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Deep learning-based automation
for segmentation and biometric
measurement of the gestational
sac in ultrasound images
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1Department of Computer Science, University of the Punjab, Lahore, Pakistan, 2Department of
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Introduction: Monitoring the morphological features of the gestational sac (GS)
and measuring the mean sac diameter (MSD) during early pregnancy are
essential for predicting spontaneous miscarriage and estimating gestational
age (GA). However, the manual process is labor-intensive and highly
dependent on the sonographer’s expertise. This study aims to develop an
automated pipeline to assist sonographers in accurately segmenting the GS
and estimating GA.
Methods: A novel dataset of 500 ultrasound (US) scans, taken between 4 and 10
weeks of gestation, was prepared. Four widely used fully convolutional neural
networks: UNet, UNet++, DeepLabV3, and ResUNet were modified by
replacing their encoders with a pre-trained ResNet50. These models were
trained and evaluated using 5-fold cross-validation to identify the optimal
approach for GS segmentation. Subsequently, novel biometry was introduced
to assess GA automatically, and the system’s performance was compared with
that of sonographers.
Results: The ResUNet model demonstrated the best performance among the
tested architectures, achieving mean Intersection over Union (IoU), Dice,
Recall, and Precision values of 0.946, 0.978, 0.987, and 0.958, respectively.
The discrepancy between the GA estimations provided by the sonographers
and the biometry algorithm was measured at a Mean Absolute Error (MAE) of
0.07 weeks.
Conclusion: The proposed pipeline offers a precise and reliable alternative to
conventional manual measurements for GS segmentation and GA estimation.
Furthermore, its potential extends to segmenting and measuring other fetal
components in future studies.
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1 Introduction

Early miscarriage, characterized by the sudden termination of a pregnancy in the

initial trimester, is a common complication that impacts approximately 20% of

pregnancies (1). It is an adverse pregnancy outcome that can occur despite the

detection of embryonic cardiac activity, with a reported incidence ranging from 5.2% to

10.4% (2). The significant factors associated with higher rates of miscarriage are

chromosomal and hormonal imbalances, infections, uncontrolled hypertension, and

diabetes, consumption of alcohol and cocaine, and recurrent miscarriage history (1).
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Common indicators of miscarriage include abdominal cramping,

vaginal bleeding, and the passing of tissues from the vagina. This

distressing event profoundly impacts the mother’s mental,

psychological, social, and emotional well-being, particularly for

individuals experiencing recurrent miscarriages (3).

Obstetricians conduct a thorough assessment of the gestational

sac’s (GS) morphological characteristics to identify signs of

potential miscarriage (4). An abnormally small or large GS size

compared to the expected size for the gestational week (GW)

may indicate an impending miscarriage (5). At the same time, a

GS with irregular or distorted contours could signal

potential abnormalities or developmental issues. A heterogeneous

appearance of the GS, characterized by areas of different textures,

may also be associated with abnormal pregnancies (2, 6). The

updated diagnostic guidelines for miscarriage by Condous et al.

(7) underscore that the absence of a yolk sac (YS) alongside the

mean gestational sac diameter (MSD) exceeding 25 mm or a GW

greater than 7.2 weeks is indicative of an empty sac miscarriage.

Therefore, accurate segmentation of the GS and precise estimation

of the gestational age (GA) are clinically essential for detailed

morphological analysis and reliable prediction of miscarriage risk,

aiding in early intervention and patient management (8).

In clinical practice, skilled sonographers often rely on manual

boundary tracing to segment the GS for morphological analysis,

followed by manual measurements of the maximum length (DM)

and short diameter (Dm) to estimate GA. This process depends

heavily on the sonographers’ visual expertise to accurately

interpret ultrasound (US) images (9). Additionally, this approach

can be time-intensive and challenging, especially when analyzing

a large volume of clinical images, which may affect diagnostic

accuracy, consistency, and efficiency (10, 11). Existing studies (9,

12, 13) have developed approaches for GS segmentation and GA

estimation, but these methods often depend on manual

identification of the region of interest (ROI) and are typically

limited to transvaginal sonography (TVS) scans of normal

pregnancies. This reliance on manual ROI selection and

restriction to specific scan types and pregnancy conditions can

limit their applicability in diverse clinical settings.

