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Continuous monitoring of high-risk neonates is essential for the timely
management of medical conditions. However, the current reliance on
wearable or contact sensor technologies for vital sign monitoring often leads
to complications including discomfort, skin damage, and infections which can
impede medical management, nursing care, and parental bonding. Moreover,
the dependence on multiple devices is problematic since they are not
interconnected or time-synchronized, use a variety of different wires and
probes/sensors, and are designed based on adult specifications. Therefore,
there is an urgent unmet need to enable development of wireless, non- or
minimal-contact, and non-adhesive technologies capable of integrating
multiple signals into a single platform, specifically designed for neonates. This
paper summarizes the limitations of existing wearable devices for neonates,
discusses advancements in non-contact sensor technologies, and proposes
directions for future research and development.
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Introduction

Historically, pediatric medical devices have been modified or directly adapted from

adult versions, with a mere 10% of FDA approvals from 2008 to 2018 awarded for

patients <18 years of age (1). This approach is especially problematic for neonatal

patients, as prototypes designed for adults are ill-suited for neonates who are smaller,

more fragile, and have vastly different physiologic parameters than adults. Unlike the

stable and predictable physiology of adults, neonatal physiology represents the dynamic

transition from intrauterine to extrauterine life, presenting a unique opportunity for the

development of specialized monitoring devices. Current technologies have limitations,

including risks of iatrogenic injury and barriers to effective care. Therefore,

advancements in multi-modal, non-adhesive, and wireless sensors for neonates are

urgently needed to improve patient care.
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http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2024.1442753&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fped.2024.1442753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2024.1442753/full
https://www.frontiersin.org/articles/10.3389/fped.2024.1442753/full
https://www.frontiersin.org/articles/10.3389/fped.2024.1442753/full
https://www.frontiersin.org/articles/10.3389/fped.2024.1442753/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2024.1442753
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Krbec et al. 10.3389/fped.2024.1442753
Current wearable technologies

Wearable sensor technologies play a crucial role in modern

neonatal care, providing continuous monitoring of heart rate

(HR), respiratory rate (RR), and oxygen saturation (SpO2),

along with the potential to measure additional physiological

signals. Significant advancements have been made in wearable

and wireless sensors for neonates and infants, offering a

comprehensive range of monitoring capabilities. However, these

devices still have significant limitations that can adversely affect

neonatal outcomes. Typically designed for adults and then

adapted for neonates, these sensors often result in poor fit,

discomfort, and increased risk of injury. For example, the strong

adhesive used on electrocardiogram (ECG) electrodes can

damage the very thin epidermis of a preterm neonate upon

removal causing significant injury, pain, and the potential for

infection (2). Approximately 4% of neonates leave the NICU

with cosmetically or functionally significant scars (3). Exposure

to pain in the most immature neonates has been associated

with suboptimal brain growth and poorer long-term

neurodevelopmental outcome (4). The rigidity and bulkiness of

these devices can also hinder nursing care and restrict parental

interactions. Issues such as sensor displacement or calibration

problems can also lead to delayed diagnoses (5).

Wire- tethered wearable devices can impede essential neonatal

care and prevent parental contact and bonding (6). The physical

barriers created by wired sensors complicate routine care such as

feeding, diaper changes, and skin-to-skin contact (e.g., kangaroo

care), a practice shown to improve neurodevelopment, weight

gain, and parental confidence (7). Furthermore, the reliability of

wearable sensors is often compromised by issues such as sensor

displacement and calibration shifts, particularly in an active

neonatal environment where the constant movement and

handling of tiny patients can easily disrupt sensor placement and

accuracy. Minor changes in sensor signals, typically dismissed as

artifacts in adults, may be significant in neonates. Sensor

displacement can lead to inaccurate monitoring, false alarms, and

increased stress and costs for healthcare providers. Calibration

drifts can cause erroneous readings and alarms, undermining the

reliability of these devices for precise monitoring (5). A key

example is the use of contact-based ECG, which serves as

a fundamental diagnostic and measurement tool in the

cardiovascular field (8). HR measurements developed in the

1960s remains the staple sensor technology used to this day. The

ability to detect the heart’s electric field is influenced by many

factors including the skin, electrolytic paste, electrodes, and their

mechanical contact (8). Additionally, capacitive sensing is highly

susceptible to body motion, as poor sensor coupling can

negatively affect ECG recordings (5).

ECG and SpO2 correlate 94% of the time, but less so as HR

increases (5, 9). Accurate recording of the electrical potential

generated by the heart also requires proper electrode placement

(operator dependent), which may interfere with the neonate’s

movements and interaction with parents and/or caretakers (10).

Detaching the adhesive electrode not only carries the risk of

iatrogenic skin injury, but also requires opening the isolette more
Frontiers in Pediatrics 02
frequently to adjust the sensors, thereby increasing the neonate’s

risk of heat loss and infection (11, 12). This has resulted in

attempts to increase the distance between the ECG electrodes

and the patient by using non-adhesive ECG electrodes placed a

few millimeters from the infant, usually embedded in a mattress,

fabric, or clothing (5). However, integration of such approaches

into standard NICU clinical practice remains limited,

necessitating further refinement to ensure compliance, accuracy,

and reliability (13).

Additionally, while RR can be continuously assessed through

technologies such as respiratory inductive plethysmography or

nasal airflow, these methods are not generally tolerated by

neonates. Alternative methods like piezoelectric sensors and

electrical impedance pneumography (EIP) have been explored,

but they are significantly affected by noise and motion artifacts

(14). Currently, RR is monitored through chest impedance,

which cannot detect obstructive apnea and often confuses cardiac

signals with breathing during apneic episodes (15, 16). Moreover,

while temperature is typically monitored using wired thermistors

attached to the skin, these sensors often dislodge which can

cause errors in temperature regulation (17). Finally, techniques

for measuring SpO2 such as doppler ultrasound and

photoplethysmography (PPG) pose challenges such as motion

artifacts, delayed HR display times, and the potential risk of

burns specifically associated with PPG (18, 19).

