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Causal relationship between the
composition of the Gut
Microbiota and central
precocious puberty: a
two-sample Mendelian
randomization study
Minhong Chen1, Xueqin Huang2, Wanhong Huang3 and
Chuangang Ding4*
1School of Clinical Medicine, Dali University, Dali, China, 2Department of Pediatrics, Jingzhou Maternity
and Child Health Hospital, Jingzhou, China, 3Guangzhou Medical University, Guangzhou, China,
4Department of Pediatrics, The First Affiliated Hospital of Dali University, Dali, China
Background: Previous observational research has demonstrated a possible
association between the gut microbiota (GM) and central precocious puberty
(CPP). Nevertheless, whether there is a causal relationship between the GM
and CPP is uncertain due to the possibility of confounding factors influencing
the result.
Methods:We collected summary data from genome-wide association studies of
the GM (MiBioGen, n= 18,340) and CPP (FinnGen Consortium, 185 case groups
and 395,289 controls). Most of the participants were of European origin.
Mendelian randomization analysis was utilized to investigate the causal
relationship between the GM and CPP using the inverse-variance weighted
average technique, the weighted median, and Mendelian randomization Egger.
The reliability of the results was evaluated using the leave-one-out test and
sensitivity analyses, including heterogeneity and horizontal pleiotropy testing.
Results: According to the inverse-variance weighted average technique, there was
a substantial correlation between CPP and the composition of the GM. Specifically,
the relative abundance of the genus Bacteroides (OR 0.222, 95% CI 0.06–0.822,
P=0.024) and Alistipes (OR 0.197, 95% CI 0.056–0.697, P=0.012), and others,
showed significant associations. Furthermore, associations with the phylum
Euryarchaeota, the orders Gastranaerophilales, and Rhodospirillales, the families
Bacteroidaceae, and Desulfovibrionaceae were also observed. Sensitivity
analyses and the leave-one-out test generated positive results for the genus
Alistipes, implying that this genus is reliable and reduces the risk of CPP.
Conclusions: The composition of the GM may have a causal effect on CPP. The
present finding that Alistipes may be protective against CPP is expected to offer
novel insights into the management of CPP.
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instrumental variable; GWAS, genome-wide association study; IVW, inverse-variance weighted; WM,
weighted median; SCFAs, short-chain fatty acids.
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1 Introduction

The term “central precocious puberty” (CPP) refers to the early

onset of secondary sexual characteristics in girls and boys before

the ages of 8 and 9, respectively, due to the hypothalamic-

pituitary-gonadal axis (HPGA) activation (1). The global

incidence of CPP has significantly increased in the last two

decades (2). One in 5,000–10,000 children are affected by CPP,

which is 5–10 times more common in girls than in boys,

according to an epidemiologic study (3). The etiology of CPP is

gradually becoming elucidated, but a definitive mechanism of

development of the condition in approximately 90% of patients

remains elusive, and it is therefore designated as idiopathic

central precocious puberty (1, 4, 5). The early onset of puberty

not only affects growth and developmental processes, but also

increases the risk of developing various diseases, including

depression, cardiovascular disease, obesity, and cancer (6–11).

Consequently, the prevention and treatment of CPP are

important for good physical and mental health.

The gut microbiota (GM), an intricate microbial ecosystem

(12), is closely associated with many host diseases (13). Recent

research has demonstrated that the GM produces metabolites,

neurotransmitters, and neuroactive compounds that can act on

the central nervous system to regulate sex hormone secretion via

the gut-brain axis (14, 15). In particular, Wang et al. (16)

showed that the intestinal microbiota and its products reverse

precocious puberty in rats by inhibiting the secretion of

gonadotropin-releasing hormone (GnRH) and the HPGA. This

provides a new perspective regarding the pathogenesis of CPP.

According to the randomization principle, Mendelian

randomization (MR) employs single nucleotide polymorphisms

(SNPs) as instrumental variables (IVs) to eliminate confounding

and potential reverse causation and enable an accurate evaluation

of the underlying causality between exposure factors and disease

risk (17–20). Utilizing data from the genome-wide association

study (GWAS), we conducted a two-sample MR analysis in this
FIGURE 1

Overview of the Mendelian randomization analysis process.
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study to assess the potential causal relationship between GM and

CPP, and thereby aid the management of CPP.
2 Materials and methods

2.1 Study design and data sources

Genetic variants linked to the exposure variables obtained from

the GWAS summary statistics were utilized as IVs in our study,

which also used GM taxa as exposure factors and CPP as the

outcome factor (Figure 1). The primary analytical means of MR

analysis that we employed was the inverse-variance weighted

(IVW) method. Additionally, sensitivity and leave-one-out

analyses were conducted to verify the reliability of the results.