The primary aim of this study was to develop an advanced

pipeline with a higher degree of automation to enhance the

accuracy and consistency of GS segmentation and GA estimation

across diverse clinical scenarios, offering clinicians reliable

support in diagnostic decision-making. This involved creating a

diverse dataset comprising both normal and abnormal cases

captured through TVS and transabdominal sonography (TAS),

fine-tuning state-of-the-art deep learning models such as UNet,

UNet++, DeepLabV3, and ResUNet, and rigorously evaluating

their performance using multiple loss functions including Dice

Loss (DL), Jaccard Loss (JL), and Binary Cross-Entropy Loss

(BCEL), to identify the optimal model for accurate GS

segmentation. Additionally, the study sought to develop an

algorithm capable of accurately measuring key GS parameters

like DM and Dm to enable reliable GA estimation. By comparing

the automated system’s performance with that of experienced

clinicians, the study aimed to validate its clinical feasibility and

potential impact on diagnostic decision-making.
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2 Related work

The segmentation of the GS plays a pivotal role in clinical

decision-making and accurate GW estimation. Over the years,
numerous segmentation techniques have been developed to

enhance this process, including k-means clustering, active

contours, region growing, thresholding, shape priors, edge
detection, and deep neural networks. For instance, Khazendar

et al. (14) utilized Otsu’s method (15) to determine the optimal
threshold value for extracting the GS. They fitted an ellipse to the

segmented GS region to calculate the MSD. Otsu’s method

effectively separates the foreground from the background by
minimizing intra-class variance or, equivalently, maximizing

inter-class variance. This approach is particularly advantageous

when dealing with images that exhibit a bimodal histogram,
characterized by two distinct peaks representing the foreground

and background. However, its effectiveness diminishes in cases
where the histogram is unimodal or multimodal, as the pixel

intensity distribution may lack a clear delineation between the

foreground and background, leading to potential misclassification
and inaccurate results. Another study by Zhang et al. (16) located

GS in real-time frames of 2D US by manipulating coarse to fine
segmentation using the AdaBoost classifier. The model achieved

an average accuracy of 90+ 4:0%, with an average Haussdorf

distance of 9.83+7.79 pixels. Notably, the model tended to
underestimate the size of the GS when the GA exceeded 7 weeks.

Regional growth and active contour techniques were

employed by Ibrahim et al. (17) to segment the GS and

compute its geometric characteristics for the detection of early

abortion. However, it is generally noted that these methods

often necessitate significant contrast and a multitude of features,

making them less suitable for ultrasonic image segmentation

due to the considerable interference of strong noise. Yin et al.

(12) introduced a semi-automatic segmentation framework

aimed at aiding physicians in conducting quantitative GS

analysis and miscarriage prediction. The pre-processing stage

included manual cropping of the ROI, after which a coarse

segmentation was performed using the region-based Chan-Vese

(CV) active contour model. Subsequently, convex polygon

characteristic constraints were applied to refine the results,

ensuring an accurate fit for the quasi-round sacs. They utilized

a private dataset of 194 US images of GS, including TVS and

TAS scans, obtained during 6–9 weeks of pregnancy. The mean

Dice coefficient was 91.60%, and the Intersection over Union

(IoU) was 84.20%.

Pei et al. (13) identified Attention UNet as the optimal GS

segmentation model and introduced a biometry for GA

measurement. Their study utilized a dataset comprising 256

patients who underwent only TVS examination between 4.6 and

9.6 weeks of pregnancy. They achieved a mean Dice of 97.40%.

In another study, Liu et al. (9) employed a semi-automatic

technique to segment the GS, YS, and embryo regions. Initially,

the original images were cropped to isolate the relevant area of

interest before passing them through the AFG-net segmentation

model, which is an advanced UNet incorporating Attention

fusion and Guided filter modules. Their dataset consisted of 914
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TVS scans captured between 6–10 weeks of gestation. They

achieved a mean Dice of 96.70%.

While previous studies have demonstrated promising results,

they primarily employed semi-automatic techniques that rely on

manual ROI cropping, or they were confined to datasets

containing only TVS scans. Furthermore, many of these datasets

are not publicly accessible, hindering reproducibility and further

advancements in this field. This highlights the need for a more

comprehensive and accessible dataset that includes both TVS and

TAS modalities, aiming to eliminate the dependency on manual

cropping and enhance the automation and efficiency of the

segmentation process.
3 Materials and methods

3.1 Overview of proposed method

An overview of the proposed methodology for this research is

presented in Figure 1. The pipeline is structured into three key

stages to ensure a streamlined and systematic process for precise GS

segmentation and accurate GA estimation. Step 1 involves image
FIGURE 1

Flowchart illustrating the proposed methodology for dataset preparation
estimation.
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acquisition and dataset preparation, establishing a comprehensive

dataset for training and validation. Step 2 focuses on selecting the

optimal deep-learning model for GS segmentation. Finally, Step 3

implements an algorithm to estimate GA.
3.2 Image acquisition and dataset
preparation

The study received approval from the Ethics Committee of The

University of Lahore Teaching Hospital, Lahore, Pakistan, with

registration number ERC/108/23/08. All experiments adhered to

the principles outlined in the Declaration of Helsinki, and

written consent was obtained from all participants before

commencement. In this study, the US examination was

conducted by using Canon Aplio 300, equipped with PVT-

375BT (1.5–6.0 MHz) TAS transducer with center frequency

3.5 MHz and PVT-781VT (3–12MHz) TVS transducer with

center frequency 6.5 MHz. An accredited sonographer, Prof. Dr.

