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Human adenoviruses (HAdVs) are important pathogens responsible for
respiratory infections. In children and immunocompromised patients,
respiratory infections can cause considerable morbidity and mortality.
Currently, there are no approved effective and safe antiviral therapeutics for
the clinical treatment of HAdV infections, even those that have undergone
preclinical/clinical trials. However, many compounds and molecules with anti-
HAdV activity have been explored, and some candidates are undergoing
clinical development. Here, we reviewed the reported in vitro and in vivo
efficacies, as well as the therapeutic potential of these antiviral compounds,
providing an overview and a summary of the current status of anti-HAdV
drug development.
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Introduction

Human adenovirus (HAdV), a member of the family Adenoviridae, plays an

important role in paediatric respiratory tract infections, especially severe pneumonia,

accounting for 3.5%–11% of childhood community-acquired pneumonia (CAP) cases

(1). HAdV infections can be severe or even fatal in both immunocompetent and

immunocompromised patients (2). Moreover, 14%−60% of paediatric patients with

HAdV pneumonia have varying degrees of pulmonary sequelae (3). To date, 116 HAdV

genotypes have been identified and classified into seven species (A-G) based on

immunological and genomic criteria (4). Different HAdVs have different tissue

tropisms that are associated with different clinical manifestations (2, 5). HAdV species

B (HAdV-3, 7, 11, 14, 16, 21, 50, 55), C (HAdV-1, 2, 5, 6) and E (HAdV-4) are mainly

related to respiratory diseases (6). HAdV-3 and -7 are the most frequent HAdV

causing respiratory tract infection in China, but there are obvious differences in various

regions (7–9).

Despite the medical threat posed by HAdV, currently available antiviral agents and

immune therapeutic approaches have not been able to successfully combat the life-

threatening course of invasive HAdV infections in the immunocompromised clinical

setting. Over the last decade, numerous efforts have been made to develop effective

antivirals targeting HAdV. In this review, we outline HAdV biology and focus on

current developments in the field of antiviral drugs for treating respiratory infections

associated with HAdV.
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Virology

HAdV, which is approximately 90 nm in size, is a

nonenveloped virus with a characteristic icosahedral morphology.

Its structure consists of three major proteins (Figure 1A). Hexon
FIGURE 1

HAdV structure, infection and replication pathway. (A) An illustration of the
HAdV replication cycle. Early and late phases of the cycle are indicated. Vir
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is the most abundant coat protein, making up the triangular

facets of the capsid, with a penton base at every vertex and a

thin fibre projecting from each penton base. Other minor

components, such as IIIa, VI, VIII and IX, mainly act as capsid

cement. Inside the capsid are virion proteases, which play a vital
HAdV particle showing the principal capsid proteins. (B) Overview of the
al DNA replication marks the progression from early to late transition.
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role in the assembly of the virion, and the double-stranded DNA

(dsDNA) genome is associated with five polypeptides [terminal

protein (TP), V, VII, IVa2, and X] (10, 11).

Infection by HAdV, depicted in Figure 1B, starts with the

binding of fibers to primary receptors on the cell surface. These

receptors include coxsackie-adenovirus receptor (CAR), CD46, and

desmohlein-2 (DSG-2) (12). The penton base interacts with

cellular integrins to stimulate endocytosis. To avoid endosomal

degradation, fibres are removed by disruption of primary receptor

interactions, exposing protein VI, which mediates endosomal

escape into the cytoplasm. After escaping endosomal degradation,

the virion migrates to the nucleus, and the capsid proteins are

disassembled during transport such that only the condensed viral

genome enters the nucleus through the nuclear pore.

The HAdV replication cycle can be divided into early and late

phases according to the times at which particular viral genes are

expressed (10). Shortly after infection, early gene transcription units

are activated and give rise to early proteins that activate other viral

genes and alter the expression of host proteins for DNA synthesis.

