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Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental
condition that significantly impacts the mental, emotional, and social
development of children. Early screening for ASD typically involves the use of
a series of questionnaires. With answers to these questionnaires, healthcare
professionals can identify whether a child is at risk for developing ASD and
refer them for further evaluation and diagnosis. CHAT-23 is an effective and
widely used screening test in China for the early screening of ASD, which
contains 23 different kinds of questions.
Methods: We have collected clinical data from Wuxi, China. All the questions of
CHAT-23 are regarded as different kinds of features for building machine
learning models. We introduce machine learning methods into ASD screening,
using the Max-Relevance and Min-Redundancy (mRMR) feature selection
method to analyze the most important questions among all 23 from the
collected CHAT-23 questionnaires. Seven mainstream supervised machine
learning models were built and experiments were conducted.
Results: Among the seven supervised machine learning models evaluated, the
best-performing model achieved a sensitivity of 0.909 and a specificity of
0.922 when the number of features was reduced to 9. This demonstrates the
model’s ability to accurately identify children for ASD with high precision, even
with a more concise set of features.
Discussion: Our study focuses on the health of Chinese children, introducing
machine learning methods to provide more accurate and effective early
screening tests for autism. This approach not only enhances the early
detection of ASD but also helps in refining the CHAT-23 questionnaire by
identifying the most relevant questions for the diagnosis process.

KEYWORDS

autism spectrum disorder, CHAT-23, early screening, feature engineering, machine
learning, Chinese children

1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder usually manifested

by behavioral and social deficits (1). The prevalence of autism has been increasing over the

years, with varying estimates depending on the region and population studied. Statistics

indicate that over 1.5% of children in the United States, or approximately one in every

54 children, are diagnosed with ASD. However, the prevalence of autism in China is

estimated to be lower than 1%. This difference may be due to the underrepresentation

of the mainstream school population in the statistical data and the need for more
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up-to-date research to assess the prevalence of autism in China

accurately (2, 3). Matson et al. conducted research on cross-

cultural autism behavior and also showed that children with

autism have different behavioral characteristics and severity due

to regional differences and cultural backgrounds (4).

Infancy is a critical period of plasticity for brain development

(5, 6). The primary objective of early intervention is to make full

use of brain plasticity during infancy, enhance brain development

induce behavioral changes, and ultimately reduce the impact of

the disorder in children with ASD. Based on the characteristics

of ASD in 8-year-olds, it has been found that the diagnostic

accuracy of children under 36 months of age exceeds that of

children over 36 months of age. Some studies use different age

groups as controls, finding that younger children, compared to

adolescents, provide more stable and accurate results for early

diagnosis (7, 8). Those findings highlight the importance of early

screening for autism. Early screening allows for timely

intervention to help children receive treatment for autism (9).

There are two main lines for early screening of autism, including

Scale-based methods, and machine learning-based methods.

Scale-based early screening tests for ASD can be classified into

two levels: the level 1 ASD screening test and the level 2 ASD

screening test. Examples include the Modified Checklist for

Autism in Toddlers (M-CHAT) (10), the Quantitative Checklist

for Autism in Toddlers (Q-CHAT) (11), and the Checklist for

Autism in Toddlers (CHAT-23) (12). On the other hand, Level 2

ASD screening tests are intended for children at high risk for

ASD, such as the Infant-Toddler Checklist (ITC) (13), the Baby

and Infant Screen for Children with aUtIsm Traits (BISCUIT)

(14), and the Systematic Observation of Red Flags (SORF) (15).

Among various screening tests, the CHAT-23 serves as a Level 1

screening test for ASD used in Chinese children. CHAT-23 is a

scale screening test consisting of a parental questionnaire and a

physician’s observation of the children’s behaviors. This test has

significant value in early screening as it assesses a child’s social

and behavioral performance, enabling the recognition of

potential signs of autism (16). For example, an online screening

system utilizing telemedicine technology was developed for ASD

by using CHAT-23 (17).

Machine learning based ASD methods require training on data,

which can be in the form of questionnaires or image data. Machine

learning is a technique that automatically analyzes data to obtain

patterns and uses them to make predictions about unknown data

(18). Benefiting from the ability to learn from existing data,

machine learning has become a popular way for ASD (19).

