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Vitamin D in tuberous sclerosis
complex-associated tumors
Tatsuro Nobutoki*

Department of Pediatrics, Social Welfare Aiseikai, Suihoen, Japan
Mammalian target of rapamycin inhibitors (mTORi) have been used to treat
pediatric tuberous sclerosis complex (TSC)-associated tumors, particularly in
cases with contraindications to surgery or difficulties in complete tumor
resection. However, some patients experience side effects and tumor
regression after discontinuation of the treatment. Therefore, there is an urgent
need to develop drugs that can be used in combination with mTORi to
increase their efficacy and minimize their side effects. 1,25-Dihydroxyvitamin
D3 (1,25-D), which has anticancer properties, may be a promising candidate
for adjuvant or alternative therapy because TSC and cancer cells share
common mechanisms, including angiogenesis, cell growth, and proliferation.
Vitamin D receptor-mediated signaling can be epigenetically modified and
plays an important role in susceptibility to 1,25-D. Therefore, vitamin D
signaling may be a promising drug target, and in vitro studies are required to
evaluate the efficacy of 1,25-D in TSC-associated tumors, brain development,
and core symptoms of psychiatric disorders.

KEYWORDS

tuberous sclerosis complex, tumor, 1,25-Dihydroxyvitamin D3, vitamin D receptor, mTOR

1 Introduction

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by

inactivating mutations in either the TSC1 or TSC2 gene, which affects multiple organ

systems and results in various clinical features (1). TSC1 encodes hamartin and TSC2

encodes tuberin. Since TSC1 and TSC2 are tumor suppressor genes, abnormalities in

hamartin or tuberin lead to mammalian target of rapamycin (mTOR) overactivation

and multisystemic cellular proliferation, migration, and differentiation abnormalities (1).

The role of mTOR inhibitors (mTORi) in cancer (2) and their safety in TSC (3) have

been established. However, for children with TSC-associated tumors, it is critical to

have an alternative therapeutic option when mTORi are ineffective or cannot be used.

1,25-Dihydroxyvitamin D3 (1,25-D) activates DNA damage-inducible transcript 4

(DDIT4) (4), which activates the TSC1-TSC2 complex and ultimately represses mTOR

(5). Daily vitamin D supplementation was shown to reduce overall cancer mortality (6).

An association has been suggested between cancer and low levels of circulating

25-hydroxyvitamin D3 (25-D) in ovarian (7), prostate (8), and colorectal cancers (9).
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However, whether vitamin D can prevent cancer remains

controversial. Therefore, it is important to investigate whether

1,25-D not only serves as an adjuvant therapy by inhibiting or

reducing TSC-associated tumor cell proliferation but also

improves mTORi tolerability.

In addition to its effects on mTOR suppression, 1,25-D

negatively regulates energy metabolism in cancer cells, including

glucose and lipid metabolism, protection from oxidative stress,

and cancer progression (10). Higher serum 25-D levels are

associated with a reduced risk of glioma in elderly men (11).

Recent results from an in vitro study have led to a discussion on

the potential clinical use of vitamin D for treating glioblastoma

(12). Thus, 1,25-D may be a weak suppressor of TSC-associated

tumor growth, including in cases of drug resistance and rapidly

growing subependymal giant cell astrocytoma (SEGA). This

article provides perspectives on the potential adjuvant therapy

using 1,25-D in patients with TSC, along with a review and

presentation of hypotheses associated with the underlying

physiological mechanisms.
2 Need for an alternative or supportive
drug to mTORi in pediatric TSC

In pediatric patients with TSC, SEGA (in ages ≥1 year) and

refractory partial-onset seizures (as an adjunctive treatment, in

ages ≥2 years) can be treated with mTORi (13). However, side

effects are more common in children than in adults (13). The

overall incidence of adverse events in children aged <9 years was

70.5% (24 of 34 patients), of which 33.3% (8 of 24 patients) had

grade 3 side effects (13). Moreover, the mechanism of mTOR

resistance in each tumor type has not been elucidated yet.

Therefore, in addition to investigating the resistance mechanism,

there is an urgent need to identify safe and effective drugs that

can support mTORi treatment, including drug repurposing and

combination therapy.
3 1,25-D inhibits vascular endothelial
growth factor (VEGF) production and
early angiogenesis in TSC-associated
tumors

1,25 D causes transcriptional changes by binding to the

intracellular vitamin D receptor (VDR). This binding forms a

complex that interacts with specific DNA sequences called

vitamin D-response elements (VDREs) located within the

promoter regions of target genes (14).

