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Childhood asthma is a common chronic disease of the airways that results from
host and environment interactions. Most risk factor studies of asthma point to
the first year of life as a susceptibility window of mucosal exposure that
directly impacts the airway epithelium and airway epithelial cell development.
The development of the airway epithelium, which forms a competent barrier
resulting from coordinated interactions of different specialized cell subsets,
occurs during a critical time frame in normal postnatal development in the
first year of life. Understanding the normal and aberrant developmental
trajectory of airway epithelial cells is important in identifying pathways that
may contribute to barrier dysfunction and asthma pathogenesis. Respiratory
viruses make first contact with and infect the airway mucosa. Human
rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens
that are consistently identified as asthma risk factors. Respiratory viruses
represent a unique early life exposure, different from passive irritant exposures
which injure the developing airway epithelium. To replicate, respiratory viruses
take over the host cell transcriptional and translational processes and exploit
host cell energy metabolism. This takeover impacts the development and
differentiation processes of airway epithelial cells. Therefore, delineating the
mechanisms through which early life respiratory viral infections alter airway
epithelial cell development will allow us to understand the maturation and
heterogeneity of asthma and develop tools tailored to prevent disease in
specific children. This review will summarize what is understood about the
impact of early life respiratory viruses on the developing airway epithelium and
define critical gaps in our knowledge.

KEYWORDS

asthma, airway epithelium, development, respiratory virus, metabolism

Introduction

Childhood asthma is a common chronic disease of the airways that results from host

and environment interactions (1–5). Most risk factor studies of asthma point to the first

year of life as a critical susceptibility window of mucosal exposure that directly impacts

the airway epithelium and has the capacity to reshape its development (6–8).

Respiratory viruses are a consistently identified asthma risk factor and are also

associated with childhood asthma exacerbations (9, 10). Identifying the impact of early

life environmental asthma risk factors, such as respiratory viral infection, on the
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developing airway epithelial cells (AECs) and defining critical

windows of susceptibility to infection will ultimately allow us to

better understand the development and heterogeneity of asthma

and to create tools tailored to prevent disease in specific children,

or to treat specific asthma phenotypes. We recognize that other

factors including host and viral genetic factors including gene-

environment interactions contribute to the variable susceptibility

and range of developmental responses to infection that may

contribute to wheeze and asthma (11–13). However, this review

focuses on the impact of early life respiratory viruses, particularly

respiratory syncytial virus (RSV), on airway epithelial

development and defining remaining gaps in our knowledge.
Postnatal development of human
airway epithelium in health and asthma

Unlike other organs, the airway and lung are not fully

developed at birth and continue to develop postnatally. The AEC

barrier and its function in childhood is shaped and regulated by

active on-going developmental programs, with morphogenesis of

AECs continuing after birth (14–16). AEC differentiation occurs

largely in the first year of life but continues until approximately

2 years of age. After birth, AEC morphogenesis continues in

both the upper and lower airway concurrent with additional

branching and expansion of the alveoli (14–16). From birth to 2

months of age we have shown that AECs have a basal cell

predominant phenotype with fewer mucociliary and ciliated cells

compared with mature airway epithelium (17). AEC
FIGURE 1

Graphical abstract of hypothesized changes in the development of the ear
window during which host genetics, environmental exposures such
developmental and metabolic reprogramming of airway epithelium. Dev
dysfunctional epithelial barrier, which may promote the development of
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differentiation and mucociliary lineage specialization increase

dramatically and linearly in the first two years of life, which

culminates in full lung maturation by 3 years of age (18)

(Figure 1). During this process, basal and suprabasal cells give

rise to club and tuft cells. Tuft cells can further differentiate either

into ionocytes or neuroendocrine cells, while club cells give rise to

ciliated epithelial cells via deuterosomal intermediates, or mucus-

producing goblet cells (19). Consequently, perturbation of barrier

morphogenesis in early life may have a lasting effect on adult

epithelium via developmental reprogramming (20–22). Given this

developmental sequence, Figure 1 outlines our hypothesis that

infancy is a critical time window during which developmental and

metabolic reprogramming of airway epithelium may be altered

sequentially during development. This developmental

reprogramming is likely driven in part by host genetics and

epigenetic modifications, but also by early life mucosal exposures

such as respiratory viral infections that may lead to epigenetic

changes and other pathways that may drive aberrant airway

epithelial development. In the subsequent sections, we discuss the

different pathways that are aberrant in AECs from children with

early-life RSV infections and how this altered development results

in decreased airway barrier function and increased RSV infectivity

in in vitro cultured NAECs (17).