Depending on the type of data used for machine learning, there

are two main types of machine learning based early screening

methods, one is the Scale-based method, and the other is image-

based method. Scale-based methods have solid practical

experience from experts and can provide strong evidence for the

machine learning model. For example, based on the scale

information collected using the Q-CHAT, a range of machine

learning models including Logistic Regression, Support Vector

Machine, Naive Bayes, Random Forest, and K-Nearest Neighbors

have been used to predict autism in toddlers (20). Using logistic

regression and decision tree algorithm, Duda et al. found that 7
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key items were selected from all items in the Autism Diagnostic

Interview-Revised (ADI-R) to build an accurate model for

classifying children with autism (21). Multiple machine learning

methods have been effectively demonstrated to differentiate

between Autism Spectrum Disorder (ASD) and Attention-

Deficit/Hyperactivity Disorder (ADHD) (22). Some unsupervised

clustering machine learning methods also have been employed

for modeling data related to Autism Spectrum Disorder (ASD),

and their results have proven to help facilitate autism diagnosis

(23). Siddiqui et al. achieved a high classification accuracy for

children with ASD by utilizing monitoring devices to acquire

behavioral gesture information. They employed models such as

K-Nearest Neighbors and Random Forest to perform the

classification (24). Biomarkers based on brain imaging as input

features for machine learning techniques can provide objective

evidence for autism classification. Functional magnetic resonance

imaging (fMRI) data combined with machine learning models

has also been utilized to assist in diagnosing ASD (25). There

also exists mixed data used for modeling machine learning.

Abbas et al. create low-cost and accurate autism screening tests

using parent report questionnaires and home videos of

children (26).

Several studies show that ASD is closely connected with

other diseases. Precenzano et al. demonstrated that

electroencephalographic abnormalities are typically associated

with more severe forms of ASD (27). Rossi et al. reported that

nearly half of children with ASD, indicated by Subclinical

Electroencephalographic Abnormalities, even without epilepsy,

show abnormal development within the first year, with epilepsy

and intellectual disability (28). Early diagnosis of ASD can be

beneficial, as it allows for treatment before the condition worsens,

potentially reducing costs and promoting family life. Operto

et al.’s report showed that ASD can be treated at an earlier stage

by means of cheaper intervention, such as speech therapy,

psychomotor therapy, occupational therapy, etc. As grow older,

treatment may have to consider drug therapy, and the amount of

drugs used increases with age (29). Therefore, considering the

importance of early screening, we believe that highly efficient

machine learning-based methods for early autism screening should

be considered. Several machine learning based methods for early

screening validate their effectiveness on American children (26, 30,

31). However, there is still a vacant study on Chinese children.

Thus, we first collected questionnaire data from age-appropriate

children and processed the raw data through a series of

preprocessing steps to make it suitable for modeling. We then

built seven different machine learning models using above data.

From all the models, we identified the most appropriate one to

assist in diagnosing ASD. In conclusion, our work and main

contributions include:
(1) We built machine learning models by applying data from

Chinese children.

(2) We applied mRMR feature engineering to automatically

acquire a set of features for better construction of machine

learning models.
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FIGURE 1

Figure 1A is the flow chart of participants selection, and Figure 1B is the distribution of positive and negative results for autism in 371 eligible questionnaires.
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(3) We modeled seven different machine learning models, and

compared the prediction performance of these models based

on collected question data, identifying the best-performing

machine learning model.

(4) We performed feature engineering upon the original

23-dimensional question features, and rank these questions

according to their importance. Finally, the LGBM model

achieved the highest specificity and sensitivity of 0.922 and 0.909.

2 Materials and methods

2.1 Materials and participants

This study uses data collected from the Affiliated Hospital of

Jiangnan University, ranging from January 4th, 2022 to

September 28th, 2022. Participants selection flow is as Figure 1A

shows. According to the practice of CHAT-23, the applicable age

is 18 to 24 months, we exclude those data whose month age does

not meet this range. We also exclude those questionnaires with

missing information. This participant selection flow obtained 371

copies of the children’s CHAT-23 scale information. According

to statistics, the average age of children is (20.27 + 2.68)

months. As shown in Figure 1B, in all cases, 48 people were

diagnosed as autism positive and 323 were negative, which is an

important basis for our research.
2.2 Study design

After we got eligible data, three main processes were divided

into five minor steps designed to process and screen important

data. The overall workflow is as Figure 2 shows. The three main

processes are preprocessing, feature engineering, and machine

learning model building, each focusing respectively on data,

features, and models. The first step is data encoding. In this step,

we encode the text information collected in the questionnaire
Frontiers in Pediatrics 03
into a digital format, so machine learning models can process

that. Next step, we split the dataset into training and testing sets.