Faiza Farooq, has 15 years of expertise and has conducted all

scans. A standardized image acquisition protocol was adhered to,

wherein the sagittal section of the uterus was depicted and the
, optimal model selection for GS segmentation, and subsequent GA
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largest dimension of the GS was preserved. Parameters such as time

gain compensation, uniform gain, signal-to-noise ratio, and

dynamic range were configured in gynecological US mode.

Five hundred US images of GS between 4–10 weeks gestation

were stored in DICOM format. All images were presented in

split-screen views, with one side displaying the original image

and the other for biometric measurements. The split-screen

images initially had dimensions of 720� 960, which were

subsequently cropped for anonymization purposes and to align

with the segmentation network’s requirements, resulting in a

final size of 512� 512. The dataset includes 274 confirmed

instances of normal fetal development, with 158 TAS and 116

TVS US images. Additionally, it contains 226 cases of

miscarriage, encompassing scenarios like blighted ovum, absence

of cardiac activity, irregular sac shape, and sudden pregnancy

loss, with 147 TAS and 79 TVS US scans. Figure 2 provides a

detailed overview of the data, including the distribution of

abnormal and normal cases across GW.

Our dataset provides comprehensive pregnancy profiles for

each patient, including details such as maternal age, body mass
FIGURE 2

Overview of enrolled data with distribution of normal and abnormal cases a
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index (BMI), in vitro fertilization (IVF) or intracytoplasmic

sperm injection (ICSI), history of recurrent pregnancy loss

(RPL), and other relevant information, as summarized in

Table 1. BMI measures body fat based on height and weight and

is important to pregnancy health. Both high and low BMI levels

are associated with pregnancy risks, including gestational

diabetes, hypertension, and miscarriage. IVF is an assisted

reproductive technology where an egg and sperm are combined

outside the body in a laboratory, while in ICSI, a single sperm is

directly injected into an egg to facilitate fertilization. By isolating

pregnancies achieved through IVF or ICSI, researchers can better

assess any unique risks or outcomes associated with this

technique. RPL is defined as having two or more consecutive

miscarriages, often indicating an underlying health issue in either

partner. Documenting RPL in a patient’s profile is essential in

miscarriage studies, as it allows researchers to identify factors

that may elevate the risk of future pregnancy loss.

To establish the ground truth (GT) for GS segmentation, three

experienced sonographers, each with over five years of expertise,

voluntarily participated in the study. The process commenced
cross GW in each fold.
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TABLE 1 Pregnancy profiles of women included in the study.

Parameter Abnormal (n ¼ 226) Normal (m ¼ 274)
Maternal age in yearsa 32 (22–46) 29 (19–40)

GA in weeksa 8 (6–10) 7 (4–10)

BMIa 25 (14–40) 24 (13–40)

Graviditya 3 (1–5) 2 (1–4)

History of RPLb 6 (2.7) 17 (6.2)

IVF or ICSIb 27 (11.9) 15 (5.4)

Diabetesb 39 (17.3) 12 (4.3)

Hypertensionb 57 (25.2) 38 (13.8)

Thyroid disordersb 23 (10.1) 17 (6.2)

Genetic disordersb 17 (7.5) 5 (1.8)

Smoking or drugsb 3 (1.3) 1 (0.4)

IVF (in-vitro fertilization), ICSI (intracytoplasmic sperm injection), RPL (recurrent

pregnancy loss), BMI (body mass index).aData is given as median (range).bData is given as

number (percent).
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with de-identified US scans to protect patient privacy, with each

image assigned a unique identifier to ensure confidentiality. A

training session was conducted to familiarize the sonographers

with the GIMP 2.10.34 annotation tool and to standardize the

marking procedure. Each sonographer independently delineated

the GS region without knowing the others’ annotations. This

process resulted in three distinct annotations per image. The

final GT was then established by calculating the intersection of

the GS regions annotated by all three sonographers, ensuring a

consensus-based and highly accurate GT representation.
3.3 Segmentation networks

In this study, image segmentation was conducted using four fully

convolutional neural networks: UNet, UNet++, DeepLabV3, and

ResUNet. These architectures are extensively utilized in medical

imaging research and are known for their reliability and efficiency

(18). We employed transfer learning and fine-tuning to address the

challenges of limited data availability and improve performance.

