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Metabolic profiles in gestational
diabetes mellitus can reveal novel
biomarkers for prediction of
adverse neonatal outcomes
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Jiaai Xia1, Min Su3, Min Zhang1, Ling Chen1, Hong Zhong1*,
Xianwei Cui1* and Chenbo Ji1,2*
1Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital,
Nanjing, Jiangsu, China, 2School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China,
3Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
Background: Gestational diabetes mellitus (GDM) significantly affects the fetal
metabolic environment, elevating risks of neonatal hypoglycemia and
macrosomia. Metabolomics offers promising avenues for early prediction and
diagnosis of GDM and associated adverse offspring outcomes.
Methods: This study analyzed serum samples from pregnant women diagnosed
with GDM at 24 to 28 weeks of gestation using untargeted metabolomics. We
monitored the health outcomes of their offspring to explore the correlation
between initial serum metabolite profiles and subsequent health outcomes, to
uncover thepredictivemarkers forhypoglycemiaandmacrosomia in theseoffspring.
Results: Out of 200 participants, 154 had normal newborns, 33 had offspring
with hypoglycemia, and 19 had offspring with macrosomia. From 448
identified metabolites, 66 showed significant differences in cases of
hypoglycemia, and 45 in macrosomia. A panel of serum metabolite
biomarkers achieved Area Under the Curve (AUC) values of 0.8712 for
predicting hypoglycemia and 0.9434 for macrosomia.
Conclusion: The study delineated metabolic disruptions in GDM during 24–28
weeks of gestation and pinpointed biomarkers capable of forecasting adverse
neonatal outcomes. These findings could inform GDM management strategies
and minimize the incidence of such outcomes.
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1 Introduction

Gestational diabetes mellitus (GDM), which is characterized by variations in glucose

tolerance that first appear or are observed during pregnancy (1), accounts for 80%–90%

of the cases of pregnancy-related hyperglycemia. A meta-analysis show that the global

GDM prevalence was 14.2% by 2021 according to the IADPSG diagnostic criteria (2).

The incidence of adverse pregnancy outcomes such as hypoglycemia, macrosomia, and

hyperbilirubinemia in the offspring of women with GDM has been reported to be

1.16–2.02-fold higher than that in cases with normal glucose hemostasis (3, 4).

Therefore, preventing or treating GDM and avoiding the occurrence of adverse

pregnancy outcomes is clinically important.

Despite diet and exercise management during pregnancy, GDM is associated with a

high risk of neonatal hypoglycemia and macrosomia. Ambient hyperinsulinemia plays a
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crucial role in the development of fetal macrosomia and neonatal

hypoglycemia (5). In severe cases, neonates with hypoglycemia

may show feeding difficulties and brain damage, resulting in

intellectual disability and permanent nerve damage (6). Similarly,

macrosomia affects maternal and perinatal health and increases

the risk of metabolic diseases such as obesity, diabetes, and

hyperlipidemia in adulthood (7). Numerous studies have

demonstrated that elevated fasting blood glucose (FBG) (8),

glycated hemoglobin (HbA1c) (9), triglyceride (TG), total

cholesterol (TC), low-density lipoprotein cholesterol (LDL-C),

and high-density lipoprotein cholesterol (HDL-C) (10) levels are

associated with adverse maternal and infant outcomes in cases of

GDM. However, these clinical indicators are not sufficient to

predict the risk of neonatal hypoglycemia and macrosomia.

Metabolomics has been recently used to predict and diagnose

GDM (11, 12). The changes in metabolites directly reflect the

activities or processes that have occurred or are currently

occurring within an organism (13). Untargeted metabolomics can

provide insights into the role of metabolites in physiological and

pathological conditions (14, 15). Serum metabolomic studies have

identified significant changes in metabolites such as iconic acid,

glucosamine, and tetrahydrocortisone, making them potential

biomarkers for early GDM diagnosis (16–18). Metabolomics has

also been used to predict the risk of progression from GDM to

type 2 diabetes mellitus in the early postpartum period (19),

indicating that metabolite disorders occur before the diagnosis or

progression of GDM and that analysis of the metabolic spectrum

is a practical approach to discovering early biomarkers.

Importantly, since GDM leads to metabolic disorders in women

and affects the fetal metabolic environment, untargeted

metabolomics is a useful technique for identifying early-stage

metabolite predictors to avoid adverse neonatal outcomes in

cases of GDM.