The MR analysis was performed having established that the

following conditions were satisfied: (i) the IV and exposure had a

strong correlation; (ii) the IV was unrelated to any confounding

factors; and (iii) the IV only influenced the outcome through the

target exposure.

The GWAS data for the GM came from the MiBioGen study,

which assembled the 16S rRNA gene sequencing profiles of 18,340

individuals (13,266 from European populations) and included 211

units (comprising families, phyla, orders, genera, and classes) (21).

These data were accessed from the study website (www.mibiogen.

org). The GWAS data for CPP were sourced from the FinnGen

Consortium R10 release (https://r10.finngen.fi/), which included

185 case groups and 395,289 controls overall (22). All of the

study’s participants were from Europe.
2.2 Data extraction and filtering

2.2.1 Selection of instrumental variables
SNPs in the genes representing the exposures that were

extracted from original GWAS meta-analyses or public databases
frontiersin.org

http://www.mibiogen.org
http://www.mibiogen.org
https://r10.finngen.fi/
https://doi.org/10.3389/fped.2024.1438195
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Chen et al. 10.3389/fped.2024.1438195
were used as the instrumental variables (IVs) for the exposure

factors. A threshold for genome-wide significance (P < 1 × 10−5)

was established in order to achieve a thorough comprehension of

the exposure to genetic variation. Concurrently, to ensure the

independence of the IVs and mitigate linkage disequilibrium, we

stipulated an r2 < 0.01, and a clumping window size of 500 kb

(23). Finally, we discarded SNPs with an F statistic < 10 to ensure

only close associations between exposure factors and IV would

be obtained. Equation 1 is the formula used to calculate the F

statistic, where R2 is the percentage of exposure variance

explained by a particular SNP and N is the sample size (24). R2

was determined using the Equation 2.

F ¼ R2 � (N � 2)=(1 � R2) (1)

R2 ¼ (2 � Beta2)=(2 � Beta2 þ 2 � SE2 � N) (2)

2.2.2 Outcome data extraction and filtering
From the original GWAS meta-analyses, SNPs connected with

relevant diseases were taken out and used as IVs for the outcome

variables. SNPs that exhibited a close association with the

relevant exposure diseases and were also present in the outcome

variables were then screened.
2.3 Construction of the relationships
between instrumental variables, exposures,
and outcomes

The harmonization of selected IVs with outcome-associated

SNPs was used to eliminate palindromic sequences and allele-

incompatible SNPs. Furthermore, to accept the assumption of

exclusivity for this MR study, we required an outcome-related

SNP significance level of P > 1 × 10 −5. Anomalous outliers were

removed using the MR_radial. Li et al. (25) demonstrated that

CPP is associated with obesity, the consumption of beverages

and sweets, and sleep quality. Therefore, to remove the influence

of these confounding factors, we conducted a systematic search

of the PhenoScanner database (http://www.phenoscanner.

medschl.cam.ac.uk/) to remove the associated SNPs.
2.4 MR analysis

We used the weighted median (WM) and MR–Egger as

auxiliary methods in addition to the IVW method as the primary

strategy for the MR analysis. When using the IVW approach, it

is assumed that each IV is valid and does not exhibit pleiotropy.

However, this approach does not take into account the presence

of an intercept, which resists bias and has the highest statistical

efficacy (26). The MR–Egger method considers the intercept and

is susceptible to the effect of anomalous IVs, but can generate

unbiased estimates, even using invalid IVs (27). It has been

established that the WM can be calculated using a considerable

proportion of invalid IVs (approximately 50%), and generates a
Frontiers in Pediatrics 03
higher causal efficacy and lower error than the MR–Egger (28).

