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Multi-omics insights into beagle
dog fed with a sucking-rewarded
automatic feeding device
Yang Jiao1†, Xin Wang2†, Aizhen Yu2, Li Wu2 and Hongping Li2*
1Kashgar People’s Hospital, Kashgar Prefecture, Xinjiang Uygur Autonomous Region, Kashgar, China,
2Neonatology Department, Affiliated Shenzhen Children’s Hospital of Shantou University Medical
College, Shenzhen, Guangdong, China
Background: Facilitating the development of the sucking function in early stages
of preterm infants holds substantial potential for influencing their long-term
outcomes. To this end, our team has devised a sucking-rewarded automatic
feeding device specifically tailored for preterm infants. The present study is
designed to investigate the impacts of this innovative device, utilizing a
multi-omics profiling approach, on beagle dogs as a surrogate model.
Methods: This study involved seven-day-old male newborn beagle puppies,
carefully selected and matched in terms of body weights. The participants were
stratified into two groups: the experimental group (AFG, sucking-rewarded
feeding group) and the control group (PFG). After a 14-day intervention period,
fecal and blood samples were systematically collected from each dog. The
collected samples were then subjected to distinct profiling analyses,
encompassing the assessment of gut microbial composition, plasma metabolic
profiles, and proteomic expression profiles.
Results: The gut microbial data showed a significant difference between the AFG
and PFG groups based on Bray-Curtis dissimilarity (P= 0.048), and the relative
abundance of Lactobacillus was significantly more abundant in the AFG group
compared to the PFG group. The significantly different metabolites between
the two groups were enriched in functional metabolic pathways related to
amino acids, fatty acid metabolism, and the nervous system. Notably,
neurotransmitter L-glutamic acid was significantly up-regulated in the AFG
group. Moreover, the significantly different proteins between the two groups
were enriched in GO terms related to oxygen transport, oxygen binding, iron
ion binding, hemoglobin complex, and heme binding. Among them, proteins
A0A8C0MTD2, P60524, P60529 were significantly up-regulated in the AFG
group. Notably, Lactobacillus, L-glutamic acid, A0A8C0MTD2, P60524, and
P60529 were correlated with each other through correlation analysis, these
molecules play important roles in the neural function and neurodevelopment.
Conclusion: Our investigation elucidated discernible modifications in gut microbial
composition, plasma metabolic profiles, and proteomic expression patterns in
beagle dogs subjected to the sucking-rewarded automatic feeding device.
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Introduction

The ontogeny and refinement of sucking behavior in preterm infants significantly

contribute to their overall developmental trajectory (1). Sucking behavior typically

emerges around the 20th week of gestation, evolving from an initial immature pattern

to a rhythmic one, and ultimately culminating in a sophisticated sucking-swallowing-
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breathing sequence conducive to oral feeding (1, 2). This intricate

developmental process is intricately associated with the

maturation of the neural network regulation function of the

sucking central pattern generator (3). This inherent

competence in sucking naturally advances with gestational

age, with medical interventions offering the potential to

expedite its progression at earlier developmental stage (4–6).

The successful transition to oral feeding is contingent upon

the maturation of the sucking-swallowing-breathing function,

typically attaining completion around the 34th week of

gestation (7–9). Preterm infants born before this critical

gestational milestone face an elevated risk of aspiration during

oral feeding, potentially exacerbating their medical condition.

Current clinical practices frequently involve administering

nutrition through a gastric tube, thereby bypassing the oral

cavity and esophagus to directly infuse the stomach.

The protracted underutilization of sucking ability in preterm

infants, particularly up to 34 weeks, may result in enduring

feeding challenges extending into infancy (10, 11). Prolonged

dependence on gastric tube feeding may heighten the

susceptibility to respiratory diseases and impede brain

development in these infants (4, 12, 13). The early

introduction of sucking and oral stimulation, encompassing

tactile and thermal elements, has demonstrated efficacy in

fostering the development and maturation of sucking ability,

potentially abbreviating the transition time from tube to

complete oral feeding in preterm infants (14, 15). Sucking

activities also contribute to the stimulation of gastrointestinal

hormone secretion and the maturation of digestive function

(16). Furthermore, sucking has been correlated with enhanced

sleep quality, thereby contributing to improved gastrointestinal

motility (17, 18). In current clinical protocols, the traditional

feeding paradigm involves the direct infusion of nutrition into

the stomach, typically through the administration of prescribed

milk formula at fixed intervals by healthcare professionals,

often overlooking infants’ hunger cues. Conversely, the

promotion of oral sucking function through responsiveness to

hunger signals has proven effective (19), with sucking activity

identified as a crucial hunger signal. Building upon this

concept, our research team has innovatively designed a

sucking-rewarded automatic feeding device for preterm infants.

