, including patient consent, data privacy, and

the potential misuse of sensitive information. As noted by Carini

and Seyhan, the effectiveness of predictive models relies on access

to high-quality data, raising questions about data ownership,

security, and interoperability (78). Institutions must invest in

infrastructure that supports ethical AI development while

managing the growing burden of regulatory obligations.

Developing, implementing, and maintaining predictive analytics
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tools is resource- and cost-intensive, demanding significant

investment in technology, data infrastructure, and skilled personnel.

Beyond initial implementation, organizations must budget for

the continuous upkeep of these systems, which involves periodic

recalibration of algorithms to address evolving patient

demographics and medical practices. Furthermore, as Marques

et al. emphasize, smaller healthcare providers or facilities in

underserved areas may struggle to afford these advanced

technologies, potentially widening disparities in access to care

(79). Additionally, the integration of predictive analytics requires

robust training programs to equip healthcare professionals with

the necessary skills to interpret and utilize AI-generated

recommendations effectively. Institutions must also account for

potential disruptions and interoperability issues when

incorporating these tools into existing workflows, as outdated or

fragmented systems may impede seamless adoption.

There are also hidden costs associated with data management.

Predictive analytics depends on large, well-annotated datasets,

which require significant storage capacity and security protocols.

Ensuring compliance with privacy regulations such as the GDPR

adds another layer of complexity, as it may necessitate

specialized software for data anonymization and consent

management. Moreover, these tools often rely on cloud-based

infrastructure, incurring recurring costs for data hosting and

cybersecurity measures to prevent breaches.

Finally, the high initial and operational costs may lead

institutions to rely heavily on third-party vendors, raising

additional concerns about dependency and data sovereignty.

Over-reliance on external partners can also complicate

accountability in the event of errors or data breaches, further

increasing the burden on institutions to establish clear

governance frameworks that align with ethical standards and

regulatory requirements.
5.5 Data bias and misuse risks

Predictive models, though powerful, can unintentionally

perpetuate biases if not carefully designed. Marques et al.

emphasize that AI models are only as reliable as the data they

are trained on, and these datasets often reflect existing social

biases (79). This can lead to inequitable care or discrimination,

particularly against marginalized populations. To address these

concerns, predictive systems must undergo regular auditing to

detect bias, and the development process should include input

from diverse stakeholders to ensure fair outcomes.

Another emerging concern is the potential misuse of predictive

tools, particularly when these models are deployed without

appropriate oversight. In some cases, predictive analytics could

be misused to ration care, denying necessary services to patients

deemed “low risk” by an algorithm. Regulatory frameworks must

ensure that predictive tools are not only effective but also used

ethically, with clear accountability mechanisms to prevent

misuse. Transparency is essential—healthcare providers and

patients should have access to detailed explanations of how
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predictions are generated, as well as the ability to contest

decisions based on algorithmic outputs.

Finally, mitigating risks requires a culture of accountability in

AI development, with governance frameworks for bias

assessments and addressing unintended consequences. Engaging

diverse stakeholders throughout the AI lifecycle ensures fairness

and equity, improving model reliability and fostering trust

among patients and providers for more just, effective healthcare.
5.6 Accountability and trust in predictive
systems

Predictive analytics in healthcare complicates accountability,

especially when algorithm-driven decisions cause harm. The lack

of transparency makes it difficult to assign responsibility, posing

challenges for both developers and healthcare providers (78). Trust

in predictive systems requires transparency, ongoing validation,

and explainable AI to help clinicians understand outputs. Clear

ethical guidelines outlining stakeholder responsibilities are essential

for public trust and safe technology integration.
5.7 Challenges and limitations of BPD
predictive models

Despite the presence of many BPD predictive models (25, 50,

51, 80, 81), only a few (31, 53) are widely available to clinicians,

and practically none are used regularly in clinical practice (50).

Most models have methodological flaws (small sample size, poor

calibration and validation, and increased bias) and lack

dynamism (50, 51). Further, most models lack comprehensive,

continuous, high-definition physiological data and a mechanistic

biomarker panel. Finally, the data gaps and real-time data

integration challenges discussed above significantly impact BPD

predictive models.

Several of the limitations discussed in this section also pose

significant challenges in translating research-based predictive

models into clinical practice. The next section offers strategies to

address these challenges.
6 Future directions and opportunities

6.1 Enhancing model interpretability

A key priority for advancing predictive analytics is improving AI

model interpretability. Complex algorithms like deep learning, despite

their predictive power, face limited clinical adoption due to their

“black-box” nature. Clinicians hesitate to trust opaque

recommendations, especially in high-stakes areas like neonatal care.

Explainable AI (XAI) frameworks are crucial to addressing this

challenge (75). These frameworks aim to provide transparency by

breaking down how predictions are generated, offering clinicians

meaningful insights into which variables contributed to the

outcome. Additionally, human-in-the-loop systems, where clinicians
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interact with the model to refine its predictions, can further improve

adoption and create feedback loops that enhance the model’s

performance over time. Efforts to integrate visualization tools into

clinical workflows, where model outputs are presented in intuitive

dashboards, will also empower healthcare providers to use

predictive analytics with greater confidence.
6.2 Improving data sharing and
interoperability

A second key priority is improving data sharing and

interoperability across healthcare institutions. Fragmented data

sources, ranging from clinical records and genetic data to

wearable sensor outputs—limit the effectiveness of predictive

models. Interoperable systems that standardize how data is

collected, stored, and exchanged will make it easier for

researchers and clinicians to build robust, generalizable models.

