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Infantile Epileptic Spasm Syndrome (IESS) is a group of infantile spasm
syndromes of various etiologies that typically present in early infancy,
predispose to refractory epilepsy, and leave intellectual disability. Ketogenic
diet therapy (KDT) is a non-pharmacologic treatment modality for medically
refractory IESS. Recent scientific evidence supported the efficacy, safety, and
tolerability of KDT for the treatment of IESS. KDT not only reduces the
frequency of seizures in infants with IESS, but also improve their cognition and
long-term prognosis. Recently, it has also received increasing attention as a
potential treatment for neurological disorders. This reviewed the recent
research progress of KDTs for the treatment of IESS, and discussed the
different types and the mechanisms of KDTs, the expansion of KDT
applications, the influencing factors, and future research issues.
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1 Introduction

Infantile Epileptic Spasm Syndrome (IESS) is an age-specific epilepsy syndrome that

occurs in early infancy (1), characterized by epileptic spasms, hypsarrhythmia on

electroencephalogram (EEG) or developmental regression, which must not inevitably

exist before the onset of spasms (2, 3). There is an incidence rate of 2–6 per 10,000 live

births with a prevalence of 1–2 per 10,000 children under the age of 10 (1). The

etiology of IESS is heterogeneous, with approximately one third of cases having no

known etiology (1, 4). In the pathogenesis of IESS, factors such as synaptic

abnormalities, nerve growth factors, hypothalamic-pituitary-adrenal axis, and

inflammation might play an important role in the development of IESS (5). However,

current researches about the pathogenesis of IESS is based on animal studies and

involves fewer human studies.

In the treatment of IESS, there is no universally accepted mainstay of treatment for this

condition. American Academy of Neurology indicated that low-dose adrenocorticotropic

hormone (ACTH) was the first-line pharmacologic therapy for IESS regardless of etiology

(6). In Japanese, the drug of choice varied based on etiology and included synthetic

ACTH, pyridoxine, and valproate (7). In UK, it was found that vigabatrin was the most

common first-line agent (7). Surgical treatment was only appropriate for those with

definite epileptogenic focus. And deep brain stimulation has limited seizure-free rate for

those unresponsive with antiseizure medications (ASMs) (7). However, despite the above
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proper treatments, a quite number of patients remain drug-resistant

epilepsy and progressive intellectual disability (8). Therefore, new

therapies are urgently needed to broaden the management options

and improve the prognosis of those with IESS.

The KDT is a very low-carbohydrate, high-fat, and adequate

protein nutritional approach that induces a metabolic shift to the

use of ketone bodies as an additional energy source (8). It was

initially introduced as a treatment for epilepsy. However, the

introduction and development of ASMs in 1938, declined the use

of the KDT almost completely (8). Since the mid-1990s, KDT

has gained attention again as an alternative treatment for

refractory epilepsy in children due to its improvement of

cognition. The use of KDT is reversible, inexpensive, and readily

available compared to surgical treatment. At present, it is

recognized that good effectiveness and safety of KDT in the

treatment for drug-resistant epilepsy (9). However, data of

clinical studies of a KDT as a treatment for IESS are limited and

lacked a systematic evaluation. Therefore, the present review

examined the role of a KDT in IESS treatment and discussed the

underlying mechanisms, aims to present novel perspectives for

the development and implementation of IESS.
2 The classification of KDT

KDT is now categorized into the classic ketogenic diet (cKD), a

medium-chain triglyceride (MCT) diet, a modified Atkins diet

(MAD), and a low glycemic index treatment (LGIT). They share

the common characteristics of high fat, low carbohydrates, and

moderate protein, while differing in the ratio of bulk nutrients

and the ketogenic ratio.