The device features a specialized nipple capable of detecting

sucking activity when placed in the infant’s mouths and

triggers the delivery of a predetermined amount of milk into

the stomach via a gastric tube. However, a comprehensive

assessment of its impact on preterm infants is imperative. To

address this, we propose the application of multi-omics

profiling, a pioneering methodology aimed at thoroughly

measuring, analyzing, and integrating various strata of

biological molecules. This approach provides a unique

opportunity to comprehensively understand and derive

profound insights into the physiological status of humans (20,

21). In this study, we employed multi-omics profiling,

encompassing proteome, metabolome, and microbiome

analyses, to scrutinize the effects of the device on beagle dogs

as part of our investigative process.
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Materials and methods

Characteristics of the sucking-rewarded
automatic feeding device

The sucking-rewarded automatic feeding device is composed of

four main modules: a specialized nipple, a suction detector, a control

unit, and a milk supply module. The dedicated nipple senses the

stresses and deformations generated during sucking, which are

transmitted to a pressure sensor to produce an electrical signal.

Subsequently, the controller adjusts the speed of the electric motor

in the supply device based on the strength of the received

electrical signals, ensuring that the appropriate amount of milk is

injected into the feeding tube placed in the stomach.

The sucking action collection utilizes a pressure monitoring

mode, with the pacifier pressure collection pipeline leading to the

machine-end pressure collection interface. It is then transformed

into an analog electrical signal through a pressure sensor for

display on an LCD screen. Signal conversion and calculation are

carried out using a high-speed 32-bit single-chip microcomputer,

with a communication speed of 10 k per s, significantly higher

than the human eye’s 50 Hz recognition ability. Consequently,

the acquisition process swiftly translates the sucking action into

waveform amplitude changes without delay.
Animal experiment

Given the similarity in gastrointestinal peristalsis mechanisms

between dogs and humans during digestion (22), beagle dogs

were selected as the experimental subjects in this study to

explore distinctions between feeding using an automatic feeding

instrument and traditional syringe-based gavage feeding. Seven-

day-old male newborn beagle puppies, matched in body weights,

were chosen as the study participants. They were stratified into

two groups: the experimental group (AFG, active feeding group

with the sucking-rewarded feeding device) comprising 5 puppies

and the control group (PFG, passive feeding group) consisting of

5 puppies. The experimental group received nourishment

through the automatic feeding device, while the control group

underwent gastric tube feeding administered by syringe. Both

groups were provided with formulated milk powder, prepared

according to the product instructions. The feeding volume for

each puppy was set at 40 ml per feeding session, comprising

10 ml of iohexol and 30 ml of prepared milk. All procedures

involving animal studies adhered to ethical standards and were

conducted in accordance with the guidelines outlined by the

animal ethical committee (Shenzhen TopBiotech Co., Ltd., China,

No. TOP-IACUC-2022-0161).

Following each feeding session, the puppies were gently settled

into a custom-made, warm, and dry cardboard box. A soft cushion

was positioned in front of their bodies, creating a comfortable and

unrestrictive for the puppies to sit quietly without undue restraint.

Within the box, the puppies were positioned at an inclination of

approximately 30–50 °C, with their heads elevated and hips

lowered. To facilitate acclimatization to this setup, the puppies
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underwent a training period of 5 days prior to the actual study.

Throughout this adaptation phase, familiar caretakers

accompanied the puppies to prevent any distress and ensure a

sense of security. This approach aimed to create a conducive

post-feeding environment that prioritized well-being and comfort

of the study subjects.
Sample collection

Following a 14-day intervention period, fecal samples were

meticulously collected from each dog using sterile gloves and

collection tools. Approximately 200 grams of fecal material were

aseptically transferred to sterile, pre-labeled containers and promptly

stored at −80 °C to preserve the integrity of the DNA until extraction.

Concurrently, blood samples were obtained from each dog.