Therefore, in this study, we conducted untargeted

metabolomics analyses using pregnancy samples of patients with

GDM at 24 to 28 weeks and followed-up the neonatal outcomes

to investigate the metabolic changes in cases of GDM with

adverse neonatal outcomes and to predict the risk of neonatal

hypoglycemia and macrosomia using serum metabolites.
2 Materials and methods

2.1 Study population and study design

For this study, we recruited women diagnosed with GDM

based on the IADPSG criteria (International Association of

Diabetes and Pregnancy Study Groups Consensus Panel et al.) at

Nanjing Women and Children’s Healthcare Hospital in 2022.

According to the IADPSG criteria, GDM is diagnosed by FBG

level≥ 5.1 mmol/L, 1-h postprandial glucose level≥ 10.0 mmol/L,

or 2-h postprandial glucose level≥ 8.5 mmol/L. The study

included mothers aged 25–35 years who had natural and

singleton pregnancies and underwent a 2-h 75-g oral glucose

tolerance test (OGTT) between 24 and 28 weeks of gestation.

Their pre-pregnancy body mass index (BMI) ranged from 18.5 to
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28 kg/m2. The study participants were all Chinese. Mothers with

abnormal glucose metabolism or diabetes mellitus before

pregnancy, neurological dysfunction, cognitive disorders, cardiac

issues, malignant tumors, pulmonary failure, renal diseases, or

any other diseases were excluded. The study protocol was

established in accordance with the ethical guidelines of the

Helsinki Declaration and was approved by the Human Ethics

Committee of Nanjing Women and Children’s Healthcare

Hospital (No: 2020KY-075). Participants volunteered to take part

in the study and provided informed consent. Fasting serum samples

were collected at the time of the OGTT and stored at −80°C for

the subsequent metabolomics studies.

The participants’ clinical data were also collected from 24 to 28

weeks of gestation, and their pregnancy outcomes were followed-

up. Data for TC, TG, and HbA1c levels were missing in the

group with no neonatal abnormalities, and the missing data rate

was 0.5%. We adopted a multiple interpolation approach to

impute the missing data. The study design is shown in

Supplementary Figure S1. The study cohort was divided into

three groups on the basis of the pregnancy outcomes. The Case

N group included all cases with no neonatal abnormalities; the

Case A group included cases showing neonatal hypoglycemia

(blood glucose < 2.2 mmol/L within 48 h of birth); and the Case B

group included cases showing neonatal macrosomia (birth

weight≥ 4,000 g). Patients who could not be traced due to various

reasons and cases involving other neonatal diseases were excluded.

For creating the predictive models, we used shrinkage

methods to estimate the sample size. Shrinkage methods deal with

the problem of overfitting by reducing the variability in

the developed model’s predictions such that extreme prediction

(20). The formula is as follows, where n is the sample size,

P = 5 (number of alternative predictor variables), S = 0.9 (shrinkage

factor), and R2CS = 0.2 (Cox-Snell R2, a conservative metric for

evaluating the performance of the model). This approach indicated

that a sample size of 198 cases was required for this study.

n ¼ P

(S� 1) ln 1� R2
CS

S

� �

Finally, 200 samples were collected and were sufficient to meet

the sample size requirements and biological replication for

untargeted metabolomics analysis (21–23).
2.2 Untargeted metabolomics analysis

2.2.1 Detection and identification of serum
metabolites

Untargeted metabolomics analysis was conducted using a high-

performance liquid chromatography-mass spectrometry (HPLC-

MS) unit (Biotree Biomedical Technology Company, Shanghai).

Quality control samples were prepared by pooling all samples to

evaluate the stability of subsequent tests. To avoid systematic

error, deviation values were filtered, and metabolite data with
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≥50% missing values in a single group and ≥50% missing values in

all groups were excluded. Then, the remaining missing values were

filled by multiplying the minimum value by a random number

between 0.1 and 0.5. Finally, metabolite identification was

achieved through a spectral match using the Human Metabolome

Database (HMDB) and Kyoto Encyclopedia of Genes and

Genomes (KEGG).