As the negative and positive samples are imbalanced for the

training set, we will use resampling techniques to balance the

numbers of samples from each class, to mitigate the impact of

data imbalance on model construction. In the third step, we

conduct feature filtering based on statistical methods to reduce

the original feature dimension. The next step is feature selection,

in which we used mRMR to further find out the most relevant

features to help the model build. In the last step, we build seven

machine learning models to compare and evaluate the

experimental results.
2.3 Data encoding

To encode the text data from the CHAT-23 questionnaires, we

follow the experience introduced in Vakadakar’s work (32). Since

the collected questionnaire data is in text form, for each CHAT-

23 question section, we set four different frequency words to

record the test subject’s information, which is never, occasionally,

sometimes, and often. We encode them as 0, 1, 2, 3 respectively.

For the diagnosis results, we use 0 to represent negative, and we

use 1 to represent positive respectively. In the end, we get the

normalized 23-question characteristics.
2.4 Data imbalance

We found there exists a clear imbalance in the experimental

data, with 323 negatives vs. 48 positives. Since there are

significantly more negative samples than positive samples, if we do

not process this phenomenon, the machine learning based model

may prefer to remember the characteristics of the negative samples

but despise the positive sample features. The data imbalance

would result in the model having a high prediction success rate
frontiersin.org
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FIGURE 2

General workflow of the machine learning based mRMR with feature engineering.
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for negative samples, while the positive sample prediction effect is

poor. This will lead to a catastrophic decrease in sensitivity.

To balance the impact of negative and positive input data in the

model, we use a combination of up-and-down sampling

techniques. We first use down-sampling technology, which

randomly deletes negative samples to reduce the number of

negative samples. We set the parameters of the sampling strategy

to 0.3, the negative sample data is randomly retained at 160.

However, if we use too aggressive down-sampling strategy, we

are likely to lose the information of negative samples, so we use

a combination of up-sampling technology. We copy some

positive samples, and set the parameters of the up-sampling

strategy to 0.5, so we can get 80 positive samples. The resampled

data is fed into the model, which balances the model’s ability to

learn from both positive and negative samples.
2.5 Feature filtering

Not all question features from CHAT-23 are useful for machine

learning models to predict outcomes correctly, so we use statistical-

based filtering to find and remove these less important features. We

use variance and p-value as two criteria for filtering.

First, we calculate the variance value of each question feature of

all instances. The larger the variance, the greater the change in the

value range of the feature in the sample, which means that the

feature has a stronger ability to distinguish whether the target is
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finally positive. In this way, the characteristic is more conducive

to building a model. Among them, those features with small

variance are similar to most people, regardless of negative or

positive testers, and their values on these features are similar, so

this feature is relatively secondary to the discriminant result.

There are two features with variance below 0.1, which

correspond to Q12 and Q16. Through the above steps, we

removed the features with variance below 0.1 from the original

23 question features, while retaining the remaining 21 features.

Next, we utilize the chi-square method to calculate the p-value

for each feature, taking into consideration the correlation between

the feature and the diagnosis (4). We regard features with a p-value

less than 0.05 as features that are important to the diagnosis result.

Thus, we remove all features with a p-value greater than 0.05 and

finally retain 15 features, and the results are listed in Table 1. The

corresponding questions to removed features include Q1, Q3, Q4,

Q10, Q11, Q18.
2.6 Feature selection

A suitable feature selection not only improves the accuracy of

machine learning methods’ predictions but also reflects which

features are more important for predicting negative and positive

outcomes. mRMR can discover those features that are most

relevant to the diagnostic results among all features and have the

least redundancy between each feature. Thus, we use mRMR to
frontiersin.org
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TABLE 1 15 Features are selected based on feature filtering.

Rank Feature p-value*
1 Q20 5:90� 10�12

2 Q5 1:30� 10�10

3 Q21 1:62� 10�5

4 Q7 2:12� 10�5

5 Q13 5:22� 10�4

6 Q17 9:64� 10�4

7 Q6 1:96� 10�4

8 Q23 2:65� 10�4

9 Q9 5:49� 10�4

10 Q15 1:37� 10�3

11 Q14 1:61� 10�3

12 Q22 1:73� 10�3

13 Q19 3:12� 10�3

14 Q2 1:64� 10�2

15 Q8 1:74� 10�2

*This table displays features with the highest correlation with labels, whose p-values are less

than 0.05.

Lu et al. 10.3389/fped.2024.1400110
select features sequentially. In mRMR, the MIQ parameter

calculates the correlation between two features through mutual

information and measures the degree of confusion between

multiple feature groups through information entropy. After

setting different weights for the calculated correlation and

difference, we can get the sequence of features, and the higher

the feature is considered as the more important feature. The

sequence of this feature will be incrementally used as input to

the model to train different machine-learning models. The

feature sequences discovered by the mRMR method are

displayed in Table 2.
TABLE 2 The sequence of 15 question features is based on mRMR.