The classic KDT was most prescribed in children, accounting

for 60%, followed by MAD (25%) and MCT (10%). The LGIT is

prescribed in around 5% of epileptic patients (8). The lipid-to-

nonlipid (total protein and carbohydrate) weight ratio, known as

the ketogenic proportion, is usually determined as 4:1, 3:1, or

2:1. In classic KDT, the ketogenic proportion can range from 1:1

to 4:1, depending on individual therapeutic needs. The most

desired proportion in clinical conditions is 4:1, providing 80% of

the total energy from fat, primarily long-chain triglycerides. The

higher the proportion, the more restrictive and theoretically more

effective the diet is. In children with IESS, the ketogenic

proportion may be reduced to 3.5:1 or 3:1 due to the need for

protein for growth and development, which allows for higher

carbohydrate intake and improves the acceptability and tolerance

of classic KDT (10). The MCT diet, with medium-chain

triglycerides as the main source of fat (11). It is more lenient

compared to the classic KDT, with a fat intake of about 70% of

total calories. MCT can be absorbed and transported directly

through the portal vein to the liver to produce ketone bodies.

This property allows MCT to produce more ketones, and

consume more carbohydrates and protein and less fat. Medium-

chain triglycerides produce more ketones per calorie of energy

than long-chain triglycerides, and the increased ketogenic

potential of the MCT diet allows for reduced total fat intake and

increased carbohydrate intake, which enriches the diet (12). The
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MAD could restrict carbohydrate intake, with a ketogenic

proportion of 1:1–1.2:1. The initial daily carbohydrate restriction

for MCD is approximately 20 g/day with no restriction on

protein or caloric intake, and the meal plan is more extensive.

Thus, the MAD is easy to operate and perform, and patient

compliance is higher than classical KDT. It can usually be started

on an outpatient basis due to no fasting period (13). The LGIT

was created for stabilizing glucose levels in KDT (14). In LGIT,

total daily carbohydrate intake is about 40–160 g/day to keep

blood glucose levels stable in the brain. All carbohydrates are

glycemic index below 50. The protein and fat intakes are also

monitored, but not as strictly as in the classical KDT (15).

All KDTs were suitable for the treatment of drug-resistant

epilepsy. Other than epilepsy, these KDT protocols are being

explored more and more as possible treatments for a variety of

conditions, like autism spectrum disorders, endocrine disorders,

and Alzheimer’s disease. However, it is acknowledged that all

KDTs have a certain percentage of attrition rate due to adverse

effects and a lack of effectiveness. In infants with IESS, the

attrition rate is lower due to the easier control of the diet by

their caregivers. Patients with drug-resistant seizures need long-

term dietary therapy continued for approximately 2 years (8).

Therefore, the management of KDT is a long-term program that

requires regular nutritional testing to ensure its effectiveness and

avoid malnutrition or overnutrition (16).
3 KDT mechanisms in the treatment of
IESS

At present, the real mechanisms of the KDT’s anti-seizure

effects still remain unclear, although many potential mechanisms

have been discovered. Recent studies have indicated that the liver

and astrocytes were the sites where the polyunsaturated fatty

acids are broken down to produce ketone bodies (17, 18).

Polyunsaturated fatty acids are oxidized in the mitochondria to

produce energy, and at the same time produce acetyl coenzyme

A(Acetyl-CoA). A large amount of Acetyl-CoA produces

acetoacetic acid and β-hydroxybutyric acid in the liver or under

the astrocytes, and later enter the bloodstream to produce

acetone. Ketone bodies can replace glucose as the main energy

source of the brain, where ketone bodies are converted to Acetyl-

CoA, which is metabolized by the mitochondria to produce

adenosine triphosphate (ATP) (19).

The mechanism of KDTs in the treatment of IESS was not a

single, but multiple mechanisms likely participate in

interconnected ways to produce anti-seizure effects (18). These

mechanisms probably act jointly and in parallel with each other.

In the following, we will mainly discuss several potential

mechanisms of KDT in the treatment of IESS, as shown in Figure 1.
3.1 Effect of KDT on neurotransmitters

Children with IESS may have an imbalance between inhibitory

and excitatory neurotransmitters, which can lead to seizures and
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FIGURE 1

The mechanism of KDT.
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neurotransmitter abnormalities that further impair cognitive

function. The antiepileptic mechanism of KDT is to modulate

the balance between these neurotransmitter systems, which

further improves cognitive function.