Studying the human airway epithelium is challenging. Only

human longitudinal studies can establish the sequence of airway

epithelial development, identify changes over time, and provide

insight into cause-and-effect relationships. Prospective longitudinal

studies are expensive, challenging, time consuming, and most are

limited to the use of upper airway epithelium to understand
ly life airway epithelium in health and disease. Infancy is a critical time
as respiratory viruses, and epigenetic modifications may result in
elopmental reprogramming during infancy leads to the formation of
specific phenotypes of wheeze and asthma later in life. Created with
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development. In children, nasal AECs are used because collection of

bronchial airway cells is highly invasive; however, studies reveal

similar developmental trajectories that allow use of nasal AECs

to study airway epithelial development (23–25). The nasal

transcriptome has been demonstrated to be an excellent and

well-accepted proxy of expression changes in the lung airway

transcriptome in asthma, as well as in distinguishing phenotypes

of asthma (23–25). This provides support for use of nasal airway

epithelium to understand the developmental origins of asthma, to

determine the trajectory of abnormal and normal AEC

development in asthma and in health, and how early life

environmental exposures, such as respiratory viral infections, alter

NAEC metabolism, development, and barrier function.

Little is known about how early life AEC development affects

risk of childhood asthma and if AEC developmental trajectories

are sustained through life. Most studies of AECs are cross-

sectional studies that sample children greater than 3 years of age

or adults. These studies show that nasal and bronchial AECs

from subjects with asthma have altered differentiation patterns

and deficient barrier function with increased susceptibility to

injury and deficient repair (26–28). A cellular single cell RNA-

seq (scRNA-seq) census of human lower airways from adult

patients with asthma (ages 45–60) showed that mucous and

goblet cell hyperplasia stems from a novel mucous ciliated cell

state (29). Another study of AECs from adults with asthma

(ages 18–50) revealed transcriptional programs and cell subsets

specific to allergic asthma, including hillock cells, a cell type first

described in 2019 which is a transitional cell between basal and

club cells (30, 31). Additionally, AECs from adults with asthma

that had persistent wheeze at 3 years of age had increased gene

expression in extracellular matrix and adhesion pathways

compared to AECs from adults with asthma that did not have

persistent wheeze at 3 years of age (32). Our report of data

mining of publicly available adult asthma AEC datasets

determined that developmental pathways of WNT, Notch and

ephrin signaling were dysregulated (28). Other studies have

demonstrated dysregulated WNT signaling in AECs and

fibroblasts from patients with asthma (33, 34), and loss of

ephrin signaling in AECs has also been linked to increased Type

2 cytokine expression in patients with asthma (35). Additionally,

childhood-onset asthma has been reported to be characterized

by airway epithelial hillock-to-squamous differentiation in early

life (17, 36) and Notch/Jagged pathway dysregulation was found

to contribute to deficient repair in AECs of children with

wheeze (37). Our recent study using scRNA-seq to characterize

differentiation status of nasal AECs from 2 to 3 year old

children found that epithelium from children with wheeze is

characterized by an early activity of WNT and Notch/Jagged

developmental pathways in basal cells and delayed onset of

maturation of early epithelial progenitors and club cells (17).

