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A 20-year-old male patient with a history of celiac disease came to medical
attention after developing profound fatigue and pancytopenia. Evaluation
demonstrated pan-hypogammaglobulinemia. There was no history of
significant clinical infections. Bone marrow biopsy confirmed hypocellular
marrow consistent with aplastic anemia. Oncologic and hematologic
evaluations were unremarkable for iron deficiency, paroxysmal nocturnal
hemoglobinuria, myelodysplastic syndromes, T-cell clonality, and leukemia.
A next generation genetic sequencing immunodeficiency panel revealed
a heterozygous variant of uncertain significance in CTLA4 c.385T >A,
p.Cys129Ser (C129S). Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
is an inhibitory receptor important in maintaining immunologic homeostasis.
To determine the functional significance of the C129S variant, additional
testing was pursued to assess for diminished protein expression, as described
in other pathogenic CTLA4 variants. The results demonstrated severely
impaired CTLA-4 expression and CD80 transendocytosis, consistent with
other variants causing CTLA-4 haploinsufficiency. He was initially treated with
IVIG and cyclosporine, and became transfusion independent for few months,
but relapsed. Treatment with CTLA-4-Ig fusion protein (abatacept) was
considered, however the patient opted for definitive therapy through reduced-
intensity haploidentical hematopoietic stem cell transplant, which was curative.
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Introduction

Inborn errors of immunity (IEIs) encompass a broad and heterogenous group of

genetic disorders which disrupt immunologic homeostasis (1). Traditionally, these

conditions have been characterized by which arm(s) of the immune system (e.g., innate,

humoral, phagocytic, complement, etc.) are impacted resulting in increased

susceptibility to infectious agents. However, coinciding autoimmune/autoinflammatory

disease states are increasingly being recognized as a primary or secondary feature

among IEIs (2). In particular, immune dysregulation is a primary feature of pathologic

variants involving genes responsible for maintaining immunologic homeostasis.
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Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is an

inhibitory receptor present on T-cells and serves a fundamental

role in regulation of immune responses. The process of T-cell

(CD4+) activation requires both primary and costimulatory

signals via interaction with antigen presenting cells (APCs). One

such costimulatory signal involves CD28 (present on T-cells) and

CD80/86 (present on APCs). Once activated, T-cells upregulate

expression of CTLA-4 on their surface which binds to CD80/86

resulting in transendocytosis of the receptors thereby limiting

further activation (Figure 1) (3). This coinhibitory mechanism

prevents unregulated T-cell activation. Additional immune

regulation occurs via T-cell subpopulations such as T-regulatory-

cells (Tregs). These cells constitutively express CTLA-4 providing

an additional checkpoint in immune activation (4). In this way,

CTLA-4 acts to maintain immunologic homeostasis, with

disruptions caused by CTLA4 variants leading to altered protein

expression and clinical disease states.

To our knowledge, no cases of complete CTLA-4 deficiency have

been reported in humans. Targeted genetic deletion leading to

complete CTLA-4 loss of function in mice leads to fatal multiorgan

lymphocytic infiltration primarily due to expansion of unregulated

CD4+ T-cells (5–8). Complete CTLA-4 deficiency may be

incompatible with life in humans. However, pathogenic heterozygous

variants in CTLA4 can lead to disease phenotypes with variable

clinical penetrance and expressivity. Phenotypic features reported in

patients with CTLA-4 haploinsufficiency include: autoimmune

cytopenias, hypogammaglobulinemia, lymphadenopathy, and organ
FIGURE 1

T-cell stimulation and regulation. (A) Co-stimulatory signaling through CD
(B) Co-inhibition through CD80/86-CTLA-4 interaction resulting T-cell
Figure created with Biorender.com.
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dysfunction (enteropathy, splenomegaly, etc.) from lymphocytic

infiltration (9). Additionally, polymorphisms in CTLA4 have been

associated with risk for type 1 diabetes mellitus, Graves’ disease,

multiple sclerosis, and malignancies (10–13).