Developing shared data formats and platforms, such as Fast

Healthcare Interoperability Resources (FHIR), is a step toward

seamless data exchange across hospitals and research institutions

(80). Large-scale collaborations supported by secure data-sharing

agreements will enable the aggregation of more comprehensive

datasets, increasing the statistical power of predictive models

(81). However, these efforts must also navigate regulatory

challenges, ensuring compliance with frameworks such as HIPAA

and GDPR while maintaining the privacy and security of patient

data. Institutions will need to invest in governance structures and

advanced encryption technologies to enable responsible and

compliant data sharing.
6.3 Expanding access and addressing bias

Equitable access to predictive analytics is a critical priority for

the future. AI-driven models, if not carefully designed, risk

exacerbating existing disparities by benefiting only well-resourced

healthcare settings. Institutions in rural areas or those serving

low-income populations often lack the infrastructure to adopt

these advanced technologies, which may leave their patients

underserved. It is crucial to ensure that predictive models are

validated across diverse patient populations to prevent bias and

ensure fair outcomes. This involves expanding the datasets used

to train these models to include underrepresented groups, such

as racial minorities and economically disadvantaged populations,

who are often excluded from medical research. Regular audits for

algorithmic bias must become a standard practice, with

adjustments made to correct any disparities in performance.

Additionally, stakeholder engagement—bringing in perspectives from

underrepresented communities and clinicians working in

underserved areas—will ensure the models align with the needs of all

patient populations. Future policies should also focus on ensuring

that these tools remain accessible and affordable, preventing cost

from becoming a barrier to equitable healthcare delivery.
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6.4 Workforce training and interdisciplinary
collaboration

A skilled workforce is vital for integrating predictive analytics

in healthcare. Interdisciplinary collaboration among clinicians,

data scientists, engineers, and informaticians is key. Clinicians

must develop basic competencies in data science and AI to

actively engage with predictive tools and interpret model outputs

effectively (82). This will ensure that clinical decisions informed

by predictive analytics are made thoughtfully and responsibly. At

the same time, data scientists and engineers need to develop a

deeper understanding of clinical contexts, such as the unique

challenges faced in neonatal care, to design models that align

with clinical realities. Interdisciplinary training programs that

bridge these gaps will foster collaboration and innovation,

helping professionals from different fields work together

seamlessly. Cross-disciplinary programs, like joint fellowships or

certification courses, can equip future healthcare professionals

and data scientists to effectively implement and advance

predictive technologies.

Developing leadership in clinical informatics will also be

essential to manage the intersection of technology and clinical

practice (83). Clinical informaticians are key to integrating

predictive models into EHRs and creating actionable decision-

support tools. By designing workflows that incorporate AI

predictions, they help clinicians make faster, informed decisions

without being overwhelmed by data. Institutions fostering

multidisciplinary collaboration will better harness these

technologies to improve patient outcomes.
6.5 Aligning predictive analytics with
precision medicine

The ultimate goal of predictive analytics in neonatal care and

other fields is to advance precision medicine, where treatment

plans are tailored to the individual needs of each patient.

Predictive models can identify patient-specific risk factors and

predict disease trajectories based on genetic, environmental, and

clinical data (84). For example, models that integrate genomic

data with real-time monitoring can identify biomarkers linked to

early signs of respiratory complications, guiding clinicians toward

more targeted interventions to reduce the severity or incidence of

conditions like BPD. As Kim et al. suggest, combining genomics

with continuous physiological data can yield new insights and

improve individualized care strategies (83).

However, to fully harness predictive analytics in precision

medicine, large, well-annotated datasets representing diverse

populations are essential. Investments in data collection

initiatives like biobanks and healthcare registries are crucial.

Ethical considerations such as fairness, transparency, and patient

autonomy must guide model deployment, with clear

communication and informed consent to maintain trust. Policies

governing ethical use will ensure these innovations benefit all,

not just a select few.
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7 Conclusions

The integration of predictive analytics into the management of

BPD represents a transformative shift towards more personalized

and precise neonatal care. By leveraging advanced machine

learning techniques and incorporating diverse data sources such

as EHRs, imaging, and bioinformatics, predictive models have

the potential to significantly enhance risk stratification, tailor

interventions, and ultimately improve outcomes for premature

infants. Despite notable advancements, challenges remain,

including data integration issues, model interpretability, and

ethical considerations surrounding privacy and equity.

Addressing these challenges through interdisciplinary

collaboration, among data scientists, neonatologists, and ethicists,

alongside robust validation, and ongoing research, is essential for

realizing the full potential of predictive analytics in BPD

management. Moving forward, a concerted effort to refine

predictive models, integrate real-time data, and adhere to ethical

standards will be crucial in advancing precision medicine and

delivering better, individualized care for neonates at risk of BPD.
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