Specifically, the original architectures were modified by replacing

their encoders with a ResNet50 backbone pre-trained on the

ImageNet dataset (19, 20). A brief description of each architecture

is provided below.
3.3.1 UNet
The classic UNet model was originally introduced for semantic

segmentation by Ronneberger et al. (21). It is a leading medical

image segmentation model used for various medical problems, with

a strategy that heavily relies on data augmentation techniques to

maximize the use of limited data. It comprises two main pathways:

the encoder, which is responsible for capturing contextual

information through compact feature maps, and the decoder, which

facilitates precise localization via transposed convolutions. The

encoder consists of multiple contraction blocks following a

ConvNet-like architecture, employing a series of repeated two sets

of 3� 3 convolutions with ReLU and the max-pooling layer of size

2� 2 with a stride of 2 to achieve downsampling. The expansive

pathway encompasses the upsampling of feature maps along with
Frontiers in Pediatrics 05
2� 2 convolution (termed ’up-convolution’) to reduce feature

channel dimensions, followed by concatenation with corresponding

feature maps from skip connections. This is succeeded by two sets

of 3� 3 convolutions with ReLU. Ultimately, a 1� 1 convolutional

layer is employed to map the component feature vectors.

3.3.2 UNet++
The UNet++ was developed by Zhou et al. (22) a modified

version of UNet. It integrates three notable enhancements: deep

supervision, dense skip connections, and redesigned skip

pathways. The incorporation of redesigned skip pathways

enhances the flow of information across various layers,

facilitating a more effective fusion of features and preservation of

contextual information. Meanwhile, dense skip connections

establish direct connections between all layers in the network,

enabling a seamless flow of both information and gradients

throughout the architecture. Additionally, deep supervision

integrates extra supervision signals at multiple intermediate

layers, which aids in better gradient propagation during training,

leading to improved learning of hierarchical features.

3.3.3 DeepLabV3
The DeepLabV3 architecture is presented by Chen et al. (23).

Atrous convolutions are extensively utilized throughout the

network to capture multi-scale contextual information without

significantly increasing the computational cost. The Atrous Spatial

Pyramid Pooling (ASPP) module further enhances the network’s

ability to capture context at various spatial resolutions by

incorporating parallel atrous convolutional layers with different

dilation rates. The decoder module refines segmentation results by

upsampling feature maps and incorporating skip connections to

recover spatial information lost during downsampling.

3.3.4 ResUNet
The ResUNet, introduced by Zhang et al. (24), replaces the

traditional encoder of U-Net with a pre-trained ResNet50

backbone in its architecture as depicted in Figure 3. The ResNet50

backbone comprises several residual blocks, each containing

multiple convolutional layers. Similar to UNet, it has a contracting

path (encoder) and an expansive path (decoder). The encoder

downsamples the feature maps, capturing hierarchical features

through convolution and pooling operations, and the decoder

upsamples the feature maps to generate segmentation masks, using

transposed convolutions or upsampling layers. Skip connections

between corresponding layers in the encoder and decoder allow

the model to capture local and global features while maintaining

spatial information.
3.4 Loss functions

Loss functions measure how well the model performs on the

training data (25). During the training process, minimizing the

loss function enables the model to improve its predictive

capabilities. Choosing an appropriate loss function involves

considering various factors such as data characteristics, desired
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FIGURE 3

Architecture diagram of the ResUNet model using ResNet50 as the encoder.
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outcomes, and model attributes. DL (26, 27) and JL (28, 29) are

selected for their capability to measure perfect overlap between

predicted and GT masks, prioritizing boundary accuracy and

aiding in precise delineation of structures. Conversely, BCEL

(30, 31) is adept for binary segmentation tasks, effectively

penalizing misclassifications and quantifying the minimal

difference between predicted and GT masks, which contributes

to faster convergence during training compared to other loss

functions. Detailed explanations for each are provided below.
3.4.1 Dice loss (DL)
For semantic segmentation, the DL is commonly used as a loss

function to quantify the disparity between GT masks and predicted

segmentation masks, as defined in Equation 1.

DL ¼ 1� 2jOGT > OPRj
jOGTj þ jOPRj (1)

Here, OGT represents the GT mask, and OPR is the predicted

segmentation mask. DL encourages the model to produce

segmentation masks with a higher overlap with the GT masks,

resulting in more accurate segmentation.
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3.4.2 Jaccard loss (JL)
JL is utilized as a loss function in semantic segmentation tasks

to measure the dissimilarity between OGT and OPR. It is based on

the Jaccard similarity coefficient, which calculates the intersection

over the union of OGT and OPR, as defined in Equation 2.

JL ¼ 1� jOGT > OPRj
jOGT < OPRj (2)

3.4.3 Binary cross-entropy loss (BCEL)
BCEL can also be used for semantic segmentation tasks,

especially when each pixel is treated as an independent binary

classification problem. This loss function penalizes the model by

assessing the difference between predicted probabilities and GT

labels for each pixel independently, as defined in Equation 3.

BCEL ¼ � 1
N

XH
i¼1

XW
j¼1

[yij log (pij)þ (1� yij) log (1� pij)] (3)

In this context, N represents the total number of pixels in the

image, while H is the height and W is the image’s width. Here,

yij corresponds to the GT label of the pixel, where it is assigned
frontiersin.org
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TABLE 2 Total number of trainable parameters and epochs.