Whole blood was drawn into EP tubes. After blood collection, a

controlled centrifugation process was employed to separate

plasma. The resulting plasma samples were carefully stored at

−80 °C to maintain their quality until further analysis. The

meticulous sample collection and preservation process aimed to

ensure the reliability and integrity of biological materials for

subsequent investigations.
Gut microbiome sequencing and analysis

Microbial DNA extraction was conducted using the QIAamp

DNA Mini kit, and the concentration and purity of the extracted

DNA were assessed using the NanoDrop One (Thermo Fisher

Scientific, MA, USA). The V3-4 variable region of the 16S rRNA

gene was targeted for amplification using the forward primer 338F

(5′-ACTCCTACGGGAGGCAGCAG-3′) and the reverse primer

806R (5′-GGACTACHVGGGTWTCTAAT-3′) (23). PCR

reactions, comprising 25 μl of 2× Premix Taq (Takara

Biotechnology, Dalian Co. Ltd., China), 2 μl of each 10 mM primer,

and 3 μl of DNA template in a total volume of 50 μl, underwent

amplification with the following thermal profile: 94 °C for 5 min,

followed by 30 cycles of 94 °C for 30 s, 52 °C for 30 s, 72 °C for

30 s, and a final extension at 72 °C for 10 min. The resulting PCR

products were equimolarly pooled and subjected to paired-end

sequencing on an Illumina MiSeq platform with V3 chemistry.

Analysis of the 16S rRNA gene sequences were executed using the

bioinformatics software package QIIME2 (version 2021.8) (24).

Paired-end reads underwent denoising using the QIIME2 command

“qiime dada2 denoise-paired”, which merge paired-end reads,

implemented quality filtering, and excluded chimeric and phiX

sequences. Taxonomic assignment was performed against the

Greengenes (13_8 revision) database using the command “qiime

feature-classifier classify-sklearn”. Additionally, an array of alpha- and

beta-diversity measures was generated through the commands “qiime

phylogeny align-to-tree-mafft-fasttree” and “qiime diversity core-

metrics-phylogenetic”. The microbiota community structure between

the two groups was analyzed by principal coordinates analysis (PCoA)

utilizing permutational multivariate analysis of variance

(PERMANOVA) on Bray-Curtis dissimilarity with the R package
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MicrobiotaProcess (25). The LEfSe software was employed to identify

significant differences in microbial taxa, utilizing a linear discriminant

analysis (LDA) score >2.0 and P value <0.05 (26). Network analysis

was conducted using the R package ggClusterNet (27).
Metabolome sequencing and analysis

The experimental procedure commenced with the thawing of

samples stored at −80 °C, followed by a brief 10-s vortex mixing.

Subsequently, 50 μl of each sample and 300 μl of an extraction

solution (ACN:Methanol = 1:4, V/V) containing internal

standards were combined in a 2 ml microcentrifuge tube. After a

3-min vortex and centrifugation at 12,000 rpm for 10 min (4 °C),

200 μl of the supernatant was collected, placed at −20 °C for

30 min, and then subjected to a second centrifugation at

12,000 rpm for 3 min (4 °C). The LC-MS analysis was conducted

on a UPLC system utilizing a Waters ACQUITY UPLC BEH

C18 column (1.8 µm, 2.1 mm × 100 mm) with a gradient elution.

Data acquisition utilized the information-dependent

acquisition (IDA) mode, and the raw LC-MS data in mzML

format underwent preprocessing steps, including peak extraction,

alignment, and retention time correction through XCMS. Peak

area correction employed the “SVR” method, with a threshold

for discarding peaks with a detection rate below 50%.

Metabolite identification involved searching the databases. For the

differential analysis, VIP > 1 and P-value <0.05 were employed. OPLS-

DA results, including VIP values, were generated using the R package

MetaboAnalystR (28). Prior to OPLS-DA, data underwent log

transformation and mean centering, and a permutation test (200

permutations) was conducted to prevent overfitting. Identified

metabolites were annotated using the KEGG Compound database and

mapped to the KEGG Pathway database. Significantly enriched

pathwaysweredeterminedusinghypergeometric testwithP-value<0.05.
Proteome sequencing and analysis

Plasma protein extraction was carried out using SDT lysis buffer

(4% SDS, 100 mM DTT, 100 mM Tris-HCl pH 8.0). The subsequent

steps involved boiling, ultrasonication, and centrifugation to remove

cellular debris. The resulting supernatant was quantified using a

BCA Protein Assay Kit. For protein digestion (200 μg per sample),

the FASP method was employed with trypsin, and the resulting

peptides were desalted for LC-MS analysis using C18 StageTip.