2.2.2 Data processing
First, principal component analysis (PCA), an unsupervised

analysis, was used to visualize the distribution and grouping of

the samples. We generated all PCA plots using SIMCA software,

with ellipses marking the 95% confidence intervals used to

identify potential outliers in the dataset. Second, orthogonal

projections to latent structures-discriminant analysis (OPLS-DA)

was used to reflect the differences between groups and

discriminate significantly changed metabolites. Finally, the value

for the variable importance in the projection (VIP) of the first

principal component in the OPLS-DA analysis was acquired to

summarize the contribution of each variable to the model.

Metabolites with VIP > 1 (by OPLS-DA) and P < 0.05 (by

Student’s t-test) were considered to show significant changes (24).
2.3 Pathway analysis

A public database was used for pathway enrichment analysis

with KEGG and MetaboAnalyst 5.0. Based on the enrichment

results of the differential metabolites in KEGG metabolic pathways,

the differential abundance score was obtained by calculating the

ratio of the difference between the number of annotated

upregulated differential metabolites and the number of

downregulated differential metabolites in a specific pathway to the

number of all metabolites in this pathway, which could reflect the

overall change of all the different metabolites in a pathway. To

further screen the pathways and find the critical pathways showing

the highest correlation with the differential metabolites, we

performed enrichment and topological analyses of these pathways.
2.4 Predictive analytics

The sample for this study was an unbalanced dataset. We used

the Synthetic Minority Oversampling Technique (SMOTE) to

balance it (25). SMOTE was performed using the “UBL”

package. New samples were added to the dataset by synthesizing

them artificially based on k nearest-neighbor sampling with the

value of k set to 5. The sample size of the dataset for the Case A

(hypoglycemia) and Case B (macrosomia) groups was increased

to 151 and 152 cases respectively. In this study, the

“randomForest” package was used to analyze the sample dataset.

The random forest (RF) algorithm is a state-of-the-art machine

learning method used to develop predictive models. It can be

used for predictor variables of various sizes or distributions and

is suitable for application in high-dimensional environments

where the number of predictor variables may be greater than the
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number of observations. In addition, this method can emphasize

the relevance of each predictor variable through the use of so-

called variable significance measures. Therefore, this method is

well-suited for analyzing complex data, such as omics data (26).

The dataset was divided into training and validation sets in a 7:3

ratio through random sampling. The mean Gini index reduction

in clinical factors and differential metabolites was calculated to

identify the five variables that had the most significant impact on

adverse maternal and infant outcomes in patients with GDM.

These five variables were then used to construct a risk-prediction

model. The performance of the prediction model was evaluated

using the area under the receiver operating characteristic curve

(AUC) metric. Both of the above packages are from RStudio 4.2.2.
3 Results

3.1 Clinical characteristics of the
participants

This study enrolled 200 pregnant women with GDM at 24–28

weeks of gestation, including 154 cases with no neonatal

abnormalities (Case N), 33 cases of neonatal hypoglycemia (Case A),

and 19 cases of neonatal macrosomia (Case B). The clinical

characteristics are summarized in Table 1. The three groups showed

no significant differences in prenatal and sociodemographic

characteristics (age, BMI, gravidity, and parity). The clinical

indicators in the Case A group (gestational week in OGTT, systolic

blood pressure, diastolic blood pressure, and FBG, 2-h blood glucose,

HDL-C, LDL-C, TG, and TC levels) showed no significant

differences from those in the Case N group. However, at 24–28 weeks

of gestation, the HbA1c level in the Case B group was considerably

higher than that in the Case N group (P = 0.005), but it was still

within the clinical normal reference range. Each of these 14 clinical

characteristics were included in the subsequent predictive analyses. In

the assessment of pregnancy outcomes, neonates from the Case A

and Case B groups showed significantly lower blood glucose levels

(P < 0.001, P = 0.005) and higher birth weights (P < 0.001, P < 0.001),

respectively, than the corresponding values in the Case N group. In

terms of the sex of the neonates, the number of males was slightly

higher than that of females in the Case N group; the male/female

ratio was balanced in the Case A group; and the number of male

neonates was significantly greater than that of female neonates in the

Case B group. Baseline data showed no significant differences in

clinical characteristics between GDM patients with and without

neonatal adverse outcomes at 24–28 weeks of gestation, which

suggested that only focusing on clinical indicators could not predict

the occurrence of adverse neonatal outcomes.
3.2 Serum metabolomics profile of GDM
with adverse pregnancy outcomes

To explore the metabolite variations in pregnancy that

corresponded to adverse pregnancy outcomes, we performed

untargeted metabolomics analysis using serum samples obtained
frontiersin.org
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TABLE 1 Clinical characteristics of pregnant women with GDM.