Finally, a stable causal relationship between exposures and

outcomes was only considered if P < 0.05 for the IVW.
2.5 Sensitivity analysis

Sensitivity analyses, such as heterogeneity and horizontal

pleiotropy tests, were performed to evaluate the robustness of the

primary findings. The heterogeneity of the SNPs was evaluated

using Cochran’s Q-test, and the horizontal pleiotropy was

evaluated using the MR–Egger intercept. When P > 0.05, the lack

of heterogeneity or pleiotropy was acknowledged. Additionally,

each SNP’s impact on causation was assessed using the leave-

one-out test (29).

We used the “TwoSampleMR” package in the R software

environment (version 4.3.2) to perform these analyses.
3 Results

We obtained 2,641 eligible SNPs and 196 gut microbial taxa

using the described screening criteria for IVs, performing allelic

consistency testing, and removing confounders. The F-statistic

values for these SNPs were all >10, indicating a stable statistical

effect among the selected IVs (Supplementary File S1, Table S1).

We performed MR analysis using three methods (WM, IVW,

and MR–Egger), with the results of the IVW method serving as

the primary index. The detailed findings are shown in

Supplementary File S1, Table S2. Based on the IVW analysis, 10

gut bacterial taxa had P-values below the threshold of <0.05 and

were therefore included in the subsequent analysis (Table 1). We

used MR_radial to remove the outliers and after repeated causal

analyses found that one phylum (IVW: OR 0.536, 95% CI 0.31–

0.926, P = 0.025 for Euryarchaeota), two orders (IVW: OR 0.446,

95% CI 0.202–0.987, P = 0.046 for Gastranaerophilales; OR 2.079,

95% CI 1.003–4.309, P = 0.049 for Rhodospirillales), families (IVW:

OR 0.222, 95% CI 0.06–0.822, P = 0.024 for Bacteroidaceae; OR

0.250, 95% CI 0.07–0.900, P = 0.034 for Desulfovibrionaceae), and

genus (IVW: OR 0.222, 95% CI 0.06–0.822, P = 0.024 for

Bacteroides; OR 0.197, 95% CI 0.056–0.697, P = 0.012 for Alistipes)

were significantly associated with CPP (Table 1).

Finally, in conjunction with the IVW results, we performed

leave-one-out testing, and only obtained a positive result for the

genus Alistipes (OR 0.197, 95% CI 0.056–0.697, P = 0.012),

implying that this finding was stable and that it is protective

against CPP (Figure 2). It should be noted that, because MR–

Egger does not necessitate a forced regression to the origin and

exhibits limited statistical efficacy, it is acceptable to present

findings that are in the direction opposite to that obtained using

the IVW and WM methods. After having performed leave-one-

out testing, an additional six gut bacterial taxa were excluded,

owing to their influence on single SNPs, which resulted in unstable

results. Additional information is provided in Supplementary

Figure 1. Notably, we did not detect weak instrumental bias
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TABLE 1 Mendelian randomization results for Gut microbiota and central precocious puberty.

Exposure Nsnp IVW Weighted median MR Egger

OR (95%CI) pval OR (95%CI) pval OR (95%CI) pval
phylum.Euryarchaeota.id.55 12 0.536 (0.31,0.926) 0.025 0.562 (0.273,1.155) 0.117 0.321 (0.028,3.667) 0.382

class.Betaproteobacteria.id.2867 8 5.725 (0.957,34.266) 0.056 6.132 (0.844,44.522) 0.073 0.034 (0.001,2.074) 0.158

order.Gastranaerophilales.id.1591 9 0.446 (0.202,0.987) 0.046 0.439 (0.162,1.189) 0.105 0.734 (0.069,7.842) 0.806

order.Rhodospirillales.id.2667 14 2.079 (1.003,4.309) 0.049 2.102 (0.809,5.458) 0.127 0.587 (0.031,11.115) 0.728

order.Burkholderiales.id.2874 8 2.984 (0.43,20.701) 0.152 2.984 (0.430,20.701) 0.269 2.921 (0.673,12.676) 0.225

family.Bacteroidaceae.id.917 9 0.222 (0.06,0.822) 0.024 0.256 (0.054,1.207) 0.085 1.451 (0.002,1,274.04) 0.917

family.Desulfovibrionaceae.id.3169 9 0.250 (0.07,0.900) 0.034 0.231 (0.044,1.200) 0.081 0.428 (0.018,10.179) 0.616

genus.Bacteroides.id.918 9 0.222 (0.060,0.822) 0.024 0.256 (0.049,1.342) 0.107 1.451 (0.002,1,274.04) 0.917

genus.Alistipes.id.968 12 0.197 (0.056,0.697) 0.012 0.210 (0.042,1.061) 0.059 4.834 (0.014,1,689.232) 0.609

genus.Ruminococcusgauvreauiigroup.id.11342 11 0.346 (0.115,1.042) 0.059 0.422 (0.106,1.680) 0.221 1.251 (0.014,113.702) 0.925

Bold values indicate the significance threshold p < 0.05 for IVW, corresponding to a significant causal relationship between gut bacteria and central precocious puberty.