LC-MS/MS was performed on a Q Exactive Plus mass

spectrometer coupled with Easy 1,200 nlC, utilizing a data-

dependent top20 method for peptide acquisition.

MaxQuant software (version 1.6.0.16) was utilized for MS data

analysis, searching against the UniProtKB database. Parameters

included trypsin as the digestion enzyme, 4.5 ppm mass tolerance

for precursor ions, and 20 ppm for fragment ions.

Carbamidomethylation of cysteines was set as a fixed modification,

while acetylation of protein N-terminal and oxidation of methionine

were considered variable modifications. Filtering was performed at

<1% false discovery rate (FDR) for peptide-spectrum matches and
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proteins. Label-free quantification employed intensity determination

and normalization algorithms.

Protein differences were meticulously examined using the R

software, applying a criterion of P value <0.05 and an absolute fold

change >1.5. Subsequently, GO and KEGG enrichment analyses were

carried out for the significantly different proteins. The significance of

enriched GO and KEGG terms was established with P value <0.05.

Correlation analysis between differentially expressed microbes,

metabolites and proteins were performed using Pearson correlation

with P value <0.01.
Results

The gut microbial characteristics within
automatic feeding

The alpha diversity indices, encompassing the observed feature

number (1,007.9 ± 355.7 vs. 751.8 ± 420.7, P = 0.33), Shannon index

(5.32 ± 1.33 vs. 4.77 ± 1.40, P = 0.54), and Pielou index (0.53 ± 0.11 vs.
FIGURE 1

Gut microbial characteristic comparison between the AFG and PFG groups. (a
Stacked bar plot depicting the average relative abundances of abundant phyl
microbial composition between the two groups. (d) Gut microbial network
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0.50 ± 0.11, P = 0.68), utilized to assess microbial richness and

evenness within the gut ecosystem, did not reveal significant

differences between the AFG and PFG groups. However, a marginal

increase in the AFG group was observed. To provide a comprehensive

overview of the microbial structure comparison between the two

groups, PCoA was employed with PERMANOVA based on the Bray-

Curtis dissimilarity. The results indicated noteworthy distinctions in

microbial communities (P = 0.048, Figure 1a).

The stacked bar plots, depicting the phylum-level composition of

microbiota in both groups, were presented in Figure 1b. The

prevalent phyla included Firmicutes, Proteobacteria, Fusobacteria,

Bacteroidetes, Actinobacteria, and Tenericutes (Figure 1b).

Subsequently, LEfSe analysis revealed a higher relative abundance of

microbes in the AFG group compared to PFG group. This included

the families Clostridiaceae, Leuconostocaceae, and Lactobacillaceae, as

well as genera Candidatus_Arthromitus, Lactococcus, Allobaculum,

Leuconostoc, Weissella, SMB53, and Lactobacillus. Conversely, certain

taxa such as phylum Actinobacteria, class Flavobacteriia, order

Flavobacteriales, families Campylobacteraceae, Prevotellaceae,

Planococcaceae, [Weeksellaceae], Peptococcaceae, and [Tissierellaceae],
) PCoA plot illustrating significant difference between the two groups. (b)
a in all study subjects. (c) LEfSe analysis revealing significant differences in
of the AFG group. (e) Gut microbial network of the PFG group.
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as well as genera Campylobacter, Prevotella, Staphylococcus,

Porphyromonas, Peptococcus, and Helcococcus exhibited higher

relative abundance in the PFG group (Figure 1c). Furthermore, to

elucidate internal interactions within the gut microbiome, we aimed

to identify interactive networks within each group (Figures 1d, e). In

comparison to the microbial network in the PFG group, the AFG

group exhibited a decrease in the number of nodes (149 vs. 166),

number of edges (372 vs. 761), and average degree (5.31 vs. 9.40).