Such aberrant developmental processes and reshaping of

epithelial subsets seem to be congruent between adult asthma

and wheeze epithelial phenotypes reported in children (38),

suggesting an early or potentially common epithelial setpoint in

the development of asthma.
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Respiratory viruses and childhood
asthma

The association of respiratory viral infection and the

development of asthma has been recognized for decades,

particularly the association with respiratory syncytial virus (RSV)

and human rhinovirus (HRV) infections (39). RSV is the most

common cause of infant acute respiratory infection as well as

the single major cause of hospitalization and respiratory

mortality during infancy (40, 41). While nearly all children are

infected with RSV by the age of 2, approximately half become

infected during the first year of life as determined by serology

(7, 42–45). RSV is a seasonal mucosal pathogen that infects the

ciliated respiratory epithelium of the upper and lower airway as

a descending infection, causing disease of variable severity

(46, 47). At early ages, most primary RSV infections cause

infection of the lower airway epithelium, however, a very small

minority have severe disease or result in hospitalization, an

estimated 1–3% of infected infants (46, 48–50). The first

infection is generally the most severe infection, and illness

severity becomes less common with advancing age (43, 51, 52).

In addition to being a common respiratory pathogen, RSV is

also the most common cause of serious infant respiratory

morbidity and mortality and a consistently identified asthma

risk factor with a high population attributable fraction (6).

In support of a critical susceptibility period during early life in

which RSV infection has a greater impact on asthma

development, we have previously demonstrated an age-

dependent association between RSV infection and asthma risk.

Children with delayed RSV infection until after the first year of

life, compared with infants infected during the first year of life,

have a significantly decreased risk of wheeze and asthma

through age 5 years (7). Additionally pointing to a critical

susceptibility period, asthma incidence decreases over time

following infant RSV infection, however, the effect of at least

early life RSV LRTI persists through adolescence and early

adulthood demonstrated in longitudinal cohort studies by

diagnosis, lung function and image-related changes into early

adulthood (53–56). Additionally, in in vitro RSV infection of

differentiated nasal AECs (NAECs) in culture, NAECs from

children with RSV infection prior to age 1 and wheeze at age 3

had decreased NAEC barrier function and increased RSV viral

gene expression compared to children that had RSV after age 1

and no wheeze at age 3 (control samples) (17). These data

support that RSV infection during the first year of life is

associated with altered AEC development and increased risk of

wheeze and asthma. While the exact timing of infection during

the first year of life and its impact on the development of

asthma is unknown, we hypothesize that this is a critical

period of airway epithelial development and infection during

this time results in inappropriate or dysregulated responses to

respiratory viruses that are pathologic and contribute to short-

and long-term effects on AEC development and barrier

function (57). Details of these studies are discussed in the

subsequent section.
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Human rhinovirus (HRV) infects all infants at least once in

the first year of life, and wheezing or lower respiratory tract

illness, in contrast to RSV, increases with advancing child age

(51, 58). HRV lower respiratory tract infections (LRTI) are

associated with the development of asthma and are associated

with a large proportion of asthma exacerbations in children

and adults (59–62). Studies of in vitro infection of AECs

from patients with asthma demonstrate mucus hypersecretion,

goblet cell hyperplasia, and remodeling phenotypes including

induction of epithelial-to-mesenchymal transition, and fibroblast-

to-myofibroblast transdifferentiation, a response which is

more exaggerated in asthmatic AECs (63–65). Additionally, a

comparison of AECs from adults with asthma that had persistent

wheeze or not in the first 6 years of life showed that AEC

cultures infected with a group A HRV had increased expression

of genes in the toll-like receptor pathway, the IFN pathways, and

IL12 and IL8 genes compared to AECs from adults that did not

have persistent wheeze in early life (32). However, how HRV

infections in infancy impact AEC development, differentiation,

and barrier function, remains unclear. Asymptomatic HRV

infections are common and are difficult to detect by serology,

making it challenging to identify the timing and frequency in

HRV infections in infants and young children. However,

extrapolating from animal models and in vitro studies, HRV

results in changes in airway epithelial development and barrier,

and repeated infections, common in early life, may result in

persistence of these changes.