Frequent issues with adhesive sensors often necessitate their

removal and replacement multiple times during a patient’s

hospital stay (20). In low-resource hospitals, the lack of access to

quality electrodes and the need to dispose of inaccurate ones

further increases costs (10, 21). To address these challenges in

monitoring vital signs in neonates, current research is focusing

on non-contact approaches (22).
Remote sensing technologies

Non-contact devices offer the potential for continuous

monitoring without the adverse effects associated with direct skin

contact. The developmental processes for these technologies are

complex, involving extensive research and testing to ensure

accuracy, reliability, and safety. Over the last 15 years,

developments in camera technology have coincided with

improved availability and affordability, leading to increased

interest in their use in healthcare settings (23). Remote sensing

technologies that apply machine vision (visible/infrared), audio

recording, and motion tracking (radar/accelerometer) for

health monitoring have mainly focused on adults, while related

studies in neonates have been constrained by the size of the

population, safety, and the need for large equipment at the

bedside. Sensors with potential applications for neonatal

monitoring are classified into image-based visible, image-based

infrared, and radar-based sensors (Table 1).

Investigations have focused on optical and camera-based systems

using inexpensive webcams and smartphone/tablet cameras in the

visible and near-infrared spectrum (400–1,000 nm) to detect HR,

RR, and SpO2 from subtle changes in skin color or volume, with
frontiersin.org
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TABLE 1 Description of Non-contact technologies.

Technology Vital signs Description Scenarios Pros Cons
Image-based
Visible light

HR, HRV, RR,
SpO2

Uses visible light to detect subtle
changes in skin color or motion

Pilot studies included all patient positions in
isolettes and open cribs, most have infants in
supine position ± wrap/clothes, stable patients,
very few with resp support, most have ROIs
manually selected

High spatial resolution Affected by ambient
light, limited
performance in low
light

Image-based
infrared

RR,
Temperature,
SpO2

Detects infrared emission/
absorption of the body to
monitor blood flow,
temperature, and RR

Supine and prone in isolettes and open cribs ±
wrap/clothes, ROI selected

Works in low light,
measures temperature
distribution

Lower spatial resolution
compared to visible
light, prone to drift

Radar-based HR, HRV, RR Uses radar waves to detect
minute movements caused by
cardiac and respiratory activities

Supine, prone, and side-lying, some co-bedded
with twin, isolettes and open cribs ± wrap/
clothing, acute patients, respiratory support

Not affected by
lighting conditions,
can work through
clothing

Requires precise
calibration and more
complex algorithms

HR, heart rate; HRV, heart rate variability; RR, respiratory rate; ROI, region of interest.
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the first report of camera-based non-contact technology for

monitoring HR reported by Villarroel et al. in 2014 (14, 23).

Technological advancements now incorporate advanced

algorithms capable of filtering out noise from movement and

ambient light, thereby improving accuracy, reliability, and the

capacity to measure expansive fields of view. Video-based sensing

is inexpensive and safe, yet certain modalities are susceptible to

ambient light variations that influence signal quality and have

difficulties identifying suitable periods and regions for analysis

(14, 24). These regions of interest (ROI) are rectangular areas on

the patient’s skin such as the face, head, or neck which are used

to estimate alterations in color and volume with each heartbeat

by reflectance (14). Most studies have focused on information

generated from the skin, with many monitoring periods lasting

under 5 min (23). Thermal imaging utilizes infrared cameras to

measure temperature variations around the nose and mouth,

which correlates with RR (23). This method is particularly

advantageous as it is less affected by the visual obstructions that

can compromise other camera-based systems.

Radar technologies employ radio frequency signals to detect

movements related to HR and RR (11, 25). Radar offers a

promising non-contact method for continuous monitoring of

neonates, capable of operating under various conditions without

requiring direct line-of-sight or contact with the skin. Other

advantages include the ability to penetrate various materials and

minimal responses to changes in lighting or variations in skin

complexion; such issues have affected RGB cameras and pulse

oximeters (11). Radar can be packaged compactly, has low power

consumption and high spatial resolution, and is affordable, easy

to use, and resilient against multipath interference (26). Three

main types of radar systems have been proposed for the

recording of vital signs in neonates: continuous wave (CW),

frequency modulated continuous wave (FMCW), and ultra-

wideband (UWB) (22). CW radar is effective for tracking steady

or slow-moving objects, making it suitable for monitoring stable

vital signs. FMCW radar is excellent for precise measurements of

chest displacement during breathing cycles, providing detailed

data on RR and patterns of respiration (27). UWB radar provides

high-resolution detection of finer movements due to its high

spatial resolution, which is critical for monitoring the subtle
Frontiers in Pediatrics 03
physiological changes in neonates. UWB technology is accurate

and can differentiate between voluntary movements and those

attributed to breathing or cardiac activity (28).

Radar systems are highly sensitive to micro-movements,

enabling the detection of minute motions of a neonate’s chest or

abdomen to provide reliable vital sign monitoring. Studies from

Japan have demonstrated that radar can be used to measure RR,

HR, inspiratory to expiratory ratio, and heart rate variability

(HRV) with unique advanced signal processing methods (24).

Radar technologies can also penetrate non-metallic materials

such as clothing and blankets, allowing monitoring to occur

without disturbances. Despite its appeal, radar is limited by

motion and noise interference, commonly seen in neonates. Most

of the reported research in clinical settings places the radar

devices only a few cm from the infant’s chest, typically attached

to a tripod at the bedside or on top of the isolette (5).

Remote sensing technologies offer the potential for

simultaneous data collection from multiple regions to allow for

estimation of more than one vital sign by a single monitor (23).

Highly developed remote sensing techniques can provide very-

high-resolution (VHR) in both spatial and spectral domains.

However, the complexity requires novel algorithms to process

these images and extract spatial/structural features. A preferred

approach is to explore effective spatial features and integrate

them with spectral information to improve performance of image

interpretation (29). Research is ongoing to enhance signal

processing algorithms by filtering out irrelevant movements and

improving the accuracy of vital sign detection. Research in

neonates has been limited to short-term studies with tightly

controlled conditions and healthy subjects (14). For widespread

adoption, these technologies must be robustly validated against

clinical standards and seamlessly integrated into existing clinical

workflows without disrupting care.
Artificial intelligence (AI)

The wealth of existing and capturable data in healthcare is well

suited for implementation of AI methods to synthesize, analyze,

and extract valuable underlying health metrics. Deep learning is
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a form of AI that is based on artificial neural networks that

consolidate prior data to quantify and predict new data. It has

the capability of extracting features like subtle changes in

movement or skin color that correlate with vital signs and

various pathologies.