These provided insights into the alterations in microbial interactions

associated with the feeding interventions, shedding light on potential

mechanisms underlying the observed differences in microbial

community structure.
The metabolic characteristics within
automatic feeding

The investigation of the overall metabolic profile between the

AFG and PFG groups was carried out utilizing OPLS-DA analysis.
FIGURE 2

Metabolic characteristic comparison between the AFG and PFG groups.
statistically significant separation between the two groups. (b) Volcano plo
(c) Heatmap plot depicting the expression level of significantly different m
pathways involving differently expressed metabolites.
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The obtained results delineated a significant separation between the

two groups with p value <0.05 (Figure 2a). Notably, the AFG group

manifested 59 down-regulated and 48 up-regulated metabolites in

comparison to the PFG group (Figure 2b). The expression levels of

these differentially expressed metabolites across individual samples

were visually represented through a heatmap in Figure 2c. To gain

deeper insights into the pathophysiological implications of the

differentially expressed metabolites, a comprehensive functional

metabolic pathway enrichment analysis was undertaken. The KEGG

pathway enrichment analysis unveiled the involvement of these

metabolites in diverse pathways, including but not limited to

“Glutathione metabolism”, “Arginine and proline metabolism”,

“Nicotine addiction”, “Fatty acid elongation”, “Circadian

entrainment”, “Taste transduction”, “Neuroactive ligand-receptor

interaction”, “Valine, leucine and isoleucine degradation”, among

others (Figure 2d). These results provided a comprehensive view of

the potential metabolic alterations associated with the feeding

interventions and highlighted the diverse pathways implicated in

the observed metabolomic changes.
(a) The outcomes of the OPLS-DA demonstrated a pronounced and
t illustrating significantly different metabolites between the two groups.
etabolites in every study subject. (d) Enrichment functional metabolic
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The proteomic characteristics within
automatic feeding

Compared to PFG group, the AFG group exhibited 31 up-

regulated and 18 down-regulated proteins, as illustrated in

Figure 3a. To elucidate the pathophysiological implications of

these differentially expressed proteins, a comprehensive

functional enrichment analysis was conducted. GO analysis

revealed significant enrichment of the differentially expressed

proteins in various biological processes, including “Oxygen

transport”, “Gas transport”, and “Response to stimulus”.

Regarding cellular components, enrichment as observed in

“Hemoglobin complex”, and “Cytosol”. In terms of molecular

function, the differentially expressed proteins were notably

enriched in categories such as “Heme binding”, “Tetrapyrrole

binding”, “Oxygen binding”, “Iron ion binding”, “RNA binding”,

“Heterocyclic compound binding”, and “Organic cyclic

compound binding”, as depicted in Figure 3b. Furthermore,

KEGG pathway enrichment analysis unveiled the involvement of

the differentially expressed proteins in various pathways,

including “Gap junction”, “Focal adhesion”, “NF-kappa B
FIGURE 3

Proteomic characteristic comparison between the AFG and PFG groups. (a)
groups. (b) GO enrichment terms of the significantly different proteins. (c) E

Frontiers in Pediatrics 06
signaling pathway”, “ECM-receptor interaction”, “Proteoglycans

in cancer”, “Malaria”, “Coronavirus disease-COVID-19”, “African

trypanosomiasis”, “Ubiquinone and other terpenoid-quinone

biosynthesis”, “Hematopoietic cell lineage”, and “Complement

and coagulation cascades” (Figure 3c). These findings offered a

comprehensive insight into the potential proteomic alterations

associated with the feeding interventions.
Muti-omics correlations within automatic
feeding

To investigate the relationships among the differentially

expressed microbial, metabolic, and proteomic characteristics

between the AFG and PFG groups, the Pearson correlation was

calculated. The correlation was identified as p value less than

0.01, as depicted in Figure 4. Notably, the proteins enriched in

the biological process “oxygen transport”, and molecular function

“oxygen binding” included A0A8C0MTD2 (globin family profile

domain-containing protein), P60524 (hemoglobin subunit beta),

P60529 (hemoglobin subunit alpha). In the correlation network,
Volcano plot showed the significantly different proteins between the two
nrichment pathways of the significantly different proteins.
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groups, red nodes represented different gut microbes, green nodes represented differentially expressed proteins, and blue nodes represented
differently expressed metabolites.
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A0A8C0MTD2 was positively associated with Lactobacillus