The mechanisms by which an acute, early-life respiratory viral

infection causes long-term pulmonary effects in humans and the

subsequent development of asthma, however, remain poorly

understood (53, 57, 66–69). Since AEC development continues

from birth until age 3, early-life mucosal exposures may alter

the course of AEC differentiation and contribute to the

development of asthma. Respiratory viruses can injure as well as

alter the host cell transcriptional and translational processes, a

process known as “molecular hijacking”, and induce epigenetic

and metabolic changes. Respiratory viruses are additionally

associated with distinct changes in the airway microbiome

commensal bacterial communities that have been repeatedly

associated with the development of asthma (70, 71).

Consequently, respiratory viruses are an early life mucosal

exposure that have the potential to alter AEC development and

barrier function, which may translate to increased susceptibility

to aeroallergens or pollutants and an increased risk of

developing asthma (72, 73). However, it is important to

acknowledge that the development of asthma is multi-factorial

and early-life respiratory viral infections are one of many risk

factors for the development of asthma. Other risk factors,

including maternal exposures, host and viral genetics, gene by

viral interactions, and exposure to other environmental

pollutants/factors are also important contributors to the

development of asthma. Additionally, RSV infection may

differentially contribute to specific phenotypes and endotypes of

asthma and assessing asthma as an umbrella diagnosis may

attenuate the effects that might be identified if studying the
Frontiers in Pediatrics 04
contribution of infection to specific asthma phenotypes. In

secondary analyses we have demonstrated that RSV contributes

to a predominantly non-allergic asthma phenotype in children

(7). Longitudinal, prospective studies that assess the effect of

respiratory viral infections and include serial AEC sampling

starting at birth are required to answer these questions.
Viral reprogramming of airway
development via impact on epithelial
differentiation and epigenetic
modification

RSV infections trigger transcriptomic and proteomic changes

in host cells, which include initiation of the anti-viral IFN

response, endoplasmic reticulum stress, oxidative stress, and

programmed cell death. These RSV-induced host cellular

responses in AECs can lead to airway remodeling and initiation

of airway inflammation (74). Upon infection, viral proteins

transform AECs by inducing alterations in the normal cell

growth and differentiation pathways. While human

papillomaviruses and other viruses cause extreme transformation

of epithelial cells and promote carcinomas (75, 76), the effect of

respiratory viruses on AEC differentiation pathways is not as

substantial. For example, RSV infects basal AECs in culture

and alters AEC differentiation resulting in a decrease of

formation of ciliated cells and an increase in secretory epithelial

cells during differentiation (77). Another report showed that

RSV infection of bronchial epithelial cells in vitro dysregulated

Notch/Jagged signaling and co-culture of CD4+ T cells with

infected cells promoted Type 2 cytokine production (78). in

vivo, RSV infection in neonatal mice exacerbated an

allergic asthma phenotype by increasing lung eosinophils and

Type 2 cells (79).

It has been increasingly recognized that barrier disruption in

asthma is durable and may persist beyond a simple inflammatory

insult (80–83). AEC dysfunction persists after removal of cells

from an in vivo inflammatory environment indicating a lasting

reprogramming effect that can be studied in vitro. Such

reprogramming of epithelium strongly suggests epigenetic

modification (28, 84–88). Epigenetic mechanisms are thought to

play a fundamental role in the long-term sequelae after RSV

infection, perhaps enhanced by the persistence of or response to

infection and resulting in different phenotypes observed (89, 90).

Therefore, respiratory viral infections in early life may alter

airway epithelial development and differentiation, providing a

potential mechanism for increased wheeze and asthma.
Respiratory viral infection and
reprogramming of epithelial
metabolism

Epithelial development is also sensitive to metabolic changes,

especially early in life. Changes in metabolism have consequences
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for both establishment of competent epithelial barrier and immune

response (91–94). Despite the growing recognition of

immunometabolism in homeostasis and disease (95), there are

very few studies examining the contribution of AEC metabolism

to allergic disease pathogenesis (96–98), and almost none in

humans. Perturbation of AEC metabolism in infancy may have

lasting effects on AEC differentiation via alteration of

fundamental developmental or differentiation programs and/or

epigenetic reprogramming, since metabolism is a powerful

modulator of epigenetic regulatory mechanisms (99). Such

perturbations have the potential for lasting epithelial barrier

dysfunction that may render the airway more susceptible to

allergic sensitization.