After the onset of DNA replication, activation of the HAdV major

late promoter (MLP) mediates the transcription of late genes that

encode viral structural proteins and proteins that are required for the

maturation of virus particles. Virions are assembled in the nucleus of

infected cells, and HAdV progeny are released by cell lysis (13).
Current therapies

Treatment options are usually symptomatic, with the

administration of general treatments, respiratory support, and a

reduction in immunosuppression when relevant (14). Whether to

supplement treatment regimens with antiviral drugs remains

controversial, but the European Respiratory Society recommends

antiviral drugs for critically ill patients (15). Thus, several off-

label DNA/RNA synthesis-inhibiting antivirals are currently used

off-label to treat severe HAdV infections in the clinic. In Table 1,

a literature survery was given of reported anti-HAdV agents,

with their respective anti-HAdV activities.

Cidofovir (CDV), an approved antiviral agent against human

cytomegalovirus (HCMV), was a nucleotide analogue of cytosine

that selectively inhibited viral DNA polymerase and subsequent

viral replication by competitively incorporating its active metabolite

into the viral DNA chain (16, 17). Several studies have proven the

antiviral activity of CDV by using various in vitro methodologies

and different host cell lines. In general, these reported 50%

effectiveness concentration (EC50) values of CDV against different

HAdV genotypes fall in the range of 0.5–81 µM (17–24). Moreover,

several case reports and larger retrospective studies have presented

partially effective but promising results among

immunocompromised adults and paediatric patients (25–33). The

success rates are highest when antiviral treatment is initiated rapidly

after the diagnosis of HAdV infection (34–36). However, its low

bioavailability and nephrotoxicity remain limiting factors for its

widespread use. Although renal toxicity is counteracted by the

concomitant use of intravenous immunoglobulin (IVIG) and renal

protective measures, HAdV disease manifestations are particularly
Frontiers in Pediatrics 03
severe in children and immunocompromised individuals, who are

also more susceptible to nephrotoxicity.

Current efforts are concentrated on optimizing the

formulation of CDV and the development of nucleoside

analogue derivatives. Brincidofovir (BCV, previously named

CMX001) is a phospholipid conjugate of CDV with improved

oral delivery, increased cellular uptake and reduced kidney

accumulation. It has been proven to be more effective against

HAdV-3/5/7 in cell culture experiments (18). Toth et al.

demonstrated that BCV repressed HAdV-5 replication in the

liver, salivary gland, and pancreas of immunosuppressed

hamsters and suppressed HAdV-induced morbidity and

mortality (37). Due to its in vitro and in vivo efficacy,

it received the Fast Track designation for the treatment of

HAdV infections. Subsequently, the results from phase Ⅰ trials

illustrated its oral bioavailability and safety profile, while

phase Ⅱ trials revealed no statistically significant difference

from the placebo treatment (38, 39). Notably, BCV-related

gastrointestinal toxicity has also been reported (40).

Other drugs, such as ribavirin and ganciclovir, are also

nucleotide analogues but have failed to show consistent activity

against HAdV (41). Specifically, ribavirin was shown to have

antiviral effects against HAdV-5 in vitro, while it has also been

reported to be largely ineffective in immunosuppressed Syrian

hamsters, in which CDV and BCV are effective (17, 42).

Moreover, a number of case reports mentioned successful therapy

with ribavirin (43–46), but in a few small treatment studies, no

clear benefit was demonstrated (47–49). These variable outcomes

may be partially explained by genotype-related differences in the

anti-HAdV activity of ribavirin (17, 19). For ganciclovir, a

common antiviral compound against HCMV and herpes simplex

virus, it has been reported that patients who received ganciclovir

prophylactically or as a preemptive therapy against HCMV had

lower rates of HAdV infection than other patients (50). However,

ganciclovir must first undergo phosphorylation to an active form

by a viral kinase, which HAdV does not encode (51). Ying et al.

demonstrated that ganciclovir was effective against HAdV-5

infection both in vitro and in immunosuppressed hamsters,

possibly because of the direct inhibition of HAdV DNA

polymerase (52). However, the reported EC50 value was three

times greater than the plasma concentration achievable with a

standard dose of ganciclovir, suggesting that the in vivo anti-

HAdV effects were rather improbable (19, 53). In conclusion, the

broadly acting antivirals available in the clinic show insufficient

efficacy and/or safety against HAdV infections.
Potential antiviral agents

Nucleoside/nucleotide analogues

Apart from CDV, BCV, ribavirin, and ganciclovir, many studies

have focused on the anti-HAdV activity of other nucleotide

analogues. A study performed in human embryonic lung fibroblast

cells showed that several nucleotide analogues, such as zalcitabine

and alovudine, were potential candidates for the treatment of
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TABLE 1 Anti-HAdV compounds and molecules discussed in this review.