First, KDT attenuates the effects of excitatory neurotransmitters,

such as monoamine neurotransmitters and glutamate (18, 19).

Monoamine neurotransmitters, including norepinephrine,

serotonin, and dopamine, play an important role in controlling

neuronal excitability and seizures. Previous animal studies have

shown that KDT has no anticonvulsant activity in norepinephrine-

deprived animals (19), KDT also increases norepinephrine in the

extracellular fluid of the hippocampus (20), and clinical studies

have shown that KDT can affect serotonin and dopamine levels in

the cerebrospinal fluid (CSF) of children with drug-resistant

epilepsy (9). Glutamate is an important excitatory neurotransmitter
Frontiers in Pediatrics 03
in the brain that can make the brain susceptible to seizures (19),

and the effect of KDT on brain glutamate metabolism is still

controversial (21–23), and further studies are needed.

Secondly, KDT has been demonstrated to enhance the effects of

inhibitory neurotransmitters, including gamma-aminobutyric acid

(GABA) and agmatine. Gamma-aminobutyric acid (GABA) is

capable of inhibiting neural networks through the action of

GABAA receptors (24, 25). In the immature brain, GABA

plays a significant role in neuronal value-adding, migration,

and the formation of neural networks (26). In KDT, it also It

is also important in neuronal value-adding, migration, and

neural networks (26, 27) In KDT, the conversion of glutamate

to GABA in neurons is increased while the degradation of

GABA is decreased (27), which further increases the amount

of GABA.
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3.2 Effect of KDT on ion channels

In KDT, various pathways can be used to open KATP channels,

leading to neuronal membrane hyperpolarization and increased

seizure thresholds (28–31), resulting in fewer seizures (32). Other

studies have shown that acetoacetate suppresses seizures in vivo

by inhibiting voltage-dependent Ca2+ channels (VDCCs) and

decreasing excitatory postsynaptic currents (EPSCs) at sites of

epileptic activity (31).
3.3 Effect of KDT on growth factor

Previous studies have shown that cerebrospinal fluid insulin-

like growth factor-1 (IGF-1) concentrations are significantly

lower in children with IESS of known etiology (33), and that

cerebrospinal fluid IGF-1 levels have been associated with early

stress, cortical damage, poor response to treatment, and poor

cognitive outcomes (5), and that it may also lead to

abnormalities in neuronal development and synapse formation,

which may affect disease severity and prognosis (33). The KDT

may result in a reduction of insulin-like growth factor-1 (IGF-1)

levels and may also influence the activity of other growth factors

by affecting the insulin-like growth factor signaling pathway.

However, more research is needed to confirm the specific effects

of the ketogenic diet on growth factors.
3.4 Protective effects of KDT on neurons

3.4.1 KDT reduces inflammatory response
Currently, the role of inflammation in IESS can be

demonstrated indirectly, for example, by examining cellular levels

in blood and cerebrospinal fluid (3) or by indirectly detecting

underlying inflammation through the selective efficacy of ACTH

in IESS (34, 35). The anti-inflammatory capacity of the KDT is

multifaceted, modulating both central and peripheral inflammatory

mechanisms (36). This occurs by reducing microglia activation and

proinflammatory factors in the hippocampus, and by suppressing

neuroinflammation through the inhibition of, for example,

cyclooxygenase 2 (COX-2) (37–40).

3.4.2 KDT modifies energy metabolism and
oxidative stress

In IESS, oxidative stress may be associated with a variety of

factors, including brain injury, inflammation, and neurotransmitter

imbalances (5). KDT modulates uncoupling proteins. This results

in a reduction in ROS production, protection of neurons from

oxidative stress, and enhancement of seizure resistance (41).