Viruses themselves are metabolically inert and must rely on

metabolic events in the cell to generate their component parts

and to replicate new viral copies. Frequently, the cell at the time

of infection is in a quiescent state, but the infection acts to

change the cell’s metabolism (100, 101). Many metabolic

pathways in a host cell such as glycolysis, amino acid and

nucleotide synthesis are altered following virus infection. During

infection, viral proteins interact with various cellular glycolytic

enzymes, and this interaction enhances the catalytic framework

of the enzymes and subsequently the glycolytic rate of the cell

(102). During RSV infection, amino sugars, nucleotide sugars

and palmitic acid were found to be more abundant compared

with the levels observed in non-infected cells, which allows post-

translational protein modification necessary for the maturation of
FIGURE 2

Respiratory virus mediated alterations in the airway mucosal niche in early li
We hypothesize that alterations in airway epithelial cellular metabolism and d
viral infection may lead to barrier dysfunction, enhanced susceptibility to r
wheeze and asthma. Created with BioRender.com.
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several RSV proteins (103). Additionally, increased levels of

oxidized glutathione and polyamines were associated with

oxidative stress in RSV infected cells (103, 104). Such host cell

metabolic changes ensure the energy and building blocks

necessary for virus replication (103, 105). We have previously

reported that RSV infection in infancy is associated with

metabolic reprogramming of nasal AECs later in life (2–3 years

of age) (67). This metabolic reprogramming was characterized by

significant increase in glucose uptake, differential utilization of

glucose by AECs and altered preferences for metabolism of

several carbon and energy sources, with RSV-induced metabolic

changes most pronounced in male airway epithelium (67).

Strikingly, these metabolic alterations were measured in absence

of active RSV infection, implying epigenetic or “metabolic

memory” that may be persisting in epithelial cells

developmentally reprogrammed in the first year of life.

Consequently, perturbation of AEC metabolism in infancy may

have lasting effects on AEC differentiation via developmental or

epigenetic reprogramming. As shown in Figure 2, these are the

hypothesized alterations in AEC metabolism resulting from early

mucosal respiratory viral infection that may lead to barrier

dysfunction, enhanced susceptibility to other asthma risk factors

and increased risk of wheeze and asthma. However, the

metabolic pathways promoting this aberrant developmental

program in the early life origins of asthma are not understood,

nor are the specific effects of early life respiratory viruses on

airway metabolism.
fe associated with chronic respiratory outcomes of wheeze and asthma.
evelopmental reprogramming associated with early mucosal respiratory
ecurrent infections and other asthma risk factors and increased risk of
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Metabolism and anti-viral responses:
the chicken or the egg debate of the
causal role of respiratory viral infection
in the development of asthma

In the sections above we described examples of how respiratory

viruses can affect the developmental trajectory of AECs via

transcriptional, epigenetic and metabolic mechanisms, thus

promoting dysfunctional epithelial barrier and predisposing to

development of asthma. However, the converse is also true.

Epithelial cells undergoing transcriptional, epigenetic and

metabolic change in early life development for reasons other

than viral infection (other environmental insults, hormonal

imbalances, nutrition, systemic dysbiosis, genetics) may render

the host more susceptible to recurrent or more severe respiratory

viral infections. Ample evidence shows that such processes may

result in deficient host antiviral responses, metabolic conditions

favoring successful infection, or relative increase in epithelial cell

subsets prone to initial infection with virus.