Clinical characteristics Case N Case A Case B Case N vs. Case A
P-values

Case N vs. Case B
P-values

Prenatal and sociodemographic characteristics
Age (years) 29.42 ± 2.79 29.36 ± 2.56 29.47 ± 2.97 0.912 0.940

Pre-pregnancy BMI (kg/m2) 20.94 ± 1.84 21.12 ± 1.66 21.52 ± 1.36 0.611 0.188

Gravidity, n 1.62 ± 0.86 1.58 ± 1.15 1.84 ± 1.26 0.816 0.312

Parity, n 0.29 ± 0.49 0.27 ± 0.45 0.32 ± 0.58 0.89 0.807

Clinical indicators at 24–28 weeks of gestation
Gestational week(OGTT) 25.90 ± 0.73 25.86 ± 0.65 25.87 ± 0.70 0.773 0.889

SBP (mmHg) 108.62 ± 9.96 107.48 ± 11.31 111.21 ± 11.02 0.562 0.293

DBP (mmHg) 69.37 ± 7.66 69.55 ± 8.64 68.47 ± 8.04 0.907 0.633

FBG (mmol L −1) 4.62 ± 0.41 4.57 ± 0.36 4.74 ± 0.43 0.457 0.245

2hBG (mmol L −1) 8.67 ± 1.17 8.97 ± 1.19 8.29 ± 1.19 0.188 0.180

HbA1c, % 4.99 ± 0.20 4.98 ± 0.26 5.13 ± 0.27b 0.985 0.005

HDL-C (mmol/L) 2.30 ± 0.37 2.34 ± 0.42 2.14 ± 0.34 0.620 0.075

LDL-C (mmol/L) 2.92 ± 0.59 2.93 ± 0.72 3.01 ± 0.78 0.942 0.542

TG (mmol/L) 2.14 ± 0.66 2.14 ± 0.64 2.31 ± 0.62 0.995 0.280

TC (mmol/L) 5.98 ± 0.82 6.02 ± 0.94 5.98 ± 1.15 0.815 0.988

Offspring outcome index
Blood glucose (mmol/L) 3.48 ± 0.89 1.90 ± 0.40a 2.87 ± 0.80b <0.001 <0.001

Birth weight (kg) 3.27 ± 0.31 3.57 ± 0.42a 4.18 ± 0.22b <0.001 <0.001

Sex
Male 89 (57.79%) 16 (48.48%) 13 (68.42%) – –

Female 65 (42.21%) 17 (51.52%) 6 (31.58%) – –

Data are presented as mean (SD) or n (%). Student’s t-test was used for continuous variables (mean, SD). The P-values corrected by Bonferroni correction. Case A, hypoglycemia; Case B,

macrosomia. SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; 2hBG, 2 h value of OGTT; HbA1c, glycosylated hemoglobin; HDL-C, high density

lipoprotein; LDL-C, low density lipoprotein; TG, triglyceride; TC cholesterol.
aP-values <0.0167 for Case A vs. Control.
bP-values <0.0167 for Case B vs. Control.
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at 24–28 weeks of gestation from mothers with GDM in the Case

N, A, and B groups. PCA and OPLS-DA analysis were used to

summarize the variations and visualize the distribution in all

samples. The PCA model showed that most samples were placed

inside the 95% confidence interval (Figures 1A,B), whereas a

supervised OPLS-DA analysis visibly distinguished the Case A

and Case B groups from the Case N group (Figures 1C,D),

indicating significant differences in the metabolomics profiles of

GDM cases showing adverse pregnancy outcomes. Moreover, all

groups were well-clustered, indicating that the differences in

metabolic profiles between the Case N group and the Case A and

Case B groups were significant.