Convolutional Neural Networks (CNNs) are essential for

advancing non-contact monitoring technologies focused on

processing image data. CNNs leverage a hierarchical learning

framework (or layers of processing units) to automatically learn,

generalize, and extract high-level features from raw image data,

making them adept at capturing robust spatial features crucial

for precise monitoring (29). Traditional frameworks are often

challenged to recognize important spatial patterns in images.

CNNs overcome this by learning representations layer by layer,

which allows for the extraction of deep features necessary for

tasks like image classification, segmentation, and action

recognition (29–31). CNNs can combine convolutional and fully

connected layers in innovative ways, enabling large-scale image

classification and higher levels of performance (31–33). In

neonatal care, these networks are able to detect whether a patient

is within the camera’s field of view and undergoing a clinical

intervention (31). Although CNNs appear to be able to adapt to

the unique challenges posed in monitoring neonates, these

systems face challenges performing in low light conditions and

exhibit false readings due to abrupt changes in light or motion.

Additionally, false negatives can be caused by the movement of

individuals in the field of view that are not the subject (31).

Recent research has focused on the need for training these

networks across different camera setups and positions, with

ongoing attempts to address the unique challenges of neonatal

whole-body proportions in human parsing (or body part

segmentation) (34, 35). Neural networks can be trained to

recognize patterns associated with physiological processes and

detect anomalies, where early detection may lead to more timely

interventions (36). Additionally, deep learning can help mitigate

errors in sensor data by providing more accurate estimations of

vital signs through sophisticated algorithms that learn over time (37).

Deep learning models do face their own challenges and

limitations. Effective training of neural networks requires large

datasets, which depend heavily on the diversity, inclusiveness,

and representation of the population. Additionally, the need for

manual annotations by clinicians and the “black box” nature of

deep learning models pose significant challenges. In clinical

settings, it is crucial for clinicians to understand the basis of the

model’s predictions (36). Assimilation into clinical workflow

involves not only integrating the technology itself, but also

ensuring its accessibility and usefulness for clinicians (36).
Heart rate (HR) and HR variability (HRV)

HR monitoring has evolved significantly with the advancement

of imaging technologies and signal processing algorithms. The

primary methodology involves PPG which analyzes subtle color

and volume changes on the skin surface, detectable through

multichannel cameras operating within the visible spectrum (23).
Frontiers in Pediatrics 04
These invisible skin color variations can be used to measure

cardiac activity and determine HR by magnifying the hemoglobin

absorption in illuminated tissue in systole vs. diastole (2). HR

estimation in infant populations has been achieved by using this

methodology to monitor skin color fluctuations synchronized

with the cardiac cycle, utilizing the green channel of an RGB

camera and then applying a Fast Fourier Transform (FFT)

analysis (38). Furthermore, in 2014 Blanik et al. integrated passive

infrared thermography imaging for surface temperature

measurement with active optical measurement of skin perfusion

for HR, highlighting potential synergies between different sensing

modalities (31, 39) (Table 2A).

Another approach involves quantifying chest movements

induced by heart muscle contractions, at amplitudes ranging

from 0.2 to 0.5 mm, which is sufficient to extract HR

measurements (2). Scalise et al. have utilized webcam-based

tracking of skin surface movement to estimate HR by using a

large light band source to illuminate the subject’s skin surface

uniformly while the camera was placed 20 cm from the infant’s

face (40). While successful in propagating a hemodynamic

waveform, this method was impractical in hospital settings due

to the constant need for illumination.

Radar technologies have also been refined to detect small chest

wall movements in adults, but this is challenging in neonates due to

their smaller heart size, faster HR, and lower cardiac output (26).

Additional steps are required, including the use of band-pass

filters to eliminate respiratory effort frequencies and the

development or adaptation of data processing algorithms

specifically tailored for neonates (26).

Different neonatal pathological states can be associated with

changes in HRV and may represent a possible prognostic marker

that can be extracted from various monitoring technologies (26).

HRV describes the oscillation of the R-R interval between

consecutive beat-to-beat, as well as the oscillations between

consecutive instantaneous heart rates. For example, HRV has

shown promise as a potential predictor of sepsis and its

associated mortality (41).
Respiratory rate (RR)

Monitoring of RR in neonates has been approached through

various non-contact techniques (Table 2A,B). RR can be

measured by analyzing the movement of the torso due to

inhalation and exhalation from a variety of cameras including

near-infrared (NIR), mid-wave infrared (MWIR), long-wave

infrared (LWIR), and visible light spectrum (23). Detecting subtle

changes in diaphragm movement forms the foundation of

motion-based sensing techniques (2, 16). However, breathing

movements are complex, involving different patterns of motion

in the chest wall surface, abdomen, shoulders, and back. This

makes it difficult to identify time-domain models that fully

characterize respiratory signals and separate them from

movements unrelated to breathing (16, 42).

Another challenge of camera-based technologies is that

neonatal movements can have low spatial amplitudes which are
frontiersin.org
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TABLE 2 Description of studies.

2A – Image-based technologies

Study
& year

Msmt
parameter

Population
[gestational
age (weeks)
& weight

(gr)]

Study
environment

Sample
size and
recording
duration

Sensor type Sensor
placement

Major
limitations

Results

(48),
2011

RR 29; NA NICU; single
center

n = 7; 2 min
phases

IRT camera,
manual ROI
selection

IR camera 70–
80 cm from
patients in in
isolette/radiant
warmer, nostrils
in direct optical
contact and
visible

Temp changes from
interventions, IRTR
higher in isolette,
small Vt in neonates,
no true comparison
sensor

Clear changes in
temp over the
nasal region,
IRTR msmt not
correlated with a
classical
reference sensor
but quality
approaches ECG

(40),
2012

HR 33 + 2.5; 2,204 +
800

NICU; single
center

n = 7; 4 min Digital web
camera, manually
selected ROIs

Large band light
source used to
illuminate subject
skin surface
placed 1 m away

Environmental
conditions always
stable, light intensity
always controlled

BAa: HR
−0.90 ±−9.79 to
7.99 bpm; PCb

0.94 for HR

(38),
2023

HR 25–42; 470–3,810 NICU; muti-center n = 19; 1–5 min Digital camera
aimed at
uncovered body
parts, manually
selected ROIs,
PPG

Camera on tripod
1 m distance from
open/closed
isolette

Infants never
touched or
repositioned during
study, signals
disrupted by
motion/fluctuating
light, KC, HFOV,
dark skin,
phototherapy