FIGURE 2

(A) Scatter plots illustrating the causal effect of genus Alistipes on central precocious puberty; (B) Leave-one-out analysis for genus Alistipes on central
precocious puberty; (C) MR effect size for genus Alistipes on central precocious puberty.

TABLE 2 Sensitivity analysis results for Gut microbiota and precocious central puberty.

Exposure Outcome Heterogeneity Pleiotropy

Q Q_pval intercept intercept_pval
genus.Alistipes.id.968 Precocious central puberty 4.992 0.932 −0.193 0.298

Chen et al. 10.3389/fped.2024.1438195
(F > 10), horizontal pleiotropy (MR–Egger intercept P > 0.05), or

heterogeneity (Cochran’s Q-test P > 0.05) (Table 2).
4 Discussion

In this research, we novelly conducted a two-sample MR study

to determine the specific causal effects of 196 gut microbial taxa on

accelerating or inhibiting the development of CPP. The causal

evaluations were examined and verified through multiple

analyses, including IVW, WM, MR-Egger, sensitivity, and leave-

one-out tests. IVW estimates revealed that the phylum

Euryarchaeota, the order Candidatus Gastranaerophilales, the

family Bacteroidaceae, the family Desulfovibrionaceae, the genus

Bacteroides, and the genus Alistipes could potentially reduce the
Frontiers in Pediatrics 04
risk of CPP while the order Rhodospirillales might enhance the

risk of CPP. Eventually, after sensitivity analyses and the leave-

one-out test, the genus Alistipes was suggested to stably prevent

the occurrence of CPP causally. Our findings elucidate whether

the human GM can participate in the pathogenesis of CPP and

which gut microbial taxon can alter the risk of CPP.

Driven by the early activation of HPGA, the initiation of CPP is

highly related to disorders in the endocrine system, especially

abnormal sexual maturation and secretion of sex hormones (30).

Meanwhile, GM has been demonstrated to play an important

role in the disruption of the hormone system and the

progression of a series of systemic diseases (31). Since the

composition of GM is significantly different in different puberty

stages, the effect of GM during the physiological pubertal

development may further indicate the potential connection
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between GM and pathological puberty (32). With the proposal of

the sex hormone-gut microbiome axis, increasing studies have

focused on the role of GM on pubertal disorders, especially

precocious puberty, and the underlying mechanisms (33). A

study involving 91 CPP patients investigated the alteration of the

composition of GM in CPP through bioinformatics and

suggested that the genus Streptococcus could act as a marker for

CPP (34). Another observational research identified GM

dysbiosis within 25 CPP patients and altered gut microbial taxa

in CPP were similar to those in obesity, while obesity had

already been recognized as the main cause for CPP (35, 36). In

addition, most enriched gut genera in CPP were defined as

short-chain fatty acids (SCFAs)-producing bacteria. At the same

time, SCFAs can elevate the expression of metabolic peptides

from adipocytes and are essential for obesity-induced precocious

puberty (16). However, limited populations as well as potential

reverse causality and confounders in observational studies hinder

the exploration of the causal effects of GM on the risk of CPP.

Although existing research has indicated that GM might be

correlated to CPP, whether the links in phenotype were solely

clinically manifested, achieved through obesity, or causal remains

unknown. Therefore, we carried out MR research based on the

large-scale GWAS data that can successfully avoid reverse

causalities and confounding factors to investigate the causal

associations directly between GM and CPP. As a result, we

identified the causal impacts of GM on the risk of CPP, which

not only was consistent in previous observational studies but also

provided genetic evidence for their strong causal links. In terms

of mechanisms underlying the causalities, according to a

narrative review, GM can produce several metabolically active

substances, together with GM, both have been shown to

influence sex hormone secretion through nutritional status,

hormone regulation, and metabolic pathways (37). On the one

hand, GM can directly alter the level of estrogens and androgens

in the host organism (38). On the other hand, as typical GM

metabolites, SCFAs (31) (mainly consisting of acetate,

propionate, and butyrate), neurotransmitters (14) (e.g., serotonin

and dopamine), and neuroactive compounds (34) (such as nitric

oxide), are important mediators in the gut-brain axis and the

transduction of sex hormone signaling, probably influencing the

progression of CPP.