Category Compound HAdV genotypes related with
respiratory infections

EC50(µM)a CC50(µM)a Reference(s)

Nucleoside/nucleotide
analogues

Cidofovir 1–7,11,14 17–81 1,000 (17)

3,5,7 0.5–1.3 >317b (18)

2 2–3.1 83 (19)

5 4 97 (20)

4, 5, 6, 7 1.9–28.46 (21)

7,55 5.1–6.1 97.5 (22)

5 34 2,264 (23)

5 24.1 50.6 (24)

Brincidofovir 3,5,7 <0.009–0.02 39 (18)

Ribavirin 1,2,5,6 48–108 400 (17)

2 >250 30 (19)

Ganciclovir 2 35–39 115 (19)

Zalcitabine 2 1.4–3.3 231 (19)

2, 4 3.95–4.29 381.9 (54)

2 <0.03 0.83 (20)

3,11 35.5–67.2 1,227.2 (55)

3,11 126.4–133.5 1,278.3 (56)

Alovudine 2 0.71–3.2 231 (19)

Filociclovir 5 66 >100 (20)

4, 5, 6, 7 1.24–3.6 >100–150 (21)

USC-087 3,5,6,7 0.002–0.025 1 (58)

Stavudine 5 12.3 (59)

6-azacytidine 5 2 766 (60)

Gemcitabine 5 (61)

Decitabine 5 (61)

Cytarabine 4, 5, 7 (62)

Natural compounds Cardamomin 3, 5 2.4–4 >90 (65)

Nuciferine 5 4.5 >90 (65)

Shikonin 3 28.91 (66)

Caffeic acid 3,11 78.8–>1,110.1 57 132.5 (67)

p-coumaric acid 3,11 266.8–
>1,218.3

2,978.8 (67)

Chlorogenic acid 3, 11 37.5–214.5 11 275.4 (67)

Ferulic acid 11 120.0 476.9 (67)

Phenolic compound extracts of Camellia
sinensis Kuntze

5 6.62c 165.95c (68)

N-butanol fraction 5 2.16c 264.7c (69)

Gallic acid 5 27.5 290.0 (69)

Methanol and methanol/H2O 5 (70)

Dioscin 5 (71)

Camptothecin 5 (72)

Quercetin 3, 11 80.4–148.2 1,644.1 (55)

3 111.2 1,379.7 (73)

Apigenin 3, 11 41.1–77.3 221.7 (56)

Linalool 3, 11 109.6–158.2 1,148.1 (56)

Epigenetic regulators
inhibitors

Valproic acid 5 (74)

Vorinostat 4, 5, 7 (75)

Trichostatin A 4, 5, 7 (75)

Chaetocin 4, 5, 7 (61)

Lestaurtinib 4, 5, 7 (61)

OG-L002 5 (76)

GSK126/GSK343 5 (77)

Steroid-based
compounds

Digoxin 4, 5, 7 0.02 (62)

5 0.077 (78)

Digitoxin 4, 5, 7 0.064 (62)

Lanatoside C 4, 5, 7 0.032 (62)

Dexamethasone 5 (62)

Flunisolide 5 (62)

(Continued)
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TABLE 1 Continued

Category Compound HAdV genotypes related with
respiratory infections

EC50(µM)a CC50(µM)a Reference(s)

Mifepristone 5, 16 1.9 270.2 (80)

Dehydroepiandrosterone 5 88 5,530 (23)

Others Piperazine derivatives 5 0.6–5.1 210.4 (24)

5,16 0.8–1.3 194 (81)

5,16 1.1–4.8 130.8–199.8 (82)

NMSO3 2, 4, 8, 37 0.40–0.71 >1,000 (54)

Water-soluble polymer complex of arbidol 3 435–480c (83)

Niclosamide 5, 16 0.45–0.60 3.30 (84)

Rafoxanide 5, 16 1.30–1.38 48.89 (84)

Ivermectin 3 9.82 (85)

Tanespimycin (17-AAG) 3 0.5 >5 (86)

Flavopiridol 2 0.014 0.15 (89)

