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Enhancing surgical
decision-making in NEC with
ResNet18: a deep learning
approach to predict the need
for surgery through x-ray
image analysis
Zhiqing Wu†, Ran Zhuo†, Xiaobo Liu†, Bin Wu* and Jian Wang*

Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
Background: Necrotizing enterocolitis (NEC) is a severe neonatal intestinal disease,
often occurring in preterm infants following the administration of hyperosmolar
formula. It is one of the leading causes of neonatal mortality in the NICU, and
currently, there are no clear standards for surgical intervention, which typically
depends on the joint discretion of surgeons and neonatologists. In recent years,
deep learning has been extensively applied in areas such as image segmentation,
fractureandpneumoniaclassification, drugdevelopment, andpathological diagnosis.
Objective: Investigating deep learning applications using bedside x-rays to help
optimizing surgical decision-making in neonatal NEC.
Methods: Through a retrospective analysis of anteroposterior bedside chest and
abdominal x-rays from 263 infants diagnosed with NEC between January 2015
and April 2023, including a surgery group (94 cases) and a non-surgery group
(169 cases), the infants were divided into a training set and a validation set in a
7:3 ratio. Models were built based on Resnet18, Densenet121, and SimpleViT
to predict whether NEC patients required surgical intervention. Finally, the
model’s performance was tested using an additional 40 cases, including both
surgical and non-surgical NEC cases, as a test group. To enhance the
interpretability of the models, the study employed 2D-Grad-CAM technology
to describe the models’ focus on significant areas within the x-ray images.
Results: Resnet18 demonstrated outstanding performance in binary diagnostic
capability, achieving an accuracy of 0.919 with its precise lesion imaging and
interpretability particularly highlighted. Its precision, specificity, sensitivity, and
F1 score were significantly high, proving its advantages in optimizing surgical
decision-making for neonatal NEC.
Conclusion: The Resnet18 deep learning model, constructed using bedside
chest and abdominal imaging, effectively assists clinical physicians in
determining whether infants with NEC require surgical intervention.
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Abbreviations

NEC, neonatal necrotizing enterocolitis; NICU, neonatal intensive care unit; 2D-Grad-CAM, 2D gradient-
weighted class activation mapping; AUC, area under the curve; CI, confidence interval; CNN, convolutional
neural network; FC, fully connected; ReLU, rectified linear unit; TL, transfer learning; PPV, positive
predictive value; NPV, negative predictive value; CAXR, chest and abdominal x-ray; DRX, digital
radiography x-ray.
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Introduction

NEC is the leading cause of severe inflammatory disease in

newborns post-birth (1), especially among preterm infants, and is a

principal contributor to neonatal mortality in the NICU (2).

Newborns suffering from NEC, particularly after complications like

intestinal perforation and peritonitis (3), often experience worsening

conditions necessitating transfer to specialized pediatric hospitals

equipped for surgery. In such instances, mortality rates can soar to

30%, and even 50% due to widespread intestinal necrosis.

Additionally, up to 9% of children at the age of one who have had

NEC require parenteral nutrition (3), and many post-surgery

infants exhibit intestinal flora dysbiosis (4). The rapid progression

of NEC sometimes calls for multiple short-term assessments to

decide on the urgency of surgical intervention (5). Surgical

management of NEC aims to mitigate further infection (6) and

sepsis by repairing perforations and resecting non-viable bowel

sections (6, 7), which is crucial for preventing short bowel

syndrome (8) and the prolonged use of parenteral nutrition.

Currently, there are no definitive standards for surgical indications,

which often rely on the joint discretion of surgeons and

neonatologists (9). The presence of free air under the diaphragm on

an upright abdominal x-ray and progressive abdominal distension

are the gold standards for surgical intervention in acute NEC.

Clinically, the ideal surgical window during the acute phase of NEC

—when the intestinal wall is fully necrotic but not yet perforated—

is highly sought after. Furthermore, severe intestinal strictures post-

conservative treatment still warrant surgical indications.