Models Parameters Epochs
UNet 32521250 DL 60

JL 60

BCEL 65

UNet++ 48985890 DL 55

JL 55

BCEL 55

DeepLabV3 39633986 DL 60

JL 65

BCEL 65

ResUNet 33435410 DL 50

JL 55

BCEL 50

Algorithm 1 Gestational age (GA) estimation algorithm.

1: procedure MAINPROCEDURE(BinaryImage, PixelSpacing)

2: Input: BinaryImage and PixelSpacing

3: Output: Gestational Age in weeks (GW)

4: contour = MooreNeighborTracing(BinaryImage,(1,1))

5: minAreaRactangle = MinAreaRectangle(contour)

6: Find corners c1, c2, c3, c4 form minAreaRactangle

7: PScol = PixelSpacing[0]

8: PSrow = PixelSpacing[1]

9: dx1 = c2x � PScol � c1x � PScol
10: dy1 = c2y � PSrow � c1y � PSrow
11: dx2 = c3x � PScol � c1x � PScol
12: dy2 = c3y � PSrow � c1y � PSrow
13: DM =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dx1)2 þ (dy1)2

q

14: Dm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dx2)2 þ (dy2)2

q

15: GW = [0:5� (DM þ Dm)þ 2:543] 4 0:7

16: return GW

17: procedure MOORENEIGHBORTRACING(I, p0)

18: Define Moore 8-neighborhood)

19: Get the dimensions of the image I (rows, cols)

20: Initialize the boundary list B with the starting pixel p0

Danish et al. 10.3389/fped.2024.1453302
0 for the background and 1 for the foreground. Similarly, pij
signifies the predicted probability of the positive class for the

pixel at position (i, j).
21: Set p = p0
22: Find pixel p1 in the clockwise direction from p0
23: Set p0 as the current point p and p1 as the current neighbor c

24: repeat

25: Let n be the current neighbor c

26: for each neighbor of p in the counterclockwise direction from n do

27: If (I[n[0], n[1]] == 1)

28: Set n as the current neighbor

29: Set p = n

30: Add p to B

31: Set c to the current neighbor of p in the counterclockwise direction from
n

32: until p equals p0 and c equals p1
33: return B

34: procedure MINAREARECTANGLE(P)

35: Compute the convex hull of the points in P

36: Initialize min area to a large value

37: Initialize R with null dimensions

38: for each edge e in the convex hull do

39: Compute the angle u between e and the x-axis

40: Rotate all points in P by �u degrees

41: Compute the bounding box of the rotated points

42: Compute the area of the bounding box

43: if the area is smaller than min area then

44: Update min area to the new area

45: Update R with the dimensions and orientation of the bounding box

return R as the minimum area rectangle
3.5 Training procedure and optimized
parameters

In the first iteration of the 5-fold cross-validation (32, 33), we

selected 4 folds (400 US images) for the training set and 1 fold

(100 US images) for the validation set. The training set was

then augmented by applying 45-degree rotations, along with

horizontal and vertical flips, resulting in a total of 1,600

images. All models were trained using the PyTorch framework

on an NVIDIA Tesla K80 GPU with 12GB of VRAM. The

Adam optimizer was employed in all experiments due to its

superior performance compared to other algorithms. A learning

rate of 0.0001 was chosen, and a batch size of 2 was used for

both the training and validation datasets to ensure efficient

training. Table 2 shows the number of trainable parameters and

the optimal number of epochs, determined by stopping the

training when validation accuracy declined, as recommended by

(34). These hyperparameters were optimized by monitoring the

validation set performance. Additionally, to identify the

optimal GS segmentation model for our dataset, we conducted

extensive experiments by training our models using three

different loss functions: DL, JL, and BCEL. In each subsequent

iteration, we used 4 different folds for the training set and 1

fold for the testing set. All models were trained using the

previously optimized hyperparameter settings and evaluated on

the testing set. This process of training and testing was

repeated 5 times.
3.6 Gestational age estimation

The binary predicted mask obtained from the segmentation

model was input into our novel Algorithm 1 to estimate GW. A

step-by-step explanation is provided below:
Frontiers in Pediatrics 07
1. Read the segmented GS binary image.

2. Apply the Moore Neighbor Tracing boundary-following

algorithm (35) to extract the contour of the binary image.

This algorithm traces the outer boundary of connected

components using the Moore neighborhood, which considers

the eight surrounding pixels for connectivity.

3. Determine the minimum area rectangle of the GS contour. This

rectangle has the smallest possible area among all enclosing

rectangles and is oriented such that its sides are not

necessarily aligned with the coordinate axes.

4. Identify the four corner points (c1, c2, c3, and c4) of the

minimum area rectangle.
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5. Extract the column pixel spacing (PScol) and row pixel spacing

(PSrow) from the metadata.