Additionally, KDT protects against seizure damage by increasing

glutathione levels (42). Furthermore, KDT treatment has been

observed to increase polyunsaturated fatty acids, which have been

demonstrated to induce the expression of neuronal uncoupling

proteins, regulate numerous genes involved in energy metabolism,

and induce mitochondrial biosynthesis. This ultimately results in a

reduction in ROS production and an increase in energy (43–45).
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3.4.3 mTOR pathway
Disorders of the mammalian target of the rapamycin (mTOR)

pathway are associated with IESS and dysplastic tissue caused by

mTOR activation is associated with IESS (46). Excessive mTOR

activation results in abnormal cell proliferation, tumor

formation, and dysplastic cells, leading to tuberous sclerosis

complex (TSC). Up to 25% of patients with IESS are diagnosed

with TSC (47, 48). There may be a mechanistic link between

KDT and mTOR, acting through amino acid metabolism on

mTOR signaling (49, 50).
3.4.4 KDT reduces nerve cell death
Neuronal injury and death lead to neuronal deficits and

abnormal brain function, which is associated with the

development of IESS (5). Additionally, the extent of neuronal

damage caused by seizures may exacerbate the cognitive deficits

and the severity of seizures in patients with IESS (51, 52). KDTs

have been shown to reduce neuronal damage by inhibiting pro-

apoptotic factors such as cysteine and other pro-apoptotic

factors. Prior research has indicated that KDTs may mitigate the

deleterious effects of these processes (53). KDTs inhibit pro-

apoptotic factors, such as cysteine, thereby reducing neurological

damage. Furthermore, KDTs act as intracellular calcium buffers

by upregulating calmodulin, thereby protecting nerves (54). The

process of neuronal death is influenced by a multitude of factors,

including autophagy, phagocytosis, necrosis, and apoptosis.

Further investigation is required to elucidate the effects and

mechanisms of KDTs on these factors.
3.5 Effects of KDT on gut microbiota

It has recently been demonstrated that KDT can exert an

influence on seizures through the action of gut microbes (GM).

This influence may be exerted by the production of

neurotransmitters (55) or neuropeptides, or by affecting the

expression of GABAH and n-NMDA receptors in the brain (56).

Prior animal studies have demonstrated that KDT can mitigate

acute seizures by modulating the gut microbiota (57), a finding

that has been corroborated in clinical investigations (58).

Currently, there is a degree of debate surrounding the hypothesis

that KDT exerts an influence on epilepsy by modulating the

number of bifidobacteria (59–61). Further research is required to

substantiate this proposition. Additionally, evidence from some

studies indicates that GM can influence seizure frequency and

seizure threshold by affecting inflammatory mediators.
4 KDT for IESS

4.1 KDT for IESS clinical outcomes

The efficacy of the ketogenic diet in the treatment of IESS has

been substantiated in clinical trials. Recent studies have shown

>50% spasticity remission rates of 75%, 82.6%, and 90.9% after 3,

6, and 12 months of classic KDT, respectively (62). The results
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of this study are similar to those of many previous studies (63). A

systematic review of the treatment of WS conducted by G. Prezioso

et al. included 13 studies with a total of approximately 300 patients.

The results of the study showed that in the short term, the KDT

reduced seizures by more than 50% in about 60% of the patients,

and about 35% of patients were completely seizure-free.

However, due to limited data, the long term effects are currently

unknown (64). The results of another study on the role of KDT

in childhood epilepsy, conducted through a review and meta-

analysis of randomized controlled trials, demonstrated that the

KDT group exhibited a 5.6 times greater likelihood of

experiencing a 50% reduction in seizures after a three-month

dietary intervention, or at an earlier point in time. The study

included a total of 453 patients. The study population was

selected as follows: 184 patients were given the MAD diet, 54

were kept on the classic 4:1 ketogenic liquid formula, and the

remaining 215 patients were treated with the standard therapy

(ST). This article was quality assessed by QUADAS and

AMSTAR, which demonstrated a low risk of bias and adequate

accuracy (65).