In this report, we present a novel CTLA4 variant manifesting as

aplastic anemia and provide functional testing that confirms this

novel variant is deleterious to CTLA-4 expression resulting in

severely reduced transendocytosis.
Case description

A 20-year-old male of self-reported White race (ancestry

unavailable) presented to medical care for 1 week of persistent

and profound incapacitating fatigue. Additional symptoms

included palpitations, lightheadedness and exertional dyspnea

with ambulation, which all resulted in an inability to participate

in collegiate athletics. His medical history was pertinent for celiac

disease (confirmed via endoscopic biopsy with symptom

resolution after implementing a gluten-free diet), pityriasis alba,

and idiopathic wet macular degeneration status-post successful

treatment with aflibercept. He did not have a history of other

autoimmune disease, immune deficiency or severe/atypical

infections. Paternal history was positive for rheumatologic/

autoimmune disease including psoriasis, arthritis, and

hypothyroidism. Maternal history was unremarkable. There is no

history of consanguinity. The remaining family history was
80/86-CD28 interaction resulting in T-cell activation and proliferation.
regulation due to transendocytosis of CD80/86-CTLA-4 complex.
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pertinent only for thyroid disease of unclear specificity in maternal

and paternal grandparents.

Upon presentation, he was anemic (hemoglobin 8.4 mg/dl) and

thrombocytopenic (platelet count 18,000/ml). The subsequent day,

his white blood cell counts decreased from 4,400 cells/ml to

2,600 cells/ml, consistent with pancytopenia. Iron studies were

consistent with mild iron overload and serum copper levels were

slightly elevated. He had no prior history of blood transfusions

and genetic testing for hemochromatosis demonstrated a

heterozygous variant in HFE (c.187C >G, p.His63Asp) (H63D).

The H63D carrier-status rarely results in clinically significant

iron overload (14, 15). The mild elevation in serum copper based

on internal lab reference ranges were not thought to be clinically

significant and levels up to 158.9 μg/dl are considered normal

(16). Additional evaluation including folate, B12, lactate

dehydrogenase, and haptoglobin were unremarkable (Table 1).

Bone marrow biopsy demonstrated hypocellularity with near

absence of erythroid precursors and megakaryocytes, consistent

with aplastic anemia. Further hematologic testing was

unremarkable including: bone marrow chromosomal analysis,

fluorescence in situ hybridization for BCR/ABL1 and

chromosomal abnormalities (monosomy 5 and 7, trisomy 8, and

20q deletion), myelodysplastic syndrome mutation sequencing,

telomere length studies, leukemia flow cytometry

immunophenotyping, and T-cell clonality. PNH flow cytometry
TABLE 1 Diagnostic evaluation summary.

Lab Result Reference

Presenting labs
WBC 4,400 cells/ml 3,200–9,800 cells/ml

Hemoglobin 8.4 g/dl 13.7–17.3 g/dl

Platelets 18,000/ml 150,000–450,000/ml

Reticulocyte count (%) 17,200/ml (0.65) 28,000–134,000/ml (0.70–2.0)

Folate 11.4 ng/ml > 6.5 ng/ml

B12 404 pg/ml 123–730 pg/ml

Iron 220 μg/dl 50–160 μg/dl

Total Iron binding capacity 248 μg/dl 261–478 μg/dl

Copper 131 μg/dl 63–121 μg/dl

Lactate dehydrogenase 151 U/L 100–200 U/L

Haptoglobin 50 mg/dl 30–200 mg/dl

Immunoglobulin M 7 mg/dl 57–273 mg/dl

Immunoglobulin G 122 mg/dl 588–1,573 mg/dl

Immunoglobulin A 12 mg/dl 46–287 mg/dl

Flow cytometrya

WBC 2,000 cells/ml 3,200–9,800 cells/ml

ALC (%) 268 cells/ml
(13.4)

600–4,200 cells/ml (10–50)