Rank Question
number

Question descriptions in CHAT-23

1 Q21 Does your child understand what people say?

2 Q6 Does your child ever use his/her index finger to point, to
ask for something?

3 Q9 Does your child ever bring objects over to you (parent) to
show you something?

4 Q13 Does your child imitate you? (e.g., you make a face; will
your child imitate it?)

5 Q7 Does your child ever use his/her index finger to point, to
indicate interest in something?

6 Q14 Does your child respond to his/her name when you call?

7 Q5 Does your child ever pretend, for example, to talk on the
phone take care of dolls, or pretend other things?

8 Q15 If you point at a toy across the room, does your child look
at it?

9 Q17 Does your child look at things you are looking at?

10 Q20 Have you ever wondered if your child is deaf?

11 Q2 Does your child take an interest in other children?

12 Q23 Does your child look at your face to check your reaction
when faced with something unfamiliar?

13 Q8 Can your child play properly with small toys (e.g., cars or
bricks) without just mouthing, fiddling, or dropping
them?

14 Q19 Does your child try to attract your attention to his/her
own activity?

15 Q22 Does your child sometimes stare at nothing or wander
with no purpose?
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2.7 Machine learning based models

We choose 7 widely used supervised machine learning models to

perform primary screening for autism, including two non-ensemble

learning models: Support Vector Machine (SVM), and Decision Tree

(DT), as well as four ensemble learning models: Gradient Boosting

Decision Tree (GBDT), Light Gradient Boosting Machine (LGBM),

Random Forest (RF), and eXtreme Gradient Boosting (XGB), and

one boosting algorithm: Adaptive Boosting (AdaBoost). We selected

the “rbf” kernel function for SVM and set its regularization

parameter “C” to 1. For DT and RF models, we used the “gini”

criterion to measure the quality of each split. The number of base

learners was controlled by setting the “n_estimators” parameter for

GBDT, RF, AdaBoost, XGB, and LGBM, which were set to 100, 100,

50, 800, and 100, respectively. Before training, we performed feature

selection to determine the most important combination of features to

use as input for the machine learning models. Subsequently, we

obtained predictions for all test data using the trained models.
3 Result

3.1 Statistical analysis

We evaluated the performance of our machine learning model

using sensitivity and specificity. Sensitivity measures the detection

ability of the model when screening positive cases, which is the

proportion of true positive results to all actual positive results. The

closer the sensitivity is to 1, the lower the rate of missed diagnoses

for true positives. Specificity measures the ability of the model to

exclude non-patients, which is the proportion of true negative

objects that the model can identify when the detection target does

not have autism. The closer the specificity is to 1, the lower the

misdiagnosis rate. Both sensitivity and specificity are important

metrics for evaluating the performance of a machine-learning model.

All data analysis, model training, and evaluation were performed

using Python (version 3.9.13) and Scikit-learn (version 1.2.2).
3.2 Comparison between different models

To compare the performance of seven different models in

predicting the diagnosis of ASD and identify the model with the

best classification performance, we trained various models using

the same set of features. We use a total of 15 features as inputs

for the 7 models we built. These features are listed in Table 3.
TABLE 3 Comparison between different models with 15 selected features.

Model Specificity Sensitivity
SVM 0.889 0.889

DT 0.767 0.911

GBDT 0.778 0.967

LGBM 0.933 0.856

ADA 0.878 0.811

XGB 0.822 0.915

RF 0.856 0.878
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TABLE 4 Sensitivity and specificity at varying feature numbers from 1 to 15
on LGBM.

Number of features Specificity Sensitivity
1 0.817 0.744

2 0.904 0.833

3 0.911 0.813

4 0.926 0.836

5 0.904 0.865

6 0.902 0.787

7 0.878 0.796

8 0.896 0.769

9 0.922 0.909

10 0.878 0.833

11 0.891 0.833

12 0.863 0.823

13 0.833 0.771

14 0.933 0.856

15 0.933 0.856

TABLE 5 The 9 best features selected to construct LGBM model.