In recent years, deep learning has seen extensive application in

diagnosing traumatic bone fractures (10), pulmonary nodules (11),

COVID-19 (12), and in classifying pneumonia as well as in image

segmentation (13, 14). Deep learning neural networks, by

mimicking the human brain, automatically learn and recognize

patterns in images, offering an edge in processing complex image

data (15). Currently, the use of supine x-ray films in NEC lacks a

standardized approach (16). In our research, we have trained deep

learning models based on bedside chest-abdominal x-rays using

Densenet121, Resnet18, and SimpleViT. Our study underscores

ResNet18’s potential to refine NEC surgical decision-making. These

models are commonly employed in pneumonia classification (11, 17)

and the identification of gastrointestinal pathologies (18).
Materials and methods

Materials

From January 2015 to April 2023, bedside chest and abdominal

films of 263 neonates aged 0 to 39 days were collected from

Children’s Hospital of Soochow University for this study. We

divided these original images into a 7:3 ratio for training and

validation. These infants were treated for NEC either surgically or

non-surgically. In addition, we have collected 40 cases of non-

surgical and surgical NEC from May 2023 to February 2024 as an

independent validation set to assess the model’s performance on

unfamiliar datasets. Additionally, from May 2023 to February 2024,
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we collected a total of 40 cases, including 21 non-surgical and 19

surgical NEC cases, as an independent validation set to evaluate

the model’s performance on unfamiliar datasets. The diagnosis of

the non-surgical group was based on the modified Bell staging

criteria, and the initial bedside chest and abdominal films in the

anteroposterior position, decided for conservative treatment, were

used. For the surgical group, the last bedside chest and abdominal

films in the anteroposterior position before surgery, which were

confirmed as NEC during the surgery, were used. The bedside

chest and abdominal films were acquired using the DRX-

Revolution Mobile x-Ray System produced by Carestream Health,

USA. All images were taken in the supine position. According to

the needs of the disease, some patients also underwent

anteroposterior and lateral CAXR, but our study did not involve

lateral views. As part of a retrospective study, we initially collected

a large volume of clinical diagnostic NEC x-ray images from cases

that did not undergo surgical treatment for model training. These

images were subsequently annotated by experienced pediatric

radiologists to select those with relatively distinct radiographic

features. For the non-surgical group, images taken prior to

antibiotic treatment were used; for the surgical group, images from

the last bedside review before surgery were utilized. Surgical

indications include cases where the child’s upright abdominal x-ray

shows signs of pneumoperitoneum, abdominal paracentesis fluid

indicates the presence of feces or a large amount of purulent or

bloody fluid, and situations where, despite receiving the best

medical treatment, the condition continues to worsen or remains

unstable. Surgical interventions for these cases involved simple

laparotomy, and if necrosis was discovered, resection of the

necrotic bowel segments followed by the establishment of an

intestinal stoma or anastomosis. Cases diagnosed with NEC

preoperatively were included; however, images from cases not

confirmed as NEC postoperatively were excluded to enhance the

model’s diagnostic specificity. The inclusion criteria included (1)

NEC patients are diagnosed and treated according to the modified

Bell staging.(2) sufficient radiographic image technical quality, (3)

imaging field of view (FOV) covering the entire abdomen.(4)

During the surgery and in the postoperative pathology, it was

confirmed that the children who underwent surgical treatment had

NEC. Exclusion criteria include: children with congenital intestinal

malformations (congenital megacolon, intestinal atresia, malrotation

of the intestines), meconium ileus, spontaneous intestinal

perforation, and cases with a large amount of incomplete data. The

diagnosis of NEC was confirmed by three senior pediatric

radiologists and neonatologists with over five years of experience.

The study was conducted with the consent of the parents of the

children and was approved by the Institutional Ethics Committee

of Children’s Hospital of Soochow University.
Methods

Data augmentation, commonly used in the medical field to

increase the size of the dataset, generates additional labeled

images without changing the semantics of the image. In this

paper, we used various data augmentation methods, such as
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random cropping, rotation, and horizontal flipping. In

implementation, the CPU generates augmented images while the

previous batch of images is being trained on the GPU. Thus,

these data augmentation techniques do not affect the time

complexity. We also used oversampling to deal with imbalanced

data. Deep learning methods automatically extract features from

raw data and classify images. The main advantage of this

approach is that both feature extraction and classification occur

within the same network. Convolutional Neural Network (CNN)

models, the most advanced form of DL technology, consist of

many stacked convolutional layers that automatically extract

features from image data. They have been used in many

radiological tasks and can achieve high performance in image-

based disease classification (19). The CNN architecture is built

with layers including an input layer (producing output from the

image as input), convolutional layers (convoluting the input

image with filters to produce feature maps), Rectified Linear Unit

(ReLU) activation layers (activating neurons above a threshold),

pooling layers (reducing the image size while retaining high-level

features), and fully connected (FC) layers (producing results) (8).