6. Calculate the maximum length (DM) and short diameter (Dm)

of the minimum area rectangle using the modified Euclidean

distance equations, as defined in Equations 4 and 5. Both

DM and Dm are measured in centimeters (cm).

7. Compute the GW using the Hellman method (36), as defined

in Equation 6.

DM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c2x � PScol � c1x � PScol)

2 þ (c2y � PSrow � c1y � PSrow)
2

q

(4)

Dm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c3x � PScol � c1x � PScol)

2 þ (c3y � PSrow � c1y � PSrow)
2

q

(5)

GW ¼ 0:5� (DM þ Dm)þ 2:543
0:7

(6)
3.7 Evaluation metrics

3.7.1 Region-based metrics
Four popular region-based evaluation metrics (37) for

segmentation algorithms have been used in this paper. The IoU

is calculated as the ratio of the intersection area between OGR

and OPR regions to the area of their union, as defined in

Equation 7. Here, OPR denotes the predicted result and OGT is

the expert’s provided GT.

IoU ¼ jOGT > OPRj
jOGT < OPRj (7)

The Dice coefficient is another metric used to quantify the

similarity between two sets. It is computed as twice the

intersection area between the OGR and OPR regions to the sum of

their areas, as defined in Equation 8. Its range lies between 0 and

1, where a higher value indicates a superior segmentation outcome.

Dice ¼ 2jOGT > OPRj
jOGTj þ jOPRj (8)

Recall evaluates a model’s capacity to accurately detect positive

instances, quantified as the ratio of the intersection area between

OGR and OPR regions to the area of OGR region, as expressed in

Equation 9. A high recall value signifies proficient identification

of positive instances with minimal missed positive instances.

Recall ¼ jOGT > OPRj
jOGTj (9)

Precision gauges the accuracy of positive instance

identifications relative to all instances labeled as positive by the

model. It is computed as the ratio of the intersection area
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between OGR and OPR regions to the area of OPR region, as

expressed in Equation 10. A high precision value signifies

minimal false detections by the model.

Precision ¼ jOGT > OPRj
jOPRj (10)
3.7.2 Bland–Altman plots
Bland–Altman plots (38) serve as a graphical tool for

assessing the agreement between two distinct measurements.

Particularly useful when comparing two techniques that

measure the same entity. These plots represent the

discrepancies between the measurements from the two

methods on the y-axis, with the mean of the measurements

depicted on the x-axis. They provide valuable insights into

potential systematic biases between the methods, aiding in

identifying consistent differences in measurements.
4 Results

4.1 Evaluation of GS segmentation models

The quantitative results for all segmentation models, each

optimized with different loss functions in a single-fold validation,

are presented in Table 3. Notably, ResUNet with DL achieved the

highest performance, with an IoU of 92.73%, a Dice score of

96.2%, a Recall of 97.84%, and a Precision of 94.70%. Figure 4

illustrates the learning curves for all models, demonstrating

smooth and stable trajectories that reflect successful training and

convergence using the DL function. This configuration effectively

balanced false negative (FN) and false positive (FP) detections,

improving segmentation outcomes. Additionally, it demonstrated

impressive processing efficiency, completing the task in just 1.5 s

per image, as shown in Table 3. The qualitative comparisons of

segmentation outputs are depicted in Figure 5, highlighting that

ResUNet consistently achieves lower missed and false detection

rates than the other methods. Additionally, two cases of poor

segmentation, shown in Figure 6, are likely due to incomplete

visibility of GS boundaries, which may have impacted the

model’s performance in these instances.

The box plots in Figure 7 demonstrate that ResUNet with DL

achieved the highest average scores across all metrics, with the

smallest fluctuation range, indicating greater stability. In

contrast, other models exhibited lower average scores and wider

fluctuation ranges, suggesting variability in segmentation

quality. The correlation between Recall and Precision facilitates

an in-depth analysis of segmentation performance. In

Figures 8a–c, alternative segmentation methods demonstrate

high Recall but low Precision, indicating a higher rate of false

detections and a lower rate of missed detections. Conversely,

Figure 8d highlights the performance of ResUNet with DL,

which achieves an optimal balance between false and missed

detection rates.
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FIGURE 4

Learning curves measured by Dice Similarity Coefficient (DSC) for all compared segmentation models. (a) Training Loss, (b) Validation Loss.

TABLE 3 Evaluation of GS segmentation using different loss functions.