Rank Question
number

Question descriptions

1 Q21 Does your child understand what people say?

2 Q6 Does your child ever use his/her index finger to
point, to ask for something?

3 Q9 Does your child ever bring objects over to you
(parent) to show you something?

4 Q13 Does your child imitate you? (e.g., you make a face;
will your child imitate it?)

5 Q7 Does your child ever use his/her index finger to
point, to indicate interest in something?

6 Q14 Does your child respond to his/her name when you
call?

7 Q5 Does your child ever pretend, for example, to talk
on the phone or take care of dolls, or pretend other
things?

8 Q15 If you point at a toy across the room, does your
child look at it?

9 Q17 Does your child look at things you are looking at?
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During model training, we ensured that each model used the same

amount of data for both training and testing. Among the models

tested, LGBM exhibited significantly better specificity which is

0.933 than SVM, DT, AdaBoost, RF, and XGB, compared to

GBDT 0.778.
3.3 Selection of the most important features

To determine and select the optimal number of important

features for training, we gradually increased the number of input

features from 1 to 15, adding them in order of the mRMR

feature selection method described in the feature selection

section. Because LGBM shows a comparative performance in

Table 3, we used the LGBM model as the base classifier for this

experiment.

Based on the result presented in Table 4, we observed that

when using the first 9 features as inputs, the model achieved its

highest sensitivity value of 0.909, while maintaining a relatively

high specificity level of 0.922. As we gradually increased the

number of features to 9, we noticed an overall upward trend in

specificity. However, it did not continue to increase with

additional features. Meanwhile, when the number of features was

limited to 2 and 5, although sensitivity was high, reaching 0.900,

specificity remained relatively low, failing to exceed 0.820.

Furthermore, after surpassing 9 features, sensitivity could not

reach above 0.900. Based on these findings, we identified the 9

best features for constructing our LGBM model, namely Q21,

Q6, Q9, Q13, Q7, Q14, Q5, Q15, and Q17. Detailed descriptions

of these question features are provided in the Table 5.
4 Discussion

4.1 Interpretation of result

We employed seven commonly used machine learning

techniques to model early screening models for Autism. The
Frontiers in Pediatrics 06
experimental results demonstrated that the LGBM model

outperformed the other models, exhibiting superior specificity

and sensitivity. Notably, the LGBM model achieved its highest

sensitivity value of 0.909 when the number of features reached 9

while maintaining a consistently high specificity level of 0.922.

We analyzed our autistic patients and individual patient

explanations using SHAP technology. Figure 3 presents SHAP

summary plots of the top 15 clinical features in the contribution

of ML models to the prediction of autism development in our

study. The implication is that the model’s interpretation is

consistent with the feature rank ordering we obtain via mRMR.

Figure 4 shows a patient at low risk of having autism.
4.2 Clinical implications

After optimizing the feature for convenience in clinical

practice, the time required is reduced, making it easier for

parents to complete and for professionals to assess. The

consistency in clinical presentation is evident in the construction

of 9 items based on the MRMR model. Among these, questions

5, 7, 9, 13, and 15 are core components of the CHAT-23 clinical

scale. These items cover areas such as pretend play, pointing

skills, initiating sharing, imitation ability, and joint attention.

The lack or delay in these specific skills reflects the clinical

characteristics of social aspects in children with autism

spectrum disorders.
4.3 Limitations

While building machine learning models can provide

significant assistance for early autism detection, there are still

some limitations regarding practical application. Firstly, our

machine learning models are specifically tailored to data from

Chinese children, meaning they perform best within this

demographic. Exploring the development of more universally
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FIGURE 3

The SHAP summary plots for the LGBM model. This depicts the 9 most effective features on prediction.

FIGURE 4

SHAP force plot for one child of the test set.
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applicable models might be a worthwhile direction for future

research. Additionally, once the models are built, their

parameters remain static, making them outdated over time.

Currently, our best model uses at least nine features, further

reducing the number of features used in building machine

learning models could make them more efficient in

practical applications.
4.4 Future research directions

Our future goal is to combine the model with an online

questionnaire format and deploy it on a web platform. By using

fewer questions, we can quickly provide accurate autism

assessment results to parents via mobile phones or other online

tests, enabling them to obtain efficient and reliable references for
Frontiers in Pediatrics 07
their children. This approach not only improves efficiency but

also reduces the workload of medical personnel.
5 Conclusions

In this study, we have developed a machine learning approach

based on the Chinese children’s scale data, which was obtained by

filling in the CHAT-23 questionnaire questions. Then, we

conducted feature engineering by using statistical methods and

mRMR feature selection on the 23 questions of the CHAT-23

scale. Through the above process, we ranked these questions

according to their importance, and the final 9 questions were

selected, specifically Q21, Q6, Q9, Q13, Q7, Q14, Q5, Q15, and

Q17. These selected questions were then applied to an LGBM

model, which demonstrated superior performance compared to

the other popular machine learning models (SVM, DT, GBDT,
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ADA, XGB, RF). By utilizing this machine learning model with

only 9 questions, we achieved comparable results, which use all

23 questions as features for computer-aided autism diagnosis.
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