BA: HR 0.3 ±
1.96 bpm

(14),
2014

HR, RR, SpO2 28; 1,200 NICU; single
center

n = 2; 4 days Digital camera,
PPG, ROI
extraction

Camera over
drilled 3 cm
diameter hole in
isolette mounted
on an arm
apparatus

No monitoring
during active CC
and KC, issues with
major lighting
changes, movement
artifact, lack of
visible skin area

HR within
±4 bpm, RR ±
10 rpm, SpO2
values within
81.2%

(39),
2014

Temp NA NICU; single
center

n = 7; 10 min Camera hybrid:
simultaneous
PPG and space-
resolved IRTI

IRT outside of
isolette window
covered in
polyethylene cling
film (higher IR
transparency)

Feasibility study,
nasal region has to
be visible for RR,
hybrid camera
needed for other VS

Temp changes
(±0.3°C) during
RR clearly visible
in IRT
recordings of
nasal region;
Skin temp of
non-covered
regions could be
monitored

(49),
2014

Temp, motion
tracking

NA NICU; single
center

n = 10; 20 min IR camera with
automatic non-
uniformity
calibration, ROI
selection,
VERSENS
approach for
movement
tracking

Images taken with
neonate on
radiant warmer
and while inside a
convective isolette
through IR
transparent
window

Lack of matching
matrix for ROI
resulted in failed
tracking, only proof
of concept

VERSENS
scoring rate
success 74–
89.02%

(56),
2014

HR, RR 24–39; 1,670–3,000 NICU; single
center

n = 7; NA RGB and IR-
thermal cameras,
manual ROI
selection

Cameras next to
open crib on
tripod with
adjustable arm

Feasibility study, no
correction
algorithms applied,
no real-time
recordings/
retrospective analysis

Preliminary
results: Good
agreement for
HR against ECG,
RR had 20%
difference

(44),
2016

RR 32–34 (33.3);
1,400–1,800

NICU; single
center

n = 3; 30 s × 5 RGB-D sensor: IR
and RGB
cameras,
microphones,
Asus Xtion Pro
live depth sensor
to provide depth

Camera on an
arm 70 cm over
the open crib
perpendicular to
supine neonate,
focus on thoraco-
abdominal area

Proof of concept
study, removed
cardiac activity from
analysis

PC: RR 0.95;
heat map of
movements
successfully
created

(Continued)
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TABLE 2 Continued

2A – Image-based technologies

Study
& year

Msmt
parameter

Population
[gestational
age (weeks)
& weight

(gr)]

Study
environment

Sample
size and
recording
duration

Sensor type Sensor
placement

Major
limitations

Results

map
reconstruction

(45),
2017

RR <37; NICU; single
center

n = 30; 4 days Digital camera
avg of blue color
channel, skin
segmentation to
select ROI

Camera over
drilled 3 cm
diameter hole in
isolette mounted
on an arm
apparatus

False positives from
artefacts in IPG
signals,
phototherapy
saturated images in
blue region of
spectrum decreasing
SNR

74% of false
positive apneic
events identified,
70% of true
events identified,
reduced false
alarm rate by
77.3%

(50),
2017

RR 33 ± 0.5; NA NICU; single
center

n = 4; 1.5 min Thermal
sequences,
manual ROI

Long wave IR
camera placed on
side with isolette
door open,
neonates in both
supine and prone
positions

Small dataset, no
true comparison
sensor, short
monitoring period

Avg relative
error of RR was
3.42%

(10),
2018

HR, RR 25–40; >500 NICU; muti-center n = 9; several
recordings (time
not discussed),
avg every sec
into 6 s stacks

Digital camera,
PPG, image
separated into
three RGB
channels

Camera outside of
isolette focused on
abdominal area
50 cm away

Large movements
affected accuracy,
issues with poor
lighting/darkness,
structure/algorithm
not tested in real
time

BA: HR −1.5 ±
−9.7 to 5.8 bpm,
RR −0.6 ±−9.2
to 10.3 bpm; PC:
HR 0.94, RR 0.86

(2), 2019 HR, RR ≤37; 800–3,020 NICU; single
center

n = 10; at least
10 s, otherwise

NA

Digital Camera,
PPG, Motion
Magnification,
ROI selection

Camera & tripod
1–2 m away

Small dataset,
limited acute
patients, inaccuracies
in the comparison
device

REG: HR mean
difference 4–
5 bpm (p <
0.005), RR
0.8 rpm (p <
0.586); BA: HR
−8.3 ± 17.4 bpm,
RR −22± rpm

(5), 2019 HR, RR 28.7–32.7 (30.7);
830–1,746 (1,240)

NICU; single
center

n = 30; 4 days Video camera and
AI, PPG resp
signals, skin
filters, CNN and
ROI selection

Regular ambient
light, daytime,
camera over
drilled hole in
isolette

Mostly light-skinned
infants, not
evaluated in
complete darkness,
highest accuracy
during stable/quiet
periods, bystander
interference

HR MAE
2.3 bpm for over
82% of time, RR
MAE 3.5 rpm for
over 82% of the
time

(31),
2019

Patient &
clinical
intervention
detection

28.9 ± 3.2;
1,172.2 ± 284.3

NICU; single
center

n = 15; 4 days Digital camera,
charged-coupled
device image
sensors, two CNN
models working
in sequence

Camera on arm
over the top of the
isolette,
perpendicular to
patient in any
position

Difficulty with low-
light images, small
skin regions not
identified, false
positives with
movement
interference, false
negatives with
outside intervention

Patient detection
accuracy 98.8%;
Mean IOU score
skin
segmentation
88.6%; Clinical
intervention
accuracy 94.5%

(46),
2019

RR 27.0–33.6; 755–
2,410

NICU; single
center

n = 5; Fixed-position
high-definition
camera, optical
and deep flow
methods

Camera focused
on infant’s entire
body, inside
isolette at feet
pointing to head

Automated
processing
underestimated RR,
accuracy of resp
signal affected by
image resolution and
sensor noise

BA: RR Optical
flow −4.8 ±−13
to 3, Deep flow
−2.7 ± −11 to
5.2; PC: RR
Optical flow
0.64, Deep flow
0.63

(51),
2019

RR 27.3–40; 950–3,100 NICU; single
center

n = 8; 5 min × 2 IRT camera,
automatic ROI
using "black-box"