The accuracy of CNNs depends on the design of the layers and

the training data. CNNs typically require large labeled medical

datasets for training, which are difficult to create due to time and

labor costs. Recent studies have shown that transfer learning can

address issues with small datasets.

In transfer learning (TL), a Convolutional Neural Network

(CNN) is first trained to learn features in a broad domain (e.g.,

ImageNet), then the trained features and network parameters are

transferred to a more specific domain. In CNN models, low-level

features like edges, curves, and corners are learned in initial

layers, while specific high-level features are learned in the final

layer (20). Among different TL models, we chose ResNet for its

widespread recognition in medical image classification. We used

ResNet-18 due to its relatively shallow structure, allowing faster

training of images without sacrificing performance. It consists of

a 7 × 7 convolutional layer, 2 pooling layers, 5 residual modules,

and a fully connected (FC) layer. Each residual module contains

two 3 × 3 convolutional layers followed by a batch normalization

layer and a ReLU activation function. Inputs can be added

directly before the final ReLU activation function by skipping

these two convolutional layers. In a recent study (21), the

authors evaluated the performance of several neural networks

with a Softmax output layer with a ReLU activation layer and

verified that Softmax with ReLU activation performs better in

classification tasks. Therefore, Softmax was preferred as the

output layer in this study to obtain probability predictions.

Due to its use of bottleneck residual blocks, batch normalization

(adjusting the input layer), and identity connections (to prevent

gradient vanishing in the network), it has high classification

accuracy. During the transfer learning and fine-tuning process, we

gradually unfroze the top 10 layers of the model and changed the

output of the fully connected (FC) layer to binary classification.

We tested various optimizers and found the “Adam” optimizer

(22) to perform best among all studied optimizers, hence it was

applied in our model. To our knowledge, no previous studies have

fevaluated the effectiveness of these deep learning models that can
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directly recognize bedside chest-abdominal x-ray images without

the need for delineating regions of interest (ROI) in assessing the

need for surgical intervention.

All methods were carried out in accordance with relevant

guidelines and regulations. Informed consent was obtained from

all legal guardians of the patients. Personal identifiers were

removed from all patient data to protect privacy and confidentiality.
Comparison of deep learning models

In this study, we explored which deep learning model had

superior performance in determining the need of NEC surgery

by comparing three commonly used deep-learning-based

classification methods: ResNet-18 (a 18-layer residual network),

DenseNet, and the latest Transformer model architecture, which

integrates multi-head attention mechanisms (MHA) in two

schemes to enhance model performance. Initially, we conducted

a comparative analysis of our ResNet18 model against the deeper

ResNet50 and ResNet101 models to evaluate their performance.

Surprisingly, we found that the latter two models

underperformed, whereas the ResNet18 model demonstrated

superior predictive capabilities for our research objectives.

Additionally, we employed the 2D-Grad-CAM (23) module for

interpretability analysis of the three deep learning models. This

module allows for a visual identification of the alignment

between intestinal lesions and model prediction focus. We also

utilized Decision Curve Analysis (DCA) to evaluate the clinical

benefits of different prediction models.
Statistical analysis

We use the following indicators to evaluate the performance of

the model and select the best model: accuracy, sensitivity,

specificity, F1 score, DCA curve images, where the F1 score is

the weighted average of precision and recall. This study used the

following tools: Python 3.7.16 (https://www.python.org/

downloads/release/python-3716/) and PyTorch third-party

libraries (Version: 1.13.1) on Windows 11 operating system

{[MSC v.1916 64 bit (AMD64)]}.
Results

In terms of AUC curve performance (Figure 1), the Resnet18

model demonstrates superior classification capability compared

to the Densenet121 and SimpleViT models, and it maintains

high accuracy on unseen datasets.

As shown in Figure 1A, the Resnet18 model has an AUC of

0.973 on the training set, indicating a high level of classification

efficacy. The AUC on the test set is 0.876; although it decreases

compared to the training set, it still reflects the model’s robust

classification capability.

Additionally, the Resnet18 model demonstrated good

performance in predictive decision applications, outperforming
frontiersin.org
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FIGURE 1

Comparison of the AUC curves for the three models across the
training, validation, and testing datasets. (A) Resnet18. (B)
Densenet121. (C) SimpleViT.

Wu et al. 10.3389/fped.2024.1405780
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both the Densenet121 and SimpleViT models across training

(Figure 2), testing (Figure 3), and validation sets (Figure 4).