CD3+ (%) 222 cells/μl (83.0) 1,543–1,729 cells/ml (76.1–
78.3)b

CD4+ (%) 107 cells/μl (40.1) 942–1,066 (45.7–48.5)b

CD8+ (%) 88 cells/μl (32.9) 544–637 (26.4–28.9)b

CD19+ (%) 3 cells/μl (1.3) 232–281 (11.1–12.8)b

NK-cells (%) 37 cells/μl (13.8) 188–336 (9.0–10.8)b

CD3/CD45RA+ (%) 67 cells/μl (30.3) (20.3–44.1)

CD3/CD45RO+ (%) 78 cells/μl (34.9) (30.4–51.3)

Abnormal values are bolded.
aFlow cytometry results 2-weeks following presenting labs.
bReference ranges from Valiathan et al. (17).
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revealed a loss of GPI-anchored proteins on 0.04% and 0.6% of

granulocytes and monocytes, respectively, suggesting that the

aplastic anemia may be immune-mediated (18).

Blood count differential demonstrated profound lymphopenia

with an absolute lymphocyte count of 268 cells/ml. Lymphocyte

enumeration through flow cytometry revealed a T-cell (CD3+)

count of 222 cells/μl (83%), CD4+ count of 107 cells/μl (40.1%),

CD8+ count of 88 cells/μl (32.9%), naïve T-cell (CD45RA+/CD4+/

CD62l+) count of 15 cells/μl (14.4%), B-cell (CD19+) count of

3 cells/μl (1.3%), and NK-cell (CD16/56+) count of 17 cells/μl

(13.8%). T-cell proliferation to phytohemagglutinin (PHA) and

tetanus was normal. Immunoglobulin evaluation demonstrated

diffuse hypogammaglobulinemia with: IgG (122 mg/dl), IgM

(7 mg/dl) and IgA (12 mg/dl). Of note, immunoglobulin levels

collected 16-months prior demonstrated a similar pattern with

an IgG of 176 mg/dl, an IgM <25 mg/dl, and IgA of 15.7 mg/dl.

Antibody titers to tetanus and diphtheria toxoid were protective,

and pneumococcal-23 antibody titers were protective to greater

than 75% of serotypes tested.
Diagnostic assessment

A primary immunodeficiency next generation sequencing

panel was sent and revealed a novel heterozygous variant of

uncertain significance in CTLA4 (c.385T >A, p.Cys129Ser)

(C129S). Paternal testing revealed the same variant. Maternal and

sibling testing was negative. Given the patient’s clinical

phenotype, known risk for immune dysregulation with CTLA4

variants, and without other identifiable etiologies for the aplastic

anemia, a research-based functional assay was pursued.

A CTLA-4 functional assay was performed as previously

described (19–21). pCMV6-CTLA4-MycDDK plasmid was

obtained from Origene (#RC213631). Construct carrying

C129S mutant allele was generated from the wild type (WT)

plasmid by site-directed mutagenesis (QuikChange II XL;

Agilent Technologies, #200523) according to manufacturer’s

instructions and validated by Sanger Sequencing. WT or C129S

mutant CTLA4 plasmids were transfected into CHO cells

(ATCC # CCL-61) using Lipofectamine 2000 (ThermoFisher

Scientific, #11668027), per manufacturer’s protocol.

For transendocytosis experiments, transfected CHO cells were

co-cultured 1:1 with CellTraceTM Violet (ThermoFisher Scientific

#C34557) labelled CHO-CD80GFP cells (A gift of Bodo

Grimbacher and David Sansom) for 16 h. CTLA-4 expression and

transendocytosis of CD80GFP were measured by flow cytometry on

the MACSQuant Analyzer 16 (Miltenyi Biotec). A known loss of

function pathogenic variant in CTLA4, R51X, was used as a

positive control and untransfected CHO cells were used as a

negative control. Flow cytometry comparing CTLA-4 expression

and CD80 uptake through transendocytosis were run in triplicate.