Models Loss IoU Dice Recall Precision Processing time(s)/image
UNet DL 0.8647 0.9233 0.9525 0.9020 2.1

JL 0.8592 0.9175 0.9283 0.9221 2.5

BCEL 0.8577 0.9164 0.9374 0.9124 1.5

UNet++ DL 0.8660 0.9263 0.9539 0.9049 5.9

JL 0.8449 0.8976 0.9249 0.8753 6.3

BCEL 0.8601 0.9203 0.9498 0.9009 6.1

DeepLabV3 DL 0.8496 0.9119 0.9473 0.8948 4.6

JL 0.8528 0.9101 0.9381 0.8864 6.1

BCEL 0.8551 0.9146 0.9210 0.9273 4.6

ResUNet DL 0.9273 0.9621 0.9784 0.9470 1.5

JL 0.9258 0.9613 0.9752 0.9484 2.7

BCEL 0.9172 0.9564 0.9694 0.9446 1.6

Bold values highlight the highest performance scores across various segmentation models with different loss functions, based on the evaluation metrics.
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More reliable estimates of each model’s performance, obtained

through 5-fold cross-validation, are presented in Table 4. ResUNet

with DL achieved the highest mean scores across key metrics, with

an IoU of 94.60%, a Dice coefficient of 97.80%, a Recall of 98.70%,

and a Precision of 95.80%. This consistent performance across

folds highlights ResUNet’s stability and makes it the optimal

choice for achieving accurate and reliable GS segmentation in

clinical applications. Table 5 demonstrates that our approach

outperforms competing GS segmentation methods, achieving

superior evaluation outcomes across all metrics.
4.2 Evaluation of GA estimator

Figure 9 shows the output of our GA estimation algorithm

applied to various multi-angled GS examples. The algorithm

accurately delineates a minimum-area rectangle around the

segmented GS region, allowing for precise measurements of the

DM and Dm. Additionally, Figure 10 presents the Bland–Altman
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analysis comparing GA estimates from our proposed pipeline with

those provided by clinicians. The analysis reveals a mean difference

of �0.02 weeks, indicating minimal bias between the two methods.

The 95% limits of agreement were calculated at 0.29 and �0.34

weeks, with only five measurements falling outside this range,

demonstrating a high level of agreement between the human

(clinician) and machine (automated) estimates. Furthermore, the

mean absolute error (MAE) was 0.07 weeks, further supporting the

accuracy and reliability of our GA estimation pipeline.
5 Discussion

Accurate segmentation and biometric measurements of the GS

are essential for monitoring fetal growth and development,

identifying potential abnormalities, and improving predicting

pregnancy outcomes. Traditionally, these tasks rely on clinicians’

manual measurements, which can be time-consuming and prone

to variability, potentially impacting consistency and diagnostic
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FIGURE 5

Comparison of segmentation results from various algorithms are presented: The first column shows the original US images, followed by segmentation
outputs from UNet, UNet++, DeepLabV3, and ResUNet. Each row represents a distinct US image sample, with red contours indicating automated
segmentation results and green contours representing the GT annotations. (a) Orignal Input, (b) UNet, (c) UNet++, (d) DeepLabV3, (e) ResUNet.
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accuracy. In this study, we developed an automated pipeline for GS

segmentation and GA estimation to enhance the accuracy and

consistency of diagnostic workflows. Four deep-learning models

(UNet, UNet++, DeepLabV3, and ResUNet) were utilized for the

GS segmentation task, and their results were analyzed and

compared. ResUNet with DL function outperforms the other

three by achieving the highest average scores across all metrics

with the smallest fluctuation range. It exhibits greater stability

and a balance between false and miss detection rates.

The Bland–Altman analysis allows researchers to visually

evaluate the degree of agreement, identify systematic biases, and

determine whether the machine’s performance aligns closely with
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that of clinicians. In our case, the analysis reveals that the GA

estimator introduces minimal bias compared to clinician

estimates, with the 95% limits of the agreement being narrow,

indicating a high level of consistency between the two methods.

This consistency is vital in clinical practice, where accurate and

reliable GA estimation is crucial for patient care. The results

suggest that our algorithm is well-suited for integration into

clinical workflows, providing a more objective and consistent

alternative to manual measurements.

Direct comparison with the previous studies was challenging due

to the unavailability and variations in the datasets. Our dataset

stands out in contrast to those used by Liu et al. (9), Yin et al.
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FIGURE 6

Two examples of poor segmentation results from various algorithms are presented: The first column displays the original US images, followed by
segmentation outputs from UNet, UNet++, DeepLabV3, and ResUNet. Each row corresponds to a distinct US image sample, with red contours
denoting automated segmentation results and green contours illustrating the GT annotations. (a) Orignal Input, (b) UNet, (c) UNet++, (d)
DeepLabV3, (e) ResUNet.

FIGURE 7

Box plots showing IoU, Dice, Recall, and Precision metrics achieved by different GS segmentation models. (a) IoU, (b) Dice, (c) Recall, (d) Precision.
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FIGURE 8

Recall-Precision analysis plots demonstrating the performance of different GS segmentation models. (a) UNet, (b) UNet++, (c) DeepLabV3, (d)
ResUNet.

TABLE 4 Evaluation of GS segmentation using 5-fold cross-validation (mean + standard deviation).