Olomoucine Ⅱ 4 2.4 >100 (90)

Indirubin-3’-monoxime 7,55 2.2–2.0 169.1 (22)

FIT-039 5 (91)

LDC4,297 2 0.25 5.69 (92)

Mycophenolic acid 5 0.05 175 (93)

A3 5 268 (94)

Tazarotene 5, 7, 55 8.34–13.75 98.66 (95)

Verdinexor (KPT-335) 3,5 0.15–0.61 1.58 (86)

5 0.03 0.1 (96)

[Co(NH3)6]Cl3 7 (97)

Nelfinavir 2, 14 0.37 25.7 (98)

aEC50: 50% effectiveness concentration; CC50: 50% cytotoxicity concentration.
bMaximum concentration of compound to test did not find the corresponding value.
cConcentration of compound in µg/ml.

Li et al. 10.3389/fped.2024.1456250
HAdV-2 infections (19). Another study also confirmed the anti-

HAdV-2/3/4/11 activity of zalcitabine in vitro (20, 54–56). In a

mouse pneumonia model, zalcitabine was associated with a

statistically significant reduction in the frequency of pneumonia

caused by HAdV-2 infection (57). Filociclovir, a nucleotide

analogue that has successfully completed phase Ⅰ clinical trials,

was shown to be a potent inhibitor of HAdV-5 in human foreskin

fibroblasts (HFFs) (20). Further studies have demonstrated that

filociclovir is a broad-spectrum inhibitor of HAdV types 4/5/6/7 in

vitro and is highly potent against HAdV-6 in Syrian hamsters (21).

USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of

HPMPA, the adenine analogue of CDV, can also protect Syrian

hamsters against intravenous challenge with HAdV-5/6 (58). The

anti-HIV agent stavudine and all 12 of its derivatives were found to

have potent effects against HAdV-5 (59). Another HIV-effective

antiviral, 6-azacytidine, appeared to inhibit HAdV-5 infection in

Hep-2 cells and in Syrian hamsters (60). Additional nucleotide

analogues that have anti-HAdV-4/5/7 activity, including

gemcitabine, decitabine, and cytarabine, were screened from various

compound libraries by using different assays (61, 62).
Natural compounds

In recent years, a large number of natural compounds isolated from

medicinal plants have been found to have potential in vitro and in vivo

antiviral activities (63, 64). For example, a chemiluminescence-based,

high-throughput screening (HTS) assay was developed by Wen et al.,

and two Chinese medicine small molecule compounds, cardamomin
Frontiers in Pediatrics 05
and nuciferine, were confirmed to have efficacious inhibitory effects

on HAdV-3/5 in vitro (65). Cardamomin also inhibited HAdV-5

infection in BALB/c mice, indicating that Chinese herbal medicine

and its natural products are rich sources of novel antiviral

compounds. Similarly, the anti-HAdV-3 activity of Radix lithospermi

was due to shikonin, which can inhibit the expression of hexon

protein (66). Four phenolic compounds of Plantago major, caffeic

acid, p-coumaric acid, chlorogenic acid, and ferulic acid, possessed

antiviral activity against HAdV-3/11 (67). Similar to caffeic acid,

treatment with phenolic compounds extracted from Camellia

sinensis Kuntze led to a reduction in HAdV-5 replication without

interfering with virus attachment (68). Furthermore, a number of

other medicinal plant compounds have been shown to inhibit

HAdV-5 in cell culture. These included the n-butanol fraction and

gallic acid extracted from Punica granatum L., methanol and

methanol/H2O extracted from Peucedanum salinum, dioscin

extracted from air potato, and camptothecin extracted from

Camptotheca acuminata Decne (69–72). Quercetin extracted from

both Caesalpinia pulcherrima Swartz and Allium plants and apigenin

and linalool extracted from Ocimum basilicum showed antiviral

activity against HAdV-3/11 (55, 56, 73).
Epigenetic regulators inhibitors

Cellular epigenetic modifiers involved in the transition of the

HAdV genome associated with histones to a chromatin-like

structure and the regulation of viral gene expression may serve as

valid targets for interfering with HAdV replication. Höti et al.
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reported for the first time that valproic acid, a well-known class Ⅰ
histone deacetylase (HDAC) inhibitor, decreased the HAdV-5 titre