Thermal camera
mounted on
tripod, recordings
from each side of

Camera not able to
record through
plexiglass,
movement

BA: RR 0.24 ±
−8.1 to 8.6 rpm;
Mean RMSE: RR
4.15 ± 1.44 rpm;

(Continued)
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TABLE 2 Continued

2A – Image-based technologies

Study
& year

Msmt
parameter

Population
[gestational
age (weeks)
& weight

(gr)]

Study
environment

Sample
size and
recording
duration

Sensor type Sensor
placement

Major
limitations

Results

or grid-based
approach

open crib or
through door of
isolette, all
sleeping positions

interference, delays
in data stream led to
high errors, IRT is
expensive

MAE RR 3.36 ±
1.25 rpm; Mean
CCC 0.79
(P < 0.05)

(15),
2021

RR 26.3–40.2; NA Medium care unit;
single center

n = 17; 43 h RGB video,
thermal

Thermal on 15
infants, RGB on 2
infants; some
videos collected
from the side and
others from top

Segments containing
events/interventions
were excluded,
difficultly separating
movements from
resp signals, reduced
sensitivity of motion
classification in
validation set

BA: −0.42
training set and
0.18 rpm testing
set; RR testing
set MAE
3.31 rpm,
validation set
MAE 5.36 rpm

(47),
2021

Resp flow pixel,
RR, apnea

26.3–40.1; NA Medium care unit;
single center

n = 15; 1.86–
33.84 min

FLIR Lepton
(LWIR) camera,
automatic resp
flow pixel
detector

Three cameras
around open crib,
most in supine
position

Absence of body
motion, manual
annotation of
motion, removal of
periodic breathing,
subpar visibility

MAE: Correct
pixel detection
84.28%; MAE:
RR 2.20/1.85/
2.11 rpm;
accuracy of
apnea detection
94.35%

(52),
2021

HR, RR 6 PT, 1 FT; NA NICU; single
center

n = 7; 10 min DSLR camera,
automatic ROI
selection with
CNN, signal
decomposition for
noise

Camera on tripod
1–2 m distance

Small dataset,
unstable control
data, preprocessing
challenges

BA: HR 0.44 ±
−3.9 to 4.8, RR
0.7 ±−4.5 to 5.9;
PC: HR 0.9864,
RR 0.9453

(57),
2022

Temp 29–40; 1,500–3,010 NICU; single
center

n = 19; 10 min IRT camera, RGB
camera,
monochrome
camera with a
green interference
filter, deep
learning, key
point detector for
ROIs

3 cameras in a
triangular
formation
attached to a
3 mm thin
aluminum base
plate with 4
OLED panels for
illumination on a
stand

No ambient light,
covered body parts
may have caused
negative values
(unphysiological
temp), non-central
patient position
caused distortion

BA: Temp
−0.16 ±−1.49 to
1.16 (°C); MAE
0.55 ± 0.67 °C

(16),
2023

RR NA Newborn unit;
single center

n = 10 Integrated visible
and thermal
images (RGB-T),
automatic ROI
selection, face
detection

Cameras on
tripod positioned
parallel, 1 m from
subjects

Cameras expensive,
motion interference,
HR and RR overlap,
subpar visibility

BA: RR 0.51 ±
−3.6 to 4.6 rpm;
MAE: RR
1.5 rpm; CCC:
RR 0.9244

(58),
2023

Face detection ≥34; 1,745–3,650 Dept of Pediatrics;
single center

n = 5; >3,000
images for each

subject

Fusion of thermal,
RGB, and 3D ToF
cameras, two
CNNs for face
detection

Thermal camera,
RGB with fisheye
lens, 3D ToF
camera at a short
distance from the
subject

Small dataset, unable
to accurately detect
nose

AP: RetinaNet
0.9949, YOLOv3
0.9949

2B – Radar-based technologies

Study
& year

Msmt
parameter

Population
[gestational
age (weeks)
& weight (gr)]

Study
environment

Sample
size and
recording
duration

Sensor type Sensor
placement

Major
limitations

Results

(25),
2019

RR 37.0–41.0 (38.0);
2,790–3,960 (3,100)

NICU; single
center

n = 42; 5 100–
160 min

7.29 GHz freq, 1.5
GHz bandwidth IR-
UWB radar,
movement
characterization

Encased radar on a
tripod placed 35 cm
orthogonal to chest,
open crib ±
covering

No touching/
repositioning
during study, any
movement
interfered with

BA: RR 1.17 ±
−10.4 to
12.7 rpm, P <
0.001 in one
sample t-test

(Continued)
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TABLE 2 Continued

2B – Radar-based technologies

Study
& year

Msmt
parameter

Population
[gestational
age (weeks)
& weight (gr)]

Study
environment

Sample
size and
recording
duration

Sensor type Sensor
placement

Major
limitations

Results

signals, bulky
equipment

(26),
2020

HR, RR 32.4–39.4 (38.6);
1,690–3,370 (3,085)

NICU; single
center

n = 34; 20.3 min
avg ± 44 min

IR-UWB radar,
movement
characterization

Encased radar on a
tripod placed 35 cm
orthogonal to chest,
open crib with
blanket cover

Supine position,
fixed angle, device
far from chest,
difficult to
differentiate HR
vs. RR when
overlapping,
motion
interference

BA:RR vs. IPG
0.17 ±−7.0 to
7.3 rpm (p <
0.001), HR vs.
ECG −0.23 ±
−5.3 to
4.8 bpm; CCC:
RR vs. IPG
0.95, HR vs.
ECG 0.97

(53),
2021

Sleep/wake
states using RR

31.2–40.6; 2,130–
3,200

NICU; single
center

n = 4; 13.0 (7.0–
20.5) h

8.748 GHz Freq,
-10dB bandwidth
1.5 GHz IR-UWB
radar, video camera,
actigraphy, 2-
channel EEG
(aEEG), manual
behavioral data
characterization

Encased radar on
arm 40 cm
perpendicular
angle, camcorder
on arm attached to
open crib,
actigraphy sensor
on R ankle, aEEG
on scalp, neonate
clothed

Minimal light/
noise needed,
motion
interference,
difficulty with
differentiating
certain states (i.e.
quiet awake,
REM)

Wake state
agreement
0.81, sleep state
agreement
0.72; mean
Cohen’s kappa
0.49 (0.41–
0.59, overall
accuracy 0.75
(0.70–0.81)