Results demonstrated that the C129S variant drastically

impaired expression of CTLA-4 with a resulting decrease in

transendocytosis as compared to wild type. These findings are

similar to those seen with the causal allele R51X (Figure 2).

Thus, the patient’s C129S variant exhibited results consistent
frontiersin.org
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FIGURE 2

The C129S missense mutation dramatically impairs CTLA-4 expression resulting in decreased transendocytosis. (A) Representative example of
CD80GFP transendocytosis assay results. These plots show cells previously gated on forward and side scatter profile, and negative for Cell Trace
Violet. GFP signal represents percent transendocytosis of CD80. (B) Summary results from n= 3 independent experiments, performed as in A. (C)
Percent CTLA-4+ CHO cells after transfection with WT or mutant CTLA-4 plasmids (n= 3),**p < 0.01, unpaired t-tests. (D) Flow cytometry analysis
of peripheral blood mononuclear cells (PBMCs) to identify CD4 + FoxP3 + regulatory T-cells (T¬¬regs) and CD4 +CD3- cells. (E) Analysis of CTLA-
4 protein expression by Tregs (upper row) and CD4 + FoxP3 + cells (lower row), gated as shown in (D). (F) Mean fluorescence intensity for CTLA-4
on Tregs from two healthy donors, and the patient and his father with the C129S variant.
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with CTLA-4 haploinsufficiency. Moreover, analysis of peripheral

blood mononuclear cells (PBMCs) from the patient and his

father confirmed reduced CTLA-4 protein levels (Figures 2D,E).

Based on the results from the transendocytosis assay, and the

patient’s clinical history, the C129S variant was determined to be

pathogenic, suggesting that the patient’s phenotype was likely

due to CTLA-4 haploinsufficiency. Initial therapy consisted of

high-dose IVIG (1 g/kg × 2 doses), cyclosporine (maximum dose

of 275 mg twice daily), and systemic corticosteroids (maximum

dose of 30 mg daily). He responded well to these therapies with

notable improvement in red blood cell production seen on bone

marrow biopsy. Cyclosporine was then decreased to 175 mg twice

weekly with a target trough level of 150–300 ng/ml, and systemic

corticosteroids were discontinued. However, 6 months into

therapy, he developed renal impairment and was transitioned to

5 mg daily of sirolimus with a trough goal of 5–15 ng/ml, but it

was poorly tolerated. In the subsequent 2 months, his aplastic

anemia relapsed. Off-label use of abatacept was considered given

clinical reports showing positive responses in patients with

CTLA-4 haploinsufficiency (22–24). However, given disease

severity and the patient’s preference, definitive therapy in the

form of a haploidentical (sibling, variant negative) hematopoietic

stem cell transplantation (HSCT) was pursued (25). Use of

haploidentical donor marrow was favored to a matched-unrelated

donor for the following reasons: earlier time to transplant,
Frontiers in Pediatrics 04
improved total stem cell dose which is critical in non-malignant

disease such as aplastic anemia, reduced risk for graft-vs.-host

disease due to lower T-cell concentration as compared to

peripheral stem cell harvest, and comparable outcomes with use

of post-transplant cyclophosphamide. The non-myeloablative

conditioning regimen included standard anti-thymocyte

globulin (0.5 mg/kg/day on day −9 and 2 mg/kg/day on day −8
and −7), fludarabine (30 mg/m2/day on days −6 to −2),
cyclophosphamide (14.5 mg/kg/day on days −6 and −5), and

total body radiation (400 cGy) on day −1 as previously described

(25). Post-transplant course was uncomplicated and graft-vs.-host

disease prophylaxis included cyclophosphamide, tacrolimus and

mycophenolate mofetil as previously described (25). He achieved

>95% CD3+ donor chimerism one-month post-transplant with

subsequent increase to 100% at around 3-months post-transplant.