(R2 = 0.86) and L-glutamic acid (R2 = 0.77). Moreover, Lactobacillus

was also positively associated with P60524 (R2 = 0.91), P60529

(R2 = 0.81) and L-glutamic acid (R2 = 0.84).
Discussion

The advancement and refinement of sucking behavior in preterm

infants are pivotal factors influencing their holistic development (1). By

detecting the sucking signal within the oral cavity, the automatic

feeding delivery device has the capability to administer

predetermined volumes of emulsions into the stomach of premature

infants, facilitated by a controller regulating the milk supply

mechanism. This process is instrumental in fostering the progression

of suck behavior. Preliminary data under review, gleaned from

animal experimentation, suggests that this device can facilitate gastric

emptying. In the context of this investigation, we delved into the

impact of the automatic feeding delivery device on beagle dogs,
Frontiers in Pediatrics 07
employing a comprehensive analysis encompassing gut microbial

composition, metabolic profiles, and proteomic expression data.

A distinctive gut microbial community and network were

observed between the AFG and PFG groups, with notable

differences in the abundance of various genera. Specifically, the

AFG group exhibited higher levels of Lactococcus, Allobaculum,

Leuconostoc, Weissella, SMB53, and Lactobacillus, while

Campylobacter, Prevotella, Staphylococcus, Porphyromonas,

Peptococcus, and Helcococcus were less abundant. It is noteworthy

that certain species of Lactococcus in the gut have been reported

to express β-galactosidase, thereby facilitating lactose utilization

(29). Lactococcus lactis (L. lactis), a primary organism among lactic

acid bacteria, is recognized as a safe microorganism capable of

regulating the intestinal micro-ecological balance in animals,

enhancing host immune function, and modulating brain activity

(30, 31). Lactobacillus in the gut can similarly reduce lactose

concentration through their β-galactosidase activity (32). Notably,

a study revealed that preterm infants administered with

Lactobacillus reuteri DSM 17938 exhibited fewer symptoms of
frontiersin.org
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feeding intolerance, a common condition in this population (33).

Secondary outcomes of the study encompassed the duration of

parenteral nutrition, time to achieve full feeding, length of hospital

stay, incidence of sepsis, necrotizing enterocolitis, diarrhea, and

mortality (33). Campylobacter, known for causing infectious

disease and diarrheal illness, poses a significant health risk (34).

And Prevotella has been associated with increased release of

inflammatory mediators from immune and stromal cells (35).

Collectively, the differential composition of gut microbes

underscores the protective role of active feeding facilitated by the

automatic feeding delivery device.

Through the metabolome analysis, we identified differentially

expressed metabolites that were enriched in pathways associated

with amino acid metabolism, including “glutathione metabolism”,

“arginine and proline metabolism”, “valine, leucine and isoleucine

degradation”, and “D-amino acid metabolism”. Additionally,

pathways related to fatty acid metabolism such as “fatty acid

elongation”, “fatty acid metabolism”, and “fatty acid degradation”

were observed. Furthermore, pathways associated with the nervous

system, such as “neuroactive ligand-receptor interaction”, “synaptic

vesicle cycle”, “spinocerebellar ataxia”, “nicotine addiction”, “cocaine

addiction”, “amphetamine addiction”, and “alcoholism” were

enriched. Other pathways, including “circadian entrainment”, and

“taste transduction” were also noted. Of particular significance is the

role of glutathione in critical physiological processes, with

implications for diverse disease pathophysiology (36). Notably,

glutathione deficiency is implicated in oxidative stress, a pivotal

factor in aging and the pathogenesis of various diseases, including

seizure, Alzheimer’s disease, and Parkinson’s disease (37). Previous

study has observed abnormalities in glutathione metabolism in

preterm infants with a history of bronchopulmonary dysplasia (38).

Arginine, identified as a nutritionally essential amino acid, plays

critical roles in spermatogenesis, embryonic survival, fetal and

neonatal growth, and the maintenance of vascular tone and

hemodynamics (39, 40). Fatty acid elongation, a process

predominantly occurring in the liver and other tissues, is crucial for

the conversion of fatty acids into longer-chain fatty acids. In

preterm infants, this process is incompletely developed, leading to

an increased requirement for long-chain polyunsaturated fatty acids

(LCPUFAs). LCPUFAs are essential for optimal nutrition, growth,

and development, influencing cell membrane structure and function

(41, 42). Preterm infants are highly vulnerable to circadian

misalignment, mainly due to limited exposure to natural light and

the prevalence of artificial light in neonatal intensive care units (43).