A total of 26,661 peaks were obtained, and 21,874 peaks were

retained after preprocessing and eliminating invalid data

(Supplementary Table S1). On the basis of the VIP values

calculated by OPLS-DA (VIP > 1) and Student’s t-test (P <

0.05), Case A and Case B groups showed 2,696 and 760

changed features in comparison with the Case N group,

respectively (Supplementary Table S2). Specifically, as shown in

the volcano diagram, 1,964 features were upregulated and

732 features were downregulated in the Case A group

(Figure 1E), while 317 features were upregulated and 443

features were downregulated in the Case B group (Figure 1F).

These results together indicated that the metabolite expression

patterns of GDM patients at 24–28 weeks of gestation showed

significant changes before the occurrence of neonatal

hypoglycemia or macrosomia.
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3.3 Classification of metabolite changes
in GDM with neonatal hypoglycemia
or macrosomia

After matching with the Human Metabolome Database (HMDB),

a total of 448 metabolites were identified. The secondary and tertiary

classifications of the metabolites identified in the Case A group were

shown in Figure 2A; the metabolites identified were mainly lipids and

lipid-like molecules (24.24%), organic acids and derivatives (24.24%),

and organoheterocyclic compounds (24.24%). The metabolites

identified in the Case B group were mainly lipids and lipid-like

molecules (35.56%) and organic acids and derivatives (26.67%),

similar to the Case A group (Figure 2B). Among these metabolites,

66 were differential metabolites in Case A, of which 29 were

upregulated and 37 were downregulated in comparison with the

Case N group. Among the differential metabolites screened,

carbohydrate metabolites were all downregulated (Figure 2C). We

further screened 45 differentially expressed metabolites in the Case

B group, of which 14 metabolites were upregulated and 31 were

downregulated, with lipids showing a downward trend. In contrast,

amino acids showed an upward trend (Figure 2D). Among

these differentially expressed metabolites, eight were altered in

both Case A and Case B groups, including Acetylleucine

(VIP = 2.348, P < 0.001; VIP = 3.983, P < 0.001), Arecaidine

(VIP = 1.702, P = 0.024; VIP = 1.193, P < 0.001), Diatretin 2 (VIP =

2.346, P < 0.001; VIP = 4.129, P < 0.001), N-Acetylglutamine (VIP =

2.399, P < 0.001; VIP = 4.010, P < 0.001), N-Acetylhistidine
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FIGURE 1

Serum metabolites differ between the GDM and case groups. (A,B) PCA score plots for Case N vs. Case A groups and Case N vs. Case B groups. (C,D)
Score scatter plots of the OPLS-DA model for Case N vs. Case A groups and Case N vs. Case B groups respectively. (E and F) Volcano plot showing
-log 10 (P-value) vs. log 2 (fold-change) for all metabolites. Areas of 95% confidence were highlighted in circles. PCA, principal component analysis;
OPLS-DA, orthogonal projections to latent structures-discriminate analysis.
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(VIP = 1.976, P < 0.001; VIP = 3.406, P < 0.001), N-Acryloylglycine

(VIP = 1.195, P = 0.003; VIP = 1.546, P = 0.042), N-Acetyl-L-

phenylalanine (VIP = 2.634, P < 0.001; VIP = 2.197, P = 0.011), and

Vinylacetylglycine (VIP = 2.260, P < 0.001; VIP = 3.248, P = 0.007).

3.4 Pathway analysis based on
metabolomics

Pathway enrichment analysis was performed to identify the

metabolite pathways associated with altered metabolite levels
Frontiers in Pediatrics 05
(Supplementary Table S3). In the Case A group, 10 of the

pathways involving the differential metabolites showed significant

changes. Figure 3A shows that five pathways were downregulated

and three pathways were upregulated. Thus, metabolite

disturbances could disrupt the overall metabolic status of GDM

patients through metabolic pathways. In the Case B group, 11

pathways showed significant changes, of which only the

glycerophospholipid metabolism pathway was upregulated

(Figure 3B). Enrichment and topological analysis showed that the

critical pathway showing the highest correlation with the
frontiersin.org
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FIGURE 2

Alterations in metabolites species associated with adverse offspring outcomes. (A,B) Metabolite classification for Case A and Case B groups.
(C,D) Bubble plot showing the differentially altered metabolites in Case A and Case B groups. Red indicates up-regulation and blue denotes
down-regulation.
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differential metabolites was the cycle (TCA cycle) in the Case A

group (Figure 3C) and biotin metabolism in the Case B group

(Figure 3D). Thus, these may be the main pathways underlying

metabolic changes in patients with GDM.
3.5 Metabolites with good prediction
capacity for neonatal hypoglycemia
and macrosomia