and inhibited viral spread (74). Other pan-HADC inhibitors, such

as vorinostat and trichostatin A, were found to have inhibitory

effects on HAdV-4/5/7 (75). Furthermore, Saha and Parks

performed HTS to identify compounds that affect HAdV-5

function by using a library composed of described cellular

epigenetic regulatory proteins (61). In addition to HDAC inhibitors,

decitabine/gemcitabine (a nucleotide analogue), chaetocin (a

histone methyltransferase inhibitor), and lestaurtinib (a JAK2/PRK

kinase inhibitor) were also shown to significantly reduce HAdV-4/7

gene expression. Some methyltransferase inhibitors have also shown

efficacy against HAdV. For instance, OG-L002, which inhibits

lysine-specific demethylase 1, and GSK126/GSK343, which inhibit

the EZH1/2 histone methyltransferase machinery, can inhibit the

expression of the HAdV-5 early gene E1A (76, 77).
Steroid-based compounds

In an early report, the potential of cardiotonic steroids as

antiviral agents was recognized, and the investigators reasoned

that ionic changes resulting from treatment with digoxin, which is

also a cellular Na+/K+ ATPase inhibitor, would prevent the

replication of DNA viruses, including HAdV-5 and three other

herpesviruses (78). Later, digoxin and digitoxin were confirmed to

alter E1A RNA splicing early to block HAdV-5 replication and

reduce the viral titre (79). A fluorescence-based HTS platform was

used for the identification of novel anti-HAdV compounds, and

three cardiotonic steroids, digoxin, digitoxigenin and lanatoside C,

were the top hits (62). These three compounds reduced viral gene

expression, DNA replication, and HAdV-4/5/7 yields in A549 and

MRC-5 cells. In addition to cardiotonic steroids, corticosteroids,

including dexamethasone and flunisolide, were also identified as

positive hits in this screen. However, subsequent validation

experiments showed that neither of these compounds exhibited

antiviral activity against HAdV-4/7 in MRC-5, resulting in a

reduction in both the number of HAdV-5 early/late proteins and

the yield of HAdV-5 in A549 cells. Mifepristone, a synthetic

steroid that is structurally closely related to glucocorticoids,

showed significant in vitro antiviral activity against HAdV-5/16

and inhibited the infection of mice with HAdV-based vectors

containing a luciferase reporter gene (80). Further mechanistic

assays suggested that it can affect microtubule transport,

interfering with the entry of HAdV into the nucleus and therefore

inhibiting HAdV infection. Natural steroid hormones, such as

dehydroepiandrosterone and epiandrosterone analogues, can also

exert anti-HAdV-5 activity by affecting HAdV protein synthesis

and viral mature particle formation (23).
Others

In addition to those described above, various compounds and

molecules targeting every stage of the replication cycle have

shown anti-HAdV activities. For example, many piperazine
Frontiers in Pediatrics 06
derivatives have anti-HAdV-5/16 activity, targeting different steps

in the HAdV replication cycle, such as HAdV genome

accessibility to the nucleus, early gene transcription, HAdV DNA

replication, and new HAdV particle assembly, maturation and

release (24, 81, 82).

Targeting entry
The sulfated sialic acid derivative NMSO3 inhibited HAdV-2/4,

and the mechanism of its anti-HAdV activity involved the inhibition

of viral absorption to cells by binding to viral particles (54).

Water-soluble complexes synthesized between arbidol and

polymer compounds retained the high level of anti-HAdV-3

activity of arbidol, which could inhibit fusion of the viral lipid

shell with membranes of endosomes located within the cell (83).

The salicylanilide drugs niclosamide and rafoxanide mainly

block HAdV-5/16 infection at some point between endosomal

escape and HAdV DNA release to the nucleus (84).

Targeting the early phase of infection
Ivermectin is an antiparasitic agent that has broad-spectrum

antiviral activity, including activity against HAdV. Specifically,

ivermectin disrupted the binding of the E1A protein to importin-

α, preventing E1A import into the nucleus and therefore

significantly reducing HAdV-3 replication (85).

Tanespimycin (17-AAG), an inhibitor of the HSP90 chaperone,

was also reported to inhibit HAdV-5 replication, and its

anti-HAdV activity might be explained by the reduction in E1A

levels (86, 87).