Previous studies have demonstrated the potential of the

ketogenic diet to alleviate seizures in patients with IESS. In some

cases, patients with IESS have achieved complete seizure

remission following the implementation of a ketogenic diet

regimen (62–64). Not only does the ketogenic diet result in a

reduction in seizures, but studies have also indicated that

children patients with drug-resistant epilepsy who adhere to the

ketogenic diet may experience a discontinuation of or a

reduction in the necessity for antiepileptic drugs (66). The

current research on KDT in the treatment of IESS has focused

on four main areas: the effect of the ketogenic diet as a first-line

treatment, the effect of the ketogenic diet as a second-line

treatment, the effect of different ketogenic diets, and other effects

of the ketogenic diet on IESS.

There is some controversy about the effectiveness of KDT as a

first line of treatment. The results of a recent prospective PC-RCT

in IESS showed that the overall efficacy of the two treatments, KDT

and ACTH, was similar (electroclinical remission rate at day 28

KDT: 27%, ACTH: 48%), but KDT was better tolerated (63).

This finding is similar to the results of a previous retrospective

study of infants with new-onset IESS comparing 13 infants

treated with KDT to 20 infants treated with ACTH, In this

retrospective study, the KDT was observed to have a nearly two-

thirds success rate in stopping spasms, with fewer adverse effects

and relapse rates than ACTH. However, ACTH normalized the

EEG more rapidly (62). However, A national multicenter

retrospective study of IESS complicated by Leigh syndrome (LS)

and Leigh-Like Syndrome conducted in 2024 revealed that four

of nine patients (44%) treated with ACTH achieved clinical

electrical remission within one month of treatment. Additionally,

one of seven patients (14%) treated with KDT achieved clinical

electrical remission within the same time frame. It is noteworthy

that none of the patients treated with antiseizure medications

(ASMs) only achieved clinical remission. However, a national

multicenter retrospective study of IESS complicated by Leigh

syndrome (LS) and Leigh-Like Syndrome(LLS) conducted in
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2024 revealed that four of nine patients (44%) treated with

ACTH achieved clinical electrical remission within one month of

treatment. Additionally, one of seven patients (14%) treated with

KDT achieved clinical electrical remission within the same time

frame. It is noteworthy that none of the patients treated with

antiseizure medications (ASMs) only achieved clinical remission.

The relatively small sample size of 21 patients in this study may

limit the generalizability and statistical significance of the

findings. Furthermore, due to the retrospective nature of the

study, there is a possibility of bias and incompleteness in

the data collection process (67). The preceding discussion

demonstrates that the therapeutic efficacy of KDT in comparison

to first-line drugs is a topic of contention and necessitates the

inclusion of larger sample sizes and a more comprehensive range

of research methodologies.

Although current studies indicate that KDT exhibits

comparable therapeutic efficacy to first-line medications, the

limited sample sizes of KDT as a first-line treatment make it

challenging to conduct higher-level studies.

More studies have shown good efficacy of KDT as a second line

treatment. The KDT is now generally used for refractory IESS after

initial drug therapy has failed (68). Previous studies of 104 patients

with refractory IESS treated with KDT showed that approximately

18%–33% of patients were completely free of spasticity for 3–24

months, and approximately two-thirds of patientshad a greater

than 50% reduction in spasticity after 6 months of ketogenic

treatment. The results suggest that KDT should be a strong

consideration for IESS after the failure of corticosteroids and

vigabatrin therapy (69). A study of 39 patients with medically

refractory IESS showed that 61.5% of patients had a greater than

50% reduction in seizures within 6 months of KDT treatment,

and 4 of them were completely seizure-free (70). The results of

the above studies show that KDT is an effective treatment for IESS.