As shown in Figure 2A, on the training set, the Decision Curve

Analysis (DCA) performance of the Resnet18 model consistently

outperforms the “treat none” strategy. Moreover, at most

threshold values, the model’s curve exceeds the “treat all”
FIGURE 2

The DCA curves of the three models on the training set. (A) Resnet18.
(B) Densenet121. (C) SimpleViT.
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FIGURE 3

The DCA curves of the three models on the test set. (A) Resnet18. (B) Densenet121. (C) SimpleViT.
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FIGURE 4

The DCA curves of the three models on the validation set. (A) Resnet18. (B) Densenet121. (C) SimpleViT.
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FIGURE 5

The accuracy and loss curves for the three models on the training and validation sets. (A) Resnet18. (B) Densenet121. (C) SimpleViT.

Wu et al. 10.3389/fped.2024.1405780
approach, suggesting that this model could assist clinicians in

making accurate decisions about whether to proceed with

surgical interventions in children diagnosed with NEC.

As illustrated in Figure 5A, compared to Densenet121

(Figure 5B) and SimpleViT (Figure 5C), the Resnet18 model

demonstrates good performance on the training set and exhibits

a positive learning and generalization trend on the validation set,

although the latter’s rise is not as steady as on the training set.

With the number of training iterations increasing, the loss curves

for both the training and validation sets demonstrate a declining

trend, indicating that the model is progressively enhancing its

predictive accuracy while minimizing loss as much as possible.

Overall, the Resnet18 model exhibits excellent performance on

the training set and maintains good performance on the test set,

despite an expected decrease in effectiveness as the model

transitions from familiar training data to previously unseen data.

However, it is noteworthy that the AUC value for the test set

indicates the model’s potential for providing robust diagnostic or

predictive capabilities in practical applications.

Table 1 displays a comparative analysis of various performance

metrics for three models - Densenet121, Resnet18, and SimpleViT

—across training, validation, and test datasets. These metrics

include accuracy (Acc), area under the curve (AUC), 95%
Frontiers in Pediatrics 07
confidence interval (95% CI), sensitivity, specificity, positive and

negative predictive values (PPV and NPV), precision, recall, F1

score, and decision threshold. The Resnet18 model exhibited

robust performance with high accuracy and AUC, indicating

strong generalizability.

Furthermore, through 2D-Grad-CAM analysis applied to the final

convolutional layer of the model (Supplementary Material Figures

S1–S3), heatmaps highlighting focal areas were generated. This

study provides visual insigts into the model’s capability to detect

intestinal lesions. Notably, the Resnet18 model exhibited significant

alignment and activation in the intestinal regions, emphasizing its

interpretative accuracy in medical imaging diagnosis.
Discussion

Previous studies, such as the one by Gao et al. (16), developed a

complex multimodal model based on radiomic features and the

SENet network model to predict surgical necessity in acute NEC

cases. However, this did not include NEC cases requiring surgical

intervention after treatment. In other aspects, many studies have

described several potential biomarkers, mainly isolated from serum,

stool, and urine samples, to differentiate between non-surgical and
frontiersin.org
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TABLE 1 Comparison of the performance of five deep learning models.

Model Name Acc AUC 95% Cl SENS SPE PPV NPV Precision Recall F1 Threshold Cohort
Densenet121 0.839 0.912 0.877–0.948 0.805 0.873 0.864 0.817 0.864 0.805 0.833 0.519 TRAIN

0.722 0.768 0.661–0.874 0.821 0.667 0.575 0.872 0.575 0.821 0.676 0.313 Val

0.65 0.637 0.460–0.813 0.737 0.571 0.609 0.706 0.609 0.737 0.667 0.313 TEST

Resnet18 0.919 0.973 0.956–0.990 0.924 0.915 0.916 0.923 0.916 0.924 0.92 0.494 TRAIN

0.873 0.886 0.801–0.972 0.714 0.961 0.909 0.86 0.909 0.714 0.8 0.513 Val

0.85 0.876 0.766–0.986 0.737 0.952 0.933 0.8 0.933 0.737 0.824 0.513 TEST

SimpleViT 0.513 0.443 0.370–0.517 0.178 0.855 0.538 0.508 0.538 0.178 0.268 0.56 TRAIN

0.62 0.591 0.463–0.719 0.786 0.529 0.478 0.818 0.478 0.786 0.595 0.36 Val

0.65 0.497 0.305–0.691 0.842 0.5 0.593 0.769 0.593 0.842 0.696 0.36 TEST

Resnet50 0.924 0.907 0.861–0.954 0.907 0.941 0.939 0.91 0.939 0.907 0.922 0.501 TRAIN