The critical roles of cyclin-dependent kinases (CDKs), which

are involved in the regulation of the cell cycle and transcription,

have made them attractive targets for the development of

antiviral drugs (88). Both pan-CDK inhibitors and other highly

selective CDK inhibitors have been reported to suppress HAdV

replication. The pan-CDK inhibitor flavopiridol blocked HAdV-

2/5 infections (89). Olomoleucine Ⅱ, a derivative of another

pan-CDK inhibitor, roscovitine, not only inhibits the replication

of HAdV-4 independently but also almost completely eliminates

HAdV-4 spread when used in combination with CDV (90).

Indirubin-3’-monoxime, the derivative of a bisindole alkaloid

indirubin, could inhibit various CDKs. It also exhibited potent

antiviral effects against HAdV-7/55 in vitro and in vivo, and was

founded to inhibit HAdV replication by downregulating RNA

polymerase Ⅱ C-terminal domain phosphorylation to suppress

viral infection (22). The selective CDK9 inhibitor FIT-039

suppressed the replication of HAdV-5 genomic DNA and the

transcription of the HAdV-5 early gene E1A (91). The CDK7

inhibitor LDC4297 has antiviral activity against HAdV-2 (92).

Targeting the late phase of infection
The inosine monophosphate dehydrogenase (IMPDH)

inhibitor mycophenolic acid (MPA) and the dihydroorotate

dehydrogenase (DHODH) inhibitor A3, which are involved in

the de novo synthesis of purines and pyrimidines, respectively,

led to a reduction in HAdV-5 DNA replication (93, 94).

The host factor retinoic acid receptor β (RARβ) also plays an

important role in HAdV replication. The blockade of HAdV-5/7/
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55 replication by the RARβ agonist tazarotene occurred after early

HAdV protein expression, preventing HAdV infection from

progressing into the late stage (95).

Verdinexor (KPT-335) was reported to have an anti-HAdV-5

effect by targeting exportin 1 to block the nuclear export of

critical viral components, thereby preventing late viral RNA from

being exported to the cytoplasm for translation (86, 96).

[Co(NH3)6]Cl3, a transition metal complex with a high positive

charge density, has demonstrated antiviral activity towards

HAdV-7 (97). Mechanistically, it binds strongly to negatively

charged nucleotides and then causes the condensation of viral

dsDNA into a toroidal-like superstructure, disturbing the viral

DNA packaging process.

HAdV-2/14 were also found to be highly sensitive to nelfinavir,

the active ingredient of the HIV aspartyl protease Viracept. It has

been demonstrated that nelfinavir inhibits the migration of

HAdV particles without perturbing other replication steps (98).

Although further studies are needed to fully characterize the

mechanisms of action of these compounds and molecules, these

findings provide novel insights into the HAdV replication cycle.
Prospects

The large increase in mortality caused by severe pneumonia

associated with HAdV infection emphasizes the urgent need for

effective and safe anti-HAdV therapy. Current therapeutic

modalities for HAdV infection are limited, including preemptive

suppression of HAdV replication using antivirals and/or

immunotherapy. Immunotherapy approaches, including infusion

of HAdV-specific T lymphocytes, are developed and promising,

but also are very labor intensive and expensive, restricting their

application. In parallel, the search for antivirals effective in

treatment and prevention of diseases caused by HAdV continues.

Most of the anti-HAdV compounds discussed in this review have

displayed some efficacy in vitro, as have others in vivo, and some

compounds are even being tested in clinical trials. HAdV

exhibits species-restricted phenotypes, making studying disease

progression and testing anti-HAdV agents in animal models

particularly challenging. However, several existing models, such

as immunosuppressed Syrian hamsters, humanized transgenic

mice, and lung organoids, are promising and have the potential

to evolve rapidly in the coming years (21, 37, 42, 58, 99–101).

Given that some compounds have been clinically approved for

other diseases, existing information on pharmacologic parameters
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might aid more extensive in vivo studies on their anti-HAdV

properties. New anti-HAdV compounds and therapeutic targets

could be developed further with the help of advanced drug

screening platforms and methods, together with developed

animal model. Thus, we are optimistic that suitable anti-HAdV

agents will soon be identified and developed.
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