(24),
2022

RR, HRV (IBI) NA (6 days–3 mo);
2,735–5,730

NICU; single
center

n = 3; 140–300 s 24 GHz radar,
LoPASS filter to
separate HR and
RR, template
matching, adaptive
peak detection
algorithm

Radar installed in
mattress of open
crib, 5 cm below
subject

Motion
interference, HR
and RR overlap,

BA: RR Conv
−13 ms ±
91 ms, RR
Prop 0 ±
21 ms; CCC:
RR Conv
0.31 ms, RR
Prop 0.93, IBI
Conv 0.31 ±
91 ms, IBI
Prop 0.93 ± 21

(42),
2022

RR 26–36; 850–2430 NICU; single
center

n = 12; 25 min ×
3 days

24 GHz ISM band
CW radar, random
body movement
mitigation

Radar outside of
neonatal cot with
plastic cover on a
low-vibration
tripod, 45–50 cm
away

External
interference, poor
raw data quality,
high ADC
saturation, device
recording issues,
inaccuracies with
reference device

BA: RR
0.262 ± −11.48
to 12.01 rpm,
RR in prone
position
−0.296 ± -8.24
to 7.64 rpm;
Avg RMSE RR
4.3 rpm, prone
RR 4 rpm

(54),
2023

Sleep stage
classification
using RR

25.1–31.2 (29.6);
1253 ± 386

NICU; single
center

n = 10; 1 min for
each sleep stage
(total for all
subjects 123 ±

39 min)

6.0–8.5 and 7.25–
10.2 GHz UWB
radar, machine
learning classifiers
(SVM, KNN,
AdaBoost, NB,
Dtree, LDA)

Camera and UWB
radar attached to
isolette canopy

Movement
interference,
algorithm only
usable in specific
GA range, small
chest wall
movement
difficult to
measure

Moderate-to-
high accuracy,
AS and QS
detected with a
Cohen’s kappa
of 0.54 and
balanced
accuracy of
81% with
AdaBoost

NA, not available; IRT, Infrared Thermography; ROI, Region Of Interest; RGB, Red-Green-Blue; IRTR, Infrared Thermal Respiration; LWIR, Long-Wave Infrared; DSLR, Digital Single-Lens

Reflex. ToF, Time of Flight; ISM, Industrial Scientific Medical; IR-UWB, Impulse-Radio Ultra-Wideband; CW, Continuous Wave; Vt, Tidal Volume; BA, Bland-Altman; PC, Pearson’s
Coefficient; CCC, Concordance; REG, Regression; MAE, Mean Absolute Error; IOU, Intersection Over Union; RMSE, Root Mean Square Error; AP, Average Precision; IBI, Inter-Beat

Interval; PPG, Photoplethysmography; IPG, Impedance Pneumography; SNR, Signal to Noise Ratio; CC, Clinical Care; KC, Kangaroo Care; HFOV, High Frequency Oscillatory

Ventilation; VERSENS, Virtual InfraRed SENsor; AI, Artificial Intelligence; CNN, Convolutional Neural Network; Conv, Conventional; Prop, Proposed; SVM, Support Vector Machine;

KNN, K Nearest Neighboring; AdaBoost, Adaptive Boosting; NB, Naïve Bayes; Dtree, Decision Tree; LDA, Linear Discriminant Analysis; AS, Active Sleep; QS, Quiet Sleep.
aBA = bias ± limits of agreement (LOA).
bPC = r2.
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difficult to recognize. Thus, magnification and modification of data

processing algorithms are necessary for small chest sizes and rapid,

variable RRs (2, 43). Several studies have demonstrated the utility

of RGB cameras to track chest wall movement with 81.2%

accuracy (14, 44, 45) (Table 2A). However, limitations include

potential interference from fluctuations in artificial lighting,

motion artifacts caused by activity, alterations in results due to

covering or swaddling, and the considerable size and bulkiness of

the devices which can occupy significant space.

Radar can also detect small periodic displacements of the chest

wall in the respiratory cycle with promising results (42). CW radar

leverages the doppler effect to detect changes in frequency caused

by rhythmic chest movements during breathing. Beyond

estimating RR, it may also provide insights into respiratory

irregularities such as dyspnea, apnea, neonatal seizures, and

sleep-wake cycles due to its sensitivity to minute movements.

Recent work has demonstrated that UWB radar offers high-

resolution detection capable of identifying breathing patterns in

both supine and prone positions as well as through clothing,

using certain mitigation techniques (5, 25, 42) (Table 2B). This is

particularly advantageous in the NICU, where neonates often

require monitoring under less-than-ideal conditions. The

implementation of impulse-radio ultra-wideband (IR-UWB)

radar systems has demonstrated the ability to continuously track

RRs with minimal error, even amidst frequent clinical

interventions and the neonate’s natural movements (43). While

the system was accurate, the prototype was cumbersome and

36% of data were excluded due to artifacts from clinical care

interventions (42, 43). The effectiveness of a simpler, 24 GHz

CW radar system was reported by Beltrao et al. in 2022. The

device was positioned outside the isolette and was able to

effectively penetrate the plastic cover. Detection of breathing

patterns was possible when prone and side-lying with

displacement as low as 0.5 mm. The overall error magnitude

between radar and reference measurements was consistently

below 5–7 bpm (42).

The fusion of deep learning and thermal imaging techniques

could revolutionize non-contact respiratory monitoring in

neonates, offering robust alternatives to traditional methods. Deep

learning frameworks have been adeptly applied to analyze skin

area properties such as center of mass, area, and perimeter,

effectively deriving respiratory signals from these parameters (31).