0.65 0.622 0.435–0.808 0.842 0.476 0.593 0.769 0.593 0.842 0.696 0.379 VAL

0.722 0.661 0.533–0.789 0.321 0.941 0.75 0.716 0.75 0.321 0.45 0.481 TEST

Resnet101 0.919 0.973 0.957–0.990 0.915 0.924 0.923 0.916 0.923 0.915 0.919 0.498 TRAIN

0.675 0.638 0.456–0.820 0.842 0.524 0.615 0.786 0.615 0.842 0.711 0.142 VAL

0.595 0.587 0.460–0.714 0.857 0.451 0.462 0.852 0.462 0.857 0.6 0.128 TEST
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surgical NEC. Cakir et al. (24) described the predictive value of

endothelial cell-specific molecules and interleukin-33, which

gradually increase in patients undergoing surgery. However,

obtaining these indicators is time-consuming and expensive, often

necessitating surgical intervention in patients before detection,

showing a clear lag compared to bedside chest and abdominal x-

rays. In ultrasonography diagnosis, Chen QinYao et al. (9)

described the role of focal or strong echo effusion in surgical

prediction. However, ultrasonography often depends on the level

and subjective judgment of the ultrasonographer, lacking objectivity

compared to x-ray examination and is greatly interfered by

increased intestinal gas. Currently, bedside ultrasound or upright

abdominal films are more commonly used in clinical practice for

intestinal condition analysis, with few using abdominal CT scans

for evaluation. However, in our study, we decided to use bedside

chest and abdominal films to construct models. Performing upright

abdominal films usually requires a DR photography room and is

inconvenient for bedside operation. Bedside chest and abdominal

films are convenient, low-cost, highly repeatable, and easy to

master, providing advantages for diseases like NEC that may

require multiple assessments within a day. Moreover, bedside chest

and abdominal films, compared to ultrasound, provide more

objective and comprehensive results. Also, compared to abdominal

CT scans, bedside chest and abdominal films involve lower

radiation doses, making them more feasible for generally unstable

infants and having lower side effects. For the non-surgical group,

the most significant imaging features of NEC can be obtained, and

for the surgical group, bedside film images closest to the clinical

physician’s judgment standard are obtained. We constructed an

auxiliary means for determining the treatment strategy for neonatal

NEC using three deep learning models (Densenet121, Resnet18,

SimpleVit) and analyzed and compared their efficacy. Table 1

indicates that the Resnet18 model outperforms the other two

models in terms of DCA and AUC curves, as well as 2D-Grad-

CAM. It exhibits high values in sensitivity, specificity, PPV, and

NPV across training, validation, and test datasets. Furthermore, by

fine-tuning hyperparameters, we achieved superior performance

compared to the conventional Resnet18 model. Notably, the model
Frontiers in Pediatrics 08
demonstrates excellent generalization capability on the validation

set. Hence, we believe this model could aid clinicians in deciding

whether surgical intervention is necessary for NEC patients, thus

preventing the risk of missing the optimal surgical window due to

continued conservative treatment.
Limitations

It is a single-center study with a relatively small sample size.

Moreover, assessing whether children require NEC surgery relies

not only on x-ray examinations but also necessitates an analysis of

the infant’s basic vital signs and tolerance for surgical intervention

and general anesthesia. In the clinical decision-making process,

other clinical indicators such as complete blood count, coagulation

tests, blood gas analysis, and electrolyte levels are indispensable.

Looking ahead, we plan to collaborate with multiple centers to

collect more bedside chest and abdominal x-ray images of infants

with NEC, aiming to enlarge the scale of the training, validation,

and test sets. We will also explore adjustments in fine-tuning

methods to enhance accuracy, such as modifying the model’s loss

function, learning rate, employing different optimizers, and

implementing early stopping mechanisms.
Conclusion

The Resnet18 deep learning model, constructed using bedside

chest and abdominal imaging, effectively assists clinical

physicians in determining whether infants with NEC require

surgical intervention.
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The attention areas in the prediction of the Resnet18 model for supine
abdominal radiographs of surgical versus non-surgical NEC within the test
group activated by the 2D-Grad-CAM module.
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The calibration curves for each model of RESNET18, DENSENET121 and
SimpleVIT.

SUPPLEMENTARY FIGURE S5

Comparison of the performance of the ResNet50 and ResNet101 models.
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