Enhanced smell and taste perception have been linked to improved

milk tolerance, fostering enteral nutrition and facilitating growth in

preterm infants (44). Moreover, the autonomic nervous system,

especially the parasympathetic division, is relatively underdeveloped

in premature newborns compared to the sympathetic division

(45, 46). The observed differential expression of plasma metabolites

highlights the significant impact of active feeding facilitated by the

automatic feeding delivery device on the beagle dogs.

In our proteome analysis, differentially expressed proteins were

found to be enriched in GO terms related to “oxygen transport”,

“oxygen binding”, “iron ion binding”, “hemoglobin complex”, and

“heme binding”. Oxygen supplementation is crucial in neonatal
Frontiers in Pediatrics 08
intensive care for preterm infants, aiming to ensure adequate

oxygenation for metabolic needs while mitigating the risks of

hypoxemia and hyperoxia (47, 48). Heme, an iron-containing

molecule, plays a vital role in oxygen transport in the blood and is

essential for the development of preterm infants (49). Heme iron

serves as a critical nutrient required for infants’ growth and

development. However, preterm infants are particularly susceptible to

iron deficiency anemia due to their limited iron stores at birth, early-

onset erythropoiesis, iatrogenic blood loss, and catch-up growth.

Notably, enteral iron supplementation has demonstrated significant

benefits for preterm and low birth weight infants fed with human

milk, including improvements in anemia and linear growth (50). The

observed differential expression of plasma proteins collectively

underscores the impact of active feeding facilitated by the automatic

feeding delivery device on processes related to oxygen transport and

heme binding, crucial for the development of preterm infants.

The comprehensive analysis conducted on gut microbial, plasma

metabolic, and plasma proteomic data unveiled significant

disparities between the AFG and PFG groups concerning the

neurodevelopment of preterm infants. Notably, specific molecules,

including proteins A0A8C0MTD2, P60524, P60529, genus

Lactobacillus, and metabolite L-glutamic acid, exhibited

correlations with each other through correlation analysis.

A0A8C0MTD2, P60524 and P60529 play key role in oxygen

transport, and the prolonged periods of hypoxia may precipitate

poor growth, cardiopulmonary complications, neurodevelopmental

disabilities, or heightened mortality risks in preterm infants (51).

L-glutamic acid, a well-established excitatory neurotransmitter with

pivotal roles in normal brain function (52), has been implicated in

the neurodevelopmental outcomes of preterm infants (53).

Emerging research has identified features of gut microbiota as

potential mediators for neurodevelopmental and neuropsychiatric

disorders in preterm infants (54). Studies have indicated that

Lactobacillus supplementation can improve the structure of

intestinal flora, modulate gene expression, and impact neural

development in the brain (54, 55). Zhao et al. demonstrated that

an elevation in the relative abundances of Lactobacillus could up-

regulate the expression of neurotrophic factors and postsynaptic

density, thereby inhibiting synaptic ultrastructural damage and

alleviating anxiety-like behavior in mice (56). Lactobacillus, a type

of lactic acid bacteria, has been found to produce L-glutamic acid

and gamma-aminobutyric acid (GABA), thereby reducing stress-

induced corticosterone and behaviors associated with anxiety and

depression (57, 58). The interconnectedness observed among these

molecular components highlights their potential roles in shaping

neurodevelopment and emphasizes the importance of active

feeding facilitated by the automatic feeding deliver device in

influencing these critical molecules.

With this study provides valuable insights, certain limitations

should be addressed to ensure clinical applicability. The small

sample size, limited to beagle dogs, necessitates expansion to

enhance statistical robustness. Given the physiological differences

between beagles and preterm infants, further research involving

clinical trials in preterm populations is essential to validate the

device’s safety and efficacy. Additionally, examining key phenotypic

characteristics of preterm infants, such as body weight, length and
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neurodevelopmental outcomes, will be better elucidate the device’s

impact and its interaction with molecular mechanisms in further

study. These steps are crucial to transition from preliminary

findings to practical, clinically effective applications in neonatal care.

In summary, our investigation has elucidated discernible

modifications in gut microbial composition, plasma metabolic

profiles, and proteomic expression patterns in beagle dogs

subjected to the automatic feeding delivery device. These

identified alterations provide significant contributions to the

comprehension of the molecular impact exerted by the automatic

feeding delivery device. Furthermore, these findings may serve as

a foundation for the development of preventative strategies

centered on the modulation facilitated by this device.
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