Within positive IVW estimates, Bacteroides was found to be

reduced in individuals with obesity by several animal and human

studies (39–41). The genus Bacteroides principally produces

propionate, which is anti-lipogenic (42) and anti-inflammatory

(43), enhancing satiety (44), and ameliorating insulin resistance

(45). The negative links between the abundance of Bacteroides

with obesity might support our results that the family

Bacteroidaceae and the genus Bacteroides could inhibit the

occurrence of CPP. Previous studies also showed that propionate

and butyrate activated the HPGA by increasing leptin gene

expression (46). As for the family Desulfovibrionaceae, an

observational study showed that the abundance of Desulfovibrio

in the feces of obese mice was positively correlated with the

circulating concentration of GnRH (15), which might promote

intestinal inflammation and sexual development (47, 48). Our
Frontiers in Pediatrics 05
MR research further identified the impact of the family

Desulfovibrionaceae in causally decreasing the risk of CPP.

Additionally, as a CPP promotion taxa suggested by our MR

research, the order Rhodospirillales is recognized as a

proinflammatory factor, and its metabolites such as

lipopolysaccharide could participate in inflammation and

immune responses in hosts (49). Furthermore, the order

Rhodospirillales is also associated with amino acids, nitrogen,

vitamins, and cofactor metabolisms, which might affect the

production of sex hormones and the development of CPP (50).

To be noted, the genus Alistipes was the exclusive positive

taxa causally related to the risk of CPP after being verified via

the leave-one-out test. Alistipes is a recently discovered genus of

anaerobic bacteria in the healthy human gut (51) that produces

SCFAs (52). Regarding the abundance of Alistipes in patients

with CPP, a previous observational study showed that this

genus was significantly more abundant in patients with CPP

groups than in healthy controls or individuals with over-weight

(14). However, another study performed in humans showed no

significant difference in the abundance of Alistipes between

patients and healthy controls (31). The outcomes of these

studies were not consistent, which may be attributable to

discrepancies in ethnicity, species, host metabolic status, and/or

measurement methods. Our MR research extensively minimized

bias and elucidated the protective role of the genus Alistipes for

CPP, providing a potential treatment biomarker for CPP. An

animal study demonstrated that the addition of acetate,

propionate, butyrate, or a combination of these to a high-fat

diet reduces GnRH release and reverses precocious puberty

(16). Other scholars proposed that Alistipes transplantation

could be used to alleviate high-fat diet-induced obesity and its

associated complications (53), which also supported our causal

estimates. In terms of the underlying mechanism, acetate

produced by Alistipes has been reported to regulate lipid

metabolism (54) and appetite (55). Butyrate can protect the

intestinal mucosa (56) and reduce appetite (57) and the

concentrations of inflammatory mediators (58), such as nitric

oxide, which acts as a neurotransmitter and promotes the

production of sex hormones (59). Furthermore, butyrate is

beneficial for mental health (60) and psychological issues have

been identified as a significant regulator of sex hormone

production (61). However, further research is still required to

elucidate the effects of differing abundances of gut microbial

taxa and the mechanism of the effects of their metabolites in

patients with CPP.

In the present study, we used genetic variables to determine

whether there is a causal relationship between exposure factors

and the disease of interest, thereby minimizing the effects of

confounding factors. Nevertheless, it is important to acknowledge

the limitations of the study. The participants in the study were

predominantly of European origin, and therefore the findings

may not be applicable to individuals of other ethnic origins.

Furthermore, the abundances and effects of gut microbial taxa

are influenced by several factors, including age, sex, and dietary

habits. However, we did not perform subgroup analyses in the

present study.
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5 Conclusion

In the present study, we have shown that Alistipes may be

protective against CPP. This finding provides novel information to

aid the management of CPP. Nevertheless, further large-scale

animal and human studies are required to elucidate the

mechanism whereby the composition of the GM affects CPP and

to develop related strategies for the prevention and treatment of CPP.
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