The 66 screened serum metabolites for the Case A group and

the 14 clinical factors were further characterized using RF
Frontiers in Pediatrics 06
analysis. The RF analysis identified N-acetylglutamine, N-acetyl-l-

phenylalanine, N-acetylhistidine, acetylleucine, and diatretin 2 as

the five metabolites showing the most significant reductions in

the mean Gini index (Figure 4A). The datasets of the neonatal

hypoglycemia and control groups were randomly divided into

training and test sets. An RF-based risk-prediction model using

the five metabolites listed above was constructed; the model’s

error rate was minimized when mtry = 6 and was stabilized when

ntree = 800. The RF model achieved the lowest error rate at

mtry = 6 and ntree = 800, and showed an AUC of 0.8712 in the

test set (Figure 4B), indicating that the selected serum

metabolites had good prediction performance.
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FIGURE 3

Pathway analysis based on metabolomics. (A): Differential abundance score for Case A vs. Case N; (B): Differential abundance score for Case B vs. Case
N; (C): Pathway analysis for g Case A vs. Case N; (D): Pathway analysis for g Case B vs. Case N. DA Score: Ratio of the difference between the number
of up-regulated and down-regulated differential metabolites annotated on a pathway to the number of all metabolites on the pathway; Impact: Impact
factors obtained through topological analysis.
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Similarly, the 45 screened serum metabolites for the Case B

group and the 14 clinical factors were also characterized using

RF. The five most essential characteristics identified in the RF

analysis were diatretin 2, acetylleucine, N-acetylglutamine,

N-acetylhistidine, and arecaidine levels (Figure 4C), all of

which were serum metabolite levels. The model achieved

the lowest error rate when mtry = 2, and the error rate

stabilized when ntree = 700. The AUC for the test set was

0.9434 (Figure 4D), indicating that the model had good

prediction accuracy.

These findings indicated that metabolites were suitable

biomarkers of neonatal hypoglycemia and macrosomia.
Frontiers in Pediatrics 07
4 Discussion

The number of GDM patients has more than doubled since

the formulation of the diagnostic criteria for GDM by the

IADPSG and their widespread adoption worldwide (27). The

criteria formulated by the IADPSG are based on the relationship

between hyperglycemia and adverse pregnancy outcomes (28),

making them suitable for managing most GDM patients and

reducing the incidence of adverse maternal and infant effects.

While these standards imply a more rigorous approach to

managing the health of patients with GDM, a subset of GDM

patients undergoing such management remain at a high risk of
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FIGURE 4

Prediction of adverse offspring outcome in women with GDM. (A): the five metabolites with the greatest reduction in the mean Gini index in the
Case A. (B): In the random forest model, the signature with five variables provided the AUC 0.871 for predicting hypoglycaemia. The 95%
confidence interval is 0.800-0.943.(C): the five metabolites with the greatest reduction in the mean Gini index in the Case B. (D): In the random
forest model, the signature with five variables provided the AUC 0943 for predicting macrosomia. The 95% confidence interval is 0.898-0.988.
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adverse infant outcomes such as hypoglycemia and macrosomia,

which can combine and seriously threaten the near-and long-

term health of the neonate (29, 30). Thus, early identification

and appropriate management of high-risk GDM groups are of

great practical significance in reducing adverse neonatal

outcomes. This study conducted untargeted metabolomics

analysis to examine the serum metabolic profile of GDM patients

with different pregnancy outcomes. Biomarker panels using a

combination of five metabolites in maternal serum obtained at

24–28 weeks of gestation accurately predicted neonatal

hypoglycemia or macrosomia among pregnant women with

GDM. Generally speaking, our findings could facilitate the

identification of high-risk GDM populations with adverse

neonatal outcomes. Following the diagnosis of GDM based on
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the IADPSG criteria, healthcare providers can implement tailored

lifestyle interventions including diet and exercise, and the results

of our study can make these management more targeted and

efficient, which can better protection of maternal and child health.