A breathing-induced motion matrix was developed by filming the

neonate’s entire body with a high-definition camera positioned at

the foot of the bed (46). These deep learning flow methods can

reduce errors significantly when compared to optical flow

methods, especially when breathing rates are less than 50 bpm

(46). Moreover, thermal imaging techniques leverage the small

temperature variations around the nose during the inspiratory and

expiratory phases to estimate respiratory flow and motion (5). This

method detects convective heat transfer changes at the infra-nasal

region and allows the differentiation between different types of

apnea and monitoring under various clinical conditions (47). In

2011 Abbas et al. conducted a study in preterm neonates, with one

receiving continuous positive airway pressure (CPAP), and

estimated RR using temperature difference with clear changes
Frontiers in Pediatrics 09
visible in inspiration and expiration (48). This methodology has

been expanded to track several geometric regions of interest, aiding

in calibration against motion (49). Furthermore, the utilization of

high-definition infrared cameras and partial-filter based tracking

enables the isolation of respiratory movements without requiring

direct nostril detection (50, 51). Other investigators have further

explored the capabilities of long-wave infrared cameras to detect

respiratory flow and motion, capturing extensive data over 42 h

from 15 neonates (47). They used a combination of thermal and

non-thermal camera solutions and/or facial/body/landmark

detection. Despite their potential, these techniques face several

challenges such as requiring careful calibration against

temperature-controlled reference sources or industrial black body

systems to ensure accuracy (5). Additionally, temperature readings

are easily influenced by the opening of isolette doors or changes in

ambient conditions. If the infant is in a suboptimal position the

only source of respiratory flow may be the detection of thermal

variations on the bedding (47) (Table 2A).
Combined HR and RR

With more technological advancements, the simultaneous

monitoring of multiple vital signs has become possible using non-

contact methods (Table 2A,B). One such approach utilizes the Laser

Doppler Vibrometer (LDV) which measures vibrations caused by

chest wall movements related to the cardiac cycle and lung inflation.

This technique uses a laser beam that is directed onto a surface area

of interest, measuring the vibration’s amplitude and frequency due to

surface motion. The approach has shown promise in extracting RR

from abdominal movements. Another innovative method involves

dual-camera systems that measure HR and RR by focusing on the

abdominal area, capturing diaphragm and thoracic movements

which are unique in neonates compared to adults (10). Significant

strides have also been made using video cameras combined with

CNNs (Table 2A). In a pivotal study conducted by Villarroel et al.,

90 video sessions were recorded in a clinical setting featuring 30

preterm neonates (5). CNNs successfully identified suitable intervals

for vital sign estimation while discarding irrelevant data from other

individuals. Numerous limitations were observed including: (1) a

significant amount of excluded data (loss of focus), (2) phototherapy

and/or clinical interventions interfering with measurements, and

(3) a bias towards individuals with lighter skin tones (Table 2A). It

was noted that CNNs could be expanded and integrated into the

hospital system to recognize multiple individuals and support the

simultaneous estimation of vital signs from multiple patients.

Non-contact computer vision systems have integrated PPG and

motion magnification to enhance the detection of HR and RR,

showing that while movements can introduce noise, video

magnification can help improve accuracy. However, one study found

that magnification created more noise and data analyzed with and

without magnification was still inaccurate (2). Yet with new ROI

selection methods, accuracy can be significantly improved (52).

Similarly, IR-UWB has been investigated for its feasibility to measure

both HR and RR simultaneously in neonates (Table 2B). Lee et al.

(26) used this technology to conduct 51 measurements in 34
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neonates, demonstrating excellent concordance for both HR and

RR despite large discrepancies between the ground-truth devices

with some exaggerated movements of the subject. This study was

the first to evaluate radar in ventilated neonates and it had

extremely narrow mean bias and limits of agreement, indicating

superb accuracy. However, this study continued to have

limitations of a large, cumbersome device and exclusion of

critically ill neonates including those with congenital anomalies

significant respiratory disease (26).
SpO2 monitoring

Peripheral arterial oxygen saturation (SpO2) monitoring in

neonates has also seen innovative approaches using non-contact

methods (Table 2A). Studies have predominantly used a

combination of visible and NIR spectrum measurements through

video cameras to derive SpO2 values, providing a non-invasive

alternative to traditional sensors (23). Only a few studies have

been conducted in the neonatal population where optical

methods based on dynamic light scattering, video, or PPG are

being attempted without direct skin contact (14, 42). One study

demonstrated that video-derived SpO2 signals, obtained by

estimating outputs of red and blue video channels, could track

decreases in saturation during apneic episodes over an extended

period of time (14).
Temperature measurement

Temperature monitoring through non-contact methods has

primarily involved thermal imaging cameras that measure the

long-infrared radiation emitted by the body (14). This technique

allows for the estimation of temperature distribution across the

neonate’s body, with studies employing passive infrared

thermography to monitor temperature changes within the isolette

(39) (Table 2A). The setup often requires calibration to adjust for

environmental factors such as humidity and radiant heat

highlighting the complexity of accurately capturing temperature

variations in a controlled clinical setting (39).
Miscellaneous studies

Other studies have explored radar capabilities for assessing

various physiological parameters and conditions (Table 2B). Lee

et al. integrated movements and breathing signals with a sleep/

wake decision algorithm, successfully distinguishing sleep/wake

states but not sleep stages (53). Arasteh et al. identified

movement as key for sleep stage classification using UWB radar

(54). Na et al. demonstrated IR-UWB radar’s potential in early

screening for developmental delays, detecting movement

asymmetries indicative of conditions like cerebral palsy (55).

Understanding neonatal sleep-wake cycles and movement

patterns could be used to time care, mitigate disruptions, and

identify unique biomarkers for disease states.
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Sensor fusion

Several combination techniques have been employed to enable

simultaneous vital sign monitoring (Table 2A,B). In a proof-of-

concept study, Klaessens et al. mounted an RGB camera with an

infrared thermal camera over an open isolette to monitor neonates

(56). An open-source code was utilized to amplify color variation

and visualize the pulse. RR was estimated using software that tracks

temperature changes around the nostrils. Despite limitations related

to the need for open incubators or specialized IR transmitting

windows, the agreement was good when compared to the ECG (56).

Other studies have performed sensor fusion of visible and thermal

cameras with deep learning algorithms to perform automatic extraction

of local surface temperatures or automated ROI selection (Table 2A).

Lyra et al. used image restriction and thermographic recordings to

extract body surface temperature in various regions to determine

central-peripheral temperature differences (57). Mauyra et al.

combined visible images to find facial landmarks with thermal

images to extract respiratory signals (16). This integration of image

sequences outperformed other state-of-the-art methods. In other

studies combining time-of-flight (TOF) cameras and radar

demonstrated accurate RR measurements, but had sensitivity to noise

and was prone to overestimating low RRs (22). In 2023, the same

author proposed an innovative technique fusing thermal, RGB, and

3D TOF cameras for enhanced neonatal facial detection and reliable

HR, RR, and body temperature measurements using dual neural

networks (58).