We have shown that downregulation of the insulin receptor

(INSR) signaling pathway and loss of differentiation in AECs are

conserved features of asthma in adults and children (28). This

was evidenced by the downregulation of the insulin target genes

INSR and IRS2, decrease in expression of pyruvate metabolism

markers, as well as changes in mitochondrial respiratory chain

genes (28, 106). There is also a demonstrated bioenergetic

switch from glycolysis to arginine metabolism in the

mitochondria of asthmatic AECs (107, 108). Further, there is

growing evidence for dysregulated carbohydrate metabolism in

inflammatory conditions, including asthma. High fructose

containing foods are associated with asthma, possibly because of

the high fructose:glucose ratios which may relate to glucose

utilization by the early life developing AEC (109, 110). Similarly,

high sucrose diets are associated with increased eosinophil

cytokine content and airway resistance in allergen-challenged

mice (111). We have also shown that energetic glucose

consumption is altered in nasal AECs from children with

wheeze (112). Moreover, using single cell RNA-sequencing

(scRNA-seq) profiling of nasal AECs from children with wheeze

and infant RSV infection, we found that wheeze epithelium

alone (in absence of infant RSV) has a distinct developmental

phenotype characterized by overactivation of basal cells,

expansion of club precursors, decreased expression of anti-viral

genes, increase in expression of receptors for RSV and HRV and

increased susceptibility to RSV infection in vitro (17).

Manipulating metabolism in vivo has been demonstrated to

reduce the infectivity of respiratory viruses, including SARS-

CoV2 (101). Manipulating glucose metabolism during different

stages of viral infection can have either detrimental or beneficial

effects (113). Glucose and lipid metabolism are known to directly

regulate type I IFN production (114), and targeting metabolic

pathways is useful in promoting antiviral immunity via

modulation of type I IFNs or cholesterol metabolism (115). High

glucose is known to suppress IFN expression, which is linked to

compromised host defense against infection in diabetes (116).
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In mouse models, fasted mice supplemented with low glucose

showed higher IFN-β production after vesiculovirus infection

compared to animals supplemented with high glucose. Low

glucose supplemented animals also had lower viral replication,

suggesting that downregulated glucose metabolism promoted the

type I IFN response and antiviral response (117). Conversely,

IFNα therapy for chronic hepatitis C has been shown to impair

glucose tolerance in non-diabetic patients (118), supporting the

fundamental reciprocal relationship between energy metabolism

and anti-viral pathways.

Loss of differentiation resulting from metabolic or epigenetic

alterations may also render airway epithelium more sensitive to

viral insults. For example, experiments in bovine airway epithelial

cells showed that differentiated undisturbed mature ciliated cells

were more resistant to bovine RSV infection than injured less

differentiated epithelial cells found deeper in the epithelial layer

and exposed during injury (119). Our recent scRNA-seq findings

also show increased expression of RSV receptors in

reprogrammed club and secretory epithelial cell subsets from

children with wheeze rather than in ciliated mature cells (17).

Collectively, the reciprocal cross-regulatory relationship between

viral, metabolic and developmental pathways opens up many

questions about causality of early life events leading to asthma,

with high likelihood of combination of developmental

susceptibility and exposures co-occurring during sensitive time

frames in postnatal formation of mature epithelium.
Summary

Understanding development of the airway epithelial barrier

after birth through early childhood is key to unraveling the

developmental origins of childhood asthma. However, there

remain significant challenges in collecting clinically inaccessible

tissues and studying the human airway epithelium longitudinally.

Several longitudinal birth cohorts have established longitudinal

sampling of the airway that are likely to advance our

understanding of airway epithelial development and the role of

the environment in the perturbation of normal development

(120–124). Changes in host metabolism and metabolic

reprogramming of epithelium are integral parts of asthma

pathogenesis. Studies of epithelial metabolism in the postnatal

developmental time frame will likely provide the necessary

mechanistic systems biology framework for understanding

upstream triggers of developmental reprogramming on gene

regulatory/epigenetic level. Longitudinal integration of single cell

transcriptomics, metabolism, epigenetic and environmental

exposure data as a systems biology approach using primary

airway epithelium will likely further advance our understanding

of normal and aberrant airway epithelial development. As there

are currently no effective primary preventive interventions for

asthma, identifying the timing and pathways driving airway

epithelial development may inform novel targets for prevention

and treatment approaches that regulate the normal and disease-

related development of the early life airway epithelium.
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