There is some controversy about the effect of different types of

KDTs on the therapeutic efficacy of IESS. A recent open-label,

randomized, controlled trial in patients aged 9 months to 3 years

with first-line refractory epileptic spasms showed that MAD and

CKD were comparable in the proportion of patientswith epileptic

spasms who achieved spasm relief (71). This is similar to some

previous studies (72–74). However, this result is somewhat

controversial, as some studies suggest that the treatment response

rate is higher with CKD, and in previous randomized

experimental studies in 1–2-year-old patients, the seizure rate

was higher in patients with CKD than in patients with MAD

(53% for CKD, 20% for MAD) (72). The reason for this

difference is currently unknown and may be related to individual

differences, type, and severity of disease. In addition to study in

Chinese pediatric patients with epileptic spasms found that MAD

is more effective in controlling spasticity seizures on a long-term

basis (75). Another study have also shown that MAD is better

tolerated and more easily accepted and adhered to by patients

and families (76).

Moreover, KDT has been shown to facilitate improvements in

electroencephalogram (EEG) abnormalities in the IESS (70). For

IESS caused by mutations in specific genes, KDT has been

shown to be an effective therapy. Some previous case reports
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have shown good results in treating infants with genetic mutations

in ALG13 (77), SCN2A (78), MEDS (79), and CDKL5 (76). A prior

study indicated that KDT may reduce stress levels in families of

children with refractory epilepsy. However, the study was

conducted at a single center with a limited sample size, and

further research is necessary to substantiate these findings (80).

Due to the variable efficacy of KDT in individual patients,

research has been conducted to identify the factors that influence

the efficacy of KDT therapy. These factors include etiology (64),

age (69), gender, medications, KDT initiation time (81), blood

ketone level, etc., but the effect of their influence is still

controversial and needs further research (70).

In conclusion, the therapeutic efficacy of KDT in the treatment

of IESS is evident. However, it is also important to acknowledge the

potential adverse effects of KDT in IESS treatment. Previous

studies have demonstrated that the primary adverse effects

associated with the ketogenic diet are vomiting and constipation,

and other side effects such as somnolence, weight loss,

dyslipidemia, metabolic acidosis, and kidney stones. There are

some reports of growth retardation in patientstaking KDT for

long periods (82), but this is controversial and should be studied

further. Prebiotic supplementation has been suggested in animal

models to reverse the effects of KDT on blood metabolism and

reduce the side effects caused by KDT (83).
4.2 The predictive factors of the
effectiveness of KDT in the treatment
of IESS

Prior research has demonstrated that improvement in EEG

findings early after CKD treatment may help predict children’s

response to treatment (70). Kramer’s method for quantifying the

severity of hypsarrhythmia on the EEGs is now in use (84). The

score of hypsarrhythmia on the EEGs after 3 months of CKD

treatment is associated with various epilepsy outcomes. Adverse

epileptic outcomes can be predicted by the quantitative cutoff of

the hypsarrhythmia score criteria (calculated as ≥8), which has

high sensitivity and specificity. Therefore, patients with no

clinical improvement after KDT or a hypsarrhythmia score ≥8
are predicted to have a poor long-term outcome, and alternative

treatments should be recommended (62).
5 Conclusions

According to the randomized clinical trials presented in the

review, KDT is effective in treating IESS. Still, the limited number

of trials and the small number of patients resulted in a poor

overall quality of the studies, and further research is needed. KDT

can be used in different populations of IESS and is a safe

treatment option. Several less restrictive KDTs, including MCT,

MAD, and LGIT, can be considered in the treatment process due

to their better tolerability, lower treatment costs, ease of
Frontiers in Pediatrics 06
administration, and greater acceptability. However, their

therapeutic efficacy still needs to be further validated in clinical trials.
6 Future directions

In previous studies of KDT for IESS, the sample size of patients

in many studies was small. Therefore, more large randomized

controlled trials are needed to validate the issue of KDT efficacy.

Furthermore, there is a paucity of research examining the

enhancement of children’s quality of life, patients’ cognition,

growth problems, and the impact on the patient’s family (e.g.,

cost, psychology, social relations, etc.). The last but not least, the

mechanisms and special biomarkers in the process of the study

of IESS require further investigation to establish a biological

foundation for clinical treatment.
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