These multifaceted approaches demonstrate that combining

different modalities can minimize any individual weakness and

enhance non-contact monitoring. However, challenges such as

motion artifacts, subject positioning, and calibration requirements

has limited the widespread adoption of these approaches. Ongoing

research shows promise in addressing these challenges. A recent

review by Zhou et al. outlines many approaches to using radar and

camera data fusion ranging from traditional to deep learning

algorithms (59). Similarly, a recent review of human monitoring

systems emphasizes the ability of data fusion to improve machine

learning models (60). There are a wide range of unique approaches

to data fusion. Advancements in the field continue to unlock new

opportunities for increased data fidelity and accuracy in data

collection and monitoring. Through the integration of multiple data

streams, we believe that data integration is a viable approach to the

improvement of neonatal care.
Lack of integration into clinical medicine

Despite significant interest and general success of many of these

studies, non-contact technologies have yet to be adopted into clinical

practice. The reasons behind this are complex, with necessary

validation processes unable to overcome multiple barriers. The

core issue is that wired technologies are dominant in medicine

and represent the standard of care. Healthcare systems are

driven to sustain inexpensive and readily available equipment.

While wired technologies are perceived as cost-effective, they
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can lead to substantial expenses and risks, especially in low-

resource settings where equipment is frequently reused. This

practice increases the risk of infection and breakdown of

adhesive interfaces, which results in inaccurate monitoring (2).

Consequently, there is a push to achieve results with

inexpensive, lower performance cameras (23). Although it is

improbable that novel technologies will ever cost less than

current wired ones, cost mitigation will be evident through

enhanced accuracy and precision in monitoring, reduced

adverse effects from adhesives, and less disruptions in care

stemming from false alarms or the need for manual adjustments.

Since many weaknesses have been found with each of these novel

approaches, there is insufficient evidence that these technologies can

or should replace existing standards of care. Many studies have

never made it past the proof-of concept stage and even adult

studies have used small, heterogeneous sample sizes (23). Most

studies in neonates have primarily involved small numbers of

participants and excluded critically ill neonates, attempting to

capture “normal” neonatal vital sign profiles. In the studies that did

include these populations, modifications to the isolette environment

were often made such as cutting holes or removing doors.

Although these studies tested the internal environment to

demonstrate there was no change in temperature or humidity, it is

likely that this caused disruptions, considering neonates are very

susceptible to even small alterations in the environment and are

extremely sensitive to heat loss (61). Furthermore, some studies

omitted the use of a clinically validated reference device, limiting

the clinical applicability and performance of image-based methods

which often yielded inferior results in actual clinical populations (23).

Compared to adults, there are technical challenges when

monitoring neonates due to their naturally higher signal frequency

for both HR and RR and lower amplitude in signals of interest

(14, 48). The signal is frequently lost and some technologies rely

on controlled lighting with minimal noise and movements (23).

High melanin concentrations absorbs more energy, with less

energy reflected from the skin surface leading to low signal-to-

noise ratio for optical based technologies (5). This is not an issue

unique to neonatal populations, as it has been experienced by

other devices such as wired pulse oximeters. Neonates with HR in

lower ranges (bradycardia) may have signals that overlap with the

respiratory cycle further limiting accuracy.

In all studies, the major barrier to accuracy, precision, and

success of non-invasive devices is motion artifact and body

position. Motion artifact will never be completely eliminated in

non-invasive devices, even though current gold standard

monitoring modalities are affected by it. Many studies have

restricted neonates to the supine position, excluding care times,

interventions, and parent bonding from the analysis. This

approach poses challenges in establishing real-world device

success, considering most infants in the NICU are prone-

positioned and frequently engage in skin-to-skin care (62, 63).

Overall, neonates are a challenging population to study, and

their outcomes are difficult to measure. The need for informed

consent can create an additional barrier for devices that have

never been used in hospital settings. Neonatal research requires

competent staff and miniaturized equipment, both of which
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come with high costs. Moreover, the NICU environment is often

not conducive to bulky prototypes and limitations in space at the

bedside is a serious obstacle (2). Device research is inherently a

high risk, high reward endeavor, characterized by numerous

barriers. To advance clinical care while ensuring equitable care, it

is imperative that these barriers be addressed.
Future innovation

As neonatal care continues to evolve, the focus on non-contact

technologies will likely intensify due to their potential to

revolutionize monitoring practices for both inpatient and

outpatient settings. These technologies have strengths and

limitations that have hindered their translation to real-world

clinical care. The next essential steps must involve sensor fusion,

as the integration of signals from various novel sensors is

anticipated to enhance the accuracy and efficiency of monitoring.

Centralized integration of data from each source is crucial to

seamlessly incorporate new sensor hardware and software

additions. By integrating multiple data streams, there is potential

for improvement in existing non-contact sensing methods through

sensor fusion, AI, and sophisticated algorithms. A collaborative

development of cutting-edge systems will require involvement of

many key stakeholders including innovators, scientists, physicians,

clinical staff, nurses, and families. This is necessary to ensure

adaptability to the unique needs of neonatal care. Moreover,

refining technology to address the specific challenges of neonatal

physiology can translate to benefits across the lifespan.

Technologies need to be miniaturized and able to overcome

motion artifacts. Integrating movement detection with vital sign

monitoring can reduce false alarms and prevent invalid

measurements by automating the cancellation of motion-

contaminated data (26). Furthermore, innovators should focus on

designing technologies that can minimize the impact of factors

such as skin color, phototherapy, and ambient lighting

conditions. These technologies should be capable of penetrating

clothing or blankets while still capturing high-resolution signals

(25, 26). Device placement must also be flexible, accommodating

a range of distances from the subject to ensure that the care of

the patient is uninterrupted (25). The position of the subject

should not be restricted, as prone positioning has shown better

results for defined respiratory motion (42).

Another promising area is the management of apnea, with

some studies suggesting that this condition can be effectively

predicted, monitored, and classified with non-contact

technologies (47). Monitoring neonates with congenital heart

disease and early signs of heart failure is also an area of interest.

Remote sensing technologies have the potential to track physical

activity, detect distress, identify adverse clinical events, or develop

predictive models for various outcomes of interest which should

drive innovators to further explore these technologies.

The fusion of non-contact and wearable sensors into multi-

modal platforms can enhance reliability and provide a more

comprehensive set of physiological data (64). This innovative

trajectory will enhance the effectiveness of neonatal care and
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transform the broader pediatric care landscape by integrating

advanced, efficient, and patient-centered technologies.
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