Models IoU Dice Recall Precision
UNet 0:864+ 0:105 0:911+ 0:075 0:932+ 0:059 0:923+ 0:099

UNet++ 0:873+ 0:076 0:925+ 0:046 0:941+ 0:070 0:909+ 0:052

DeepLabV3 0:854+ 0:125 0:914+ 0:100 0:927+ 0:118 0:910+ 0:074

ResUNet 0:946+ 0:017 0:978+ 0:009 0:987+ 0:008 0:958+ 0:017

The bold highlighted scores represent the highest performance of our method compared to state-of-the-art models and existing methods, based on the evaluation metrics.

TABLE 5 Comparison of segmentation results with competing methods (mean + standard deviation).

Methods IoU Dice Recall Precision
Liu et al. (9) 0:785+ 0:051 0:855+ 0:049 0:866+ 0:027 0:884+ 0:030

Yin et al. (12) 0:585+ 0:032 0:690+ 0:046 0:637+ 0:021 0:859+ 0:075

Pei et al. (13) 0:852+ 0:037 0:909+ 0:034 0:917+ 0:026 0:902+ 0:030

This work 0:946+ 0:017 0:978+ 0:009 0:987+ 0:008 0:958+ 0:017

The bold highlighted scores represent the highest performance of our method compared to state-of-the-art models and existing methods, based on the evaluation metrics.

FIGURE 9

Examples of multi-angle GS measurements with corresponding GA estimations obtained using the proposed GA estimator.
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(12), and Pie et al. (13) due to its comprehensive inclusion of both

TVS and TAS scans and its diverse representation of cases, covering

both normal and abnormal pregnancies. Unlike the datasets used by

(9, 13), which primarily consist of normal cases via TVS US

examination, our dataset provides a broader perspective. Although

Yin et al. (12) utilized both TVS and TAS scans, their collected

samples were limited to 6 to 9 weeks of gestation, whereas our

dataset spans a wider GA range from 4 to 10 weeks. Moreover,
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the techniques by (9, 12) require manual cropping or pre-

processing to focus on the ROI. In contrast, our approach

performs automatic GS segmentation, eliminating the need for

manual ROI selection. This increased level of automation

enhances workflow efficiency and makes our method more

practical for real-time assistance in clinical settings. To enable a

fair comparison, we re-implemented competing methods on our

dataset, where our approach demonstrated superior performance.
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FIGURE 10

Bland–Altman plot illustrating the relationship between the differences and averages of GA estimates from the doctor and the AI-generated estimates.

Danish et al. 10.3389/fped.2024.1453302
The key contributions of this study include the development of a

novel dataset comprising both TVS and TAS US scans,

encompassing a diverse range of cases, including normal and

abnormal pregnancies from 500 participants. We fine-tuned four

widely utilized segmentation models, namely UNet, UNet++,

DeepLabV3, and ResUNet, by integrating a pre-trained ResNet50

encoder, achieving state-of-the-art performance for each model.

Our findings identified that using ResUNet with a ResNet50

encoder and DL provides an optimal solution for GS

segmentation, representing a pioneering approach in this area.

Furthermore, we developed a novel algorithm to perform

biometric measurements of the segmented GS region, such as the

DM and Dm, for accurate GA estimation. This advancement can

assist clinicians by providing an accurate and consistent alternative

to traditional manual methods for pregnancy assessment.

While our method yields promising results, there are some

limitations to consider. First, this study was conducted as a single-

center investigation, which may limit the generalizability of the

findings across diverse clinical settings. Additionally, the sample

size was also relatively small, which could restrict the model’s

robustness and ability to generalize effectively across larger

populations. Another limitation is the dependence on standard

plane extraction, where the largest view of the GS is visible. These

planes were manually identified and captured by experienced

sonographers during live examinations, serving as the input

images for the proposed pipeline. To address these limitations,

future work will focus on expanding our dataset by collaborating

with multiple centers. This collaborative approach will enable us to

gather a larger and more diverse sample. Additionally, we aim to

refine our pipeline by incorporating real-time image analysis, the

system would identify the largest and most relevant GS view

automatically, reducing reliance on manual selection and

minimizing variability across sonographers. Moreover, we intend
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to broaden the scope of our research to include the segmentation

and measurement of other fetal components.
6 Conclusion

In conclusion, we developed an advanced pipeline to support

sonographers in accurately estimating GA. This study leveraged a

novel dataset of early gestation US scans (4–10 weeks) from TVS

and TAS modalities. Our evaluation of four segmentation models

demonstrated that ResUNet with a ResNet50 encoder, optimized

with DL, achieved superior performance in GS segmentation

compared to existing methods. Additionally, we introduced a

novel biometry-based approach for GA estimation, offering a

robust and consistent tool for prenatal monitoring. This pipeline

has significant potential to enhance accuracy, standardization,

and efficiency in clinical settings.
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