Previous studies have shown that the incidence of neonatal

hypoglycemia and macrosomia in the GDM population was

20%–35% and 4%–27.6%, respectively (30, 31). In our study, the

incidence of neonatal hypoglycemia and macrosomia was low,

which may be attributable to blood glucose management during

pregnancy. Moreover, among the 200 neonates we followed-up,

six had both neonatal hypoglycemia and macrosomia, indicating

a potential link between these two adverse outcomes. A

prospective study indicated that macrosomia is a risk factor for

neonatal hypoglycemia (32). Giant fetuses are obviously exposed
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to higher concentrations of free insulin in the uterus, which can

cause a state of metabolic decompensation. As a result, adverse

offspring outcomes in women with GDM are expected and may

be concurrent.

The metabolic profile of GDM patients with hypoglycemia or

macrosomia in their offspring showed significant changes at

24–28 weeks of gestation. Specifically, carbohydrate metabolites

1, 5-anhydroglucitol (1,5-AG), β-d-glucosamine, and 1-phosphate

fructose were significantly downregulated in the Case A group.

Previous studies have proposed that 1,5-AG is sensitive to

urinary glucose excretion and can capture glucose variability that

cannot be captured by HbA1c measurements (33, 34). Moreover,

1,5-AG has been recently identified included as an essential

blood glucose parameter in the study of adverse pregnancy

outcomes of diabetes (35, 36). Additionally, our findings

indicated that amino acid levels were significantly upregulated in

the Case B group, which may be a manifestation of maternal

overnutrition. Previous studies have proven that aromatic amino

acids, glutamic acid, glutamine, and other amino acids were

related to the birth weight, which is also consistent with our

research results (37, 38).

In our study, serum metabolites were good predictors of

neonatal hypoglycemia and macrosomia. Although previous

studies assessed a variety of adverse outcomes as outcome

indicators, our study focused on neonatal hypoglycemia and

macrosomia, which are more relevant for clinical application,

thereby providing a direction for clinical management and

prevention and showing more practical significance. In recent

years, metabolomics has been increasingly used for the diagnosis

and prognostication of GDM, indicating that metabolites play a

crucial role in the development and pathogenesis of GDM

(39, 40). This approach allows the identification of metabolic

observations that can predict poor prognosis in the offspring of

GDM patients. A previous study reported that the C-statistic for

predicting GDM-related adverse pregnancy outcomes on the

basis of social and demographic factors, obstetric and family

history, and physical characteristics was less than 0.7 (41).

However, in our study, the RF prediction model showed that the

top five factors affecting hypoglycemia and macrosomia

outcomes were all serum metabolites, and that a prediction

model consisting of these five metabolites had AUCs of 0.8712

and 0.9434, respectively, which were superior to the AUCs of

clinical indicators in predicting adverse pregnancy outcomes in

the offspring of patients with GDM. The use of serum

metabolites from weeks 24 to 28 of pregnancy to predict the

likelihood of neonatal hypoglycemia and macrosomia in cases of

GDM could assist healthcare professionals in implementing

proactive measures to prevent these adverse outcomes. Since

wearable electrochemical biosensors can be used to monitor

metabolites and nutrients (42), in the future, wearable devices

that detect serum metabolite levels may be useful for the clinical

management of GDM patients to achieve accurate control

through early identification of metabolic disorders.

Nevertheless, some limitations of this study require

consideration. First, while all participants in this study received

consistent diet and exercise counseling, constraints in follow-up
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prevented us from conducting detailed subject-specific studies of

diet and exercise. Therefore, we could not assess the effect of diet

and exercise on metabolism during pregnancy. Second, the small

sample size of this study may have precluded the evaluation of

the differential levels of some metabolites. Metabolites, especially

those released at 24–28 weeks of gestation, need to be tested in

larger, more diverse populations to assess their predictive value.

Third, the range of samples collected in this study was limited,

and more case specimens are needed for external verification.

Therefore, the results should be interpreted with caution and the

predictive potential of the prediction models requires further

validation in additional large-sample prospective clinical studies.

Last, the metabolomics measurement technique (HPLC-MS) used

in this study did not allow for absolute quantitative analysis.
5 Conclusions

In summary, we profiled the serum metabolite composition in

the context of GDM and further used changed metabolites to

predict adverse outcomes in offspring. The high sensitivity of

serum metabolites plays a vital role in predicting the risk

ofadverse neonatal outcomes in GDM patients. It may be an

auxiliary monitoring indicator for the management of GDM in

the future.
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