His most recent chimerism study (1-year post HSCT) continues

to show 100% donor chimerism in both peripheral blood and

CD3+ compartments. He acquired a primary Epstein-Barr

infection at around 4-months post-transplantation with mild

intermittent clinical symptoms of rash and pharyngitis. He now

has resolution of clinical symptoms without intervention, and his

most recent EBV DNA is below the threshold of assay detection.

Now, 24-months post-transplant, infectious prophylaxes have

been discontinued. Due to previous adverse reactions to

immunoglobulin replacement, it was not administered
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post-transplantation. Endogenous immunoglobulin levels

normalized by 14-months post-transplant with an IgG of

823 mg/dl, IgM of 69 mg/dl, and IgA of 214 mg/dl. Platelet

counts remain appropriate (>150,000/ml) and hemoglobin has

been stable (12.5–15.4 g/dl). He remains transfusion independent.

Tetanus and diphtheria toxoid titers remain protective.

Inactivated vaccinations have been well-tolerated, with plans to

administer live vaccines in the future. Growth has been

appropriate with a body mass index of 19.7 kg/m2. He has

resumed normal activities.
Discussion

CTLA-4 haploinsufficiency is an autosomal dominant condition

characterized by reduced CTLA-4 expression and/or function due to

variants in CTLA4 (26). Due to variability in expressivity and

penetrance, the condition can be under recognized and

underdiagnosed. This was well demonstrated in the case of our

patient, where both he and his father shared a common variant in

CTLA4 and exhibited dissimilar phenotypes. While the patient

developed severe aplastic anemia, his father has psoriasis, arthritis

and hypothyroidism, likely due to CTLA-4 haploinsufficiency as

well. In addition, the family history of thyroid dysfunction suggests

this variant may be present across generations. Other inborn errors

of immunity can also present with similar clinical features to

CTLA-4 haploinsufficiency. An example is lipopolysaccharide-

responsive beige-like anchor, or LRBA, deficiency. LRBA is a

protein responsible for recycling cellular components, including

CTLA-4, thereby preventing lysosomal degradation (27). Thus,

deficiency of LRBA can lead to reduced CTLA-4 (28).

Therapeutic options for management of immune

dysregulatory conditions can be challenging for the practicing

immunologist. Immunosuppression to manage autoimmune and

autoinflammatory symptoms must be balanced with heightened

risk of infection and further marrow suppression. Targeted

therapeutic options are limited in management of immune

dysregulation, but sometimes can be tailored when the underlying

mechanistic pathways are identified. Abatacept is a promising

option for patients with CTLA-4 haploinsufficiency. Abatacept is a

fusion protein consisting of CTLA-4 fused to the Fc region of

human IgG (29). As such, it (at least partially) compensates for the

insufficient endogenous expression and/or function of CTLA-4 and

binds to CD80/CD86, thereby regulating T-cell stimulation. While

abatacept has shown beneficial results in clinical reports, the

absence of clinical trials renders it an off-label agent. Moreover, as

a replacement therapy, it necessitates life-long treatment in

managing CTLA-4 haploinsufficiency, with no available data

regarding the long-term clinical implications. In this case, the

patient presented with severe clinical disease. Severe or treatment

refractory disease including cytopenias and aplastic anemia should

prompt an early search for a potential stem cell donor. While

abatacept could have been used, the only definitive cure is HSCT.

Overall, his post-transplantation outcome has been excellent.

This report outlines a novel CTLA4 variant with functional

confirmation of a pathogenic aberration resulting in CTLA-4
Frontiers in Pediatrics 05
haploinsufficiency. Furthermore, it highlights the diverse

phenotypic spectrum increasingly recognized for inborn errors of

immunity, especially those involved in immune regulation.

Clinical immunologists need to maintain a high index of

suspicion when evaluating patients presenting with

autoimmunity, autoinflammation, and lymphoproliferation.

Genetic sequencing should especially be considered in patients

presenting with severe, non-malignant hematologic disease.

Establishing a multidisciplinary collaboration is critical to early

recognition, management, and occasionally curative intervention

for these patients.
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