1,25-D activates the production of the DDIT4 protein, which

is induced by hypoxia and DNA damage via intracellular VDR

(5). The DDIT4 inhibits mTOR complex 1 by promoting

TSC1-TSC2 complex formation (15) (Figure 1A). Moreover,

the DDIT4-TSC1/TSC2-mTOR feedback loop downregulates

the production of hypoxia-inducible factor-1α (HIF-1α) and

VEGF (Vascular Endothelial Growth Factor) (15). siRNA

knockdown of DDIT4 eliminates the antiproliferative effect of
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1,25-D (16). Thus, 1,25-D restricts HIF-1-dependent VEGF

production in various human cancer cells under hypoxic

conditions (17) and induces apoptosis in existing sprouted and

elongated endothelial cells (18) Notably, TSC-associated

tumors are angiogenic neoplasms (19) expressing high levels

of VEGF (20). Through this mechanism, 1,25-D may suppress

tumor cell proliferation by inhibiting the excessive activation

of the HIF/VEGF pathway in the vasculature of TSC-

associated tumors.

Moreover, activation of VEGF, HIF, and endothelial cell-

dependent mechanisms contribute to vasculogenic mimicry (VM)

in cancer (21). This involves the formation of microvascular

channels composed of tumor cells that contribute to the

resistance to anti-angiogenic therapy (22). Hypoxic conditions

and the aberrant activation of the mTOR/HIF/VEGF pathway

can occur in cancer and TSC-associated tumors. Indeed,

astrocytomas have a VM-like structure (23), and VEGF- and

HIF-dependent factors play an important role in their

pathogenesis (20). This mechanism may contribute to therapy

resistance in SEGA and to tumor regrowth after discontinuation.

Therefore, it is reasonable to target the HIF/VEGF pathway with

1,25-D since a VM-like structure may be formed in TSC-

associated tumors, including SEGA.

TSC1 is suppressed by IκB kinase β (IKKβ) phosphorylation,

leading to the activation of the mTOR pathway and

increased VEGF production and angiogenesis (24). 1,25-D

induces direct VDR-IKKβ protein interaction, disrupting the

formation of the IKK complex, which consists of IKKα, β, and

γ subunits, and abolishes IKKβ phosphorylation (25)

(Figure 1B). Through this mechanism, 1,25-D suppresses

VEGF-mediated angiogenesis.
4 Impaired interaction between TSC2
and VDR may contribute to TSC
severity

In tumor-derived endothelial cells, the transcription of one of

the VDR target genes, 24-hydroxylase (CYP24A1) is upregulated

and this promotes the metabolism of 25-D and 1,25-D. The

activation of CYP24A1 promotes 25-D metabolism, thereby

potentially reducing the cellular availability of 1,25-D.

Moreover, cell cycle arrest, growth inhibition, and apoptosis are

induced by epigenetic silencing of CYP24A1 (26). Importantly,

plasma membrane-bound TSC2 binds to calcium/calmodulin

(CaM), and this complex is translocated to the nucleus,

partially attenuating CYP24A1 transcription under normal

conditions (27) (Figure 1C1). Mutations in TSC2 lead to more

severe clinical features compared to those in TSC1 This, in

turn, could contribute to the severity of TSC and the formation

of TSC-associated tumors. This, in turn, could contribute to the

severity of TSC and the formation of TSC-associated tumors.

Therefore, along with inhibiting angiogenesis and regressing

existing immature capillaries, 1,25-D treatment produces

effects in tumor cells similar to those of epigenetic silencing

of CYP24A1.
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FIGURE 1

Potential action of vitamin D in TSC-associated tumors. (A) DDIT4 activates TSC2, which inhibits Rheb and ultimately suppresses mTOR activity. (B)
1,25-D dephosphorylates and inactivates IKKβ, which inhibits TSC1. (C1) TSC2-CaM complex translocates into the nucleus and represses CYP24A1
transcription. (C2) Increased intracellular calcium, which activates CaM by environmental factors including viral infection, could increase
attenuation of transcription of VDR-sensitive genes. (D) S6K activation suppresses the PI3K/AKT and ERK pathway via negative feedback. (E) 1,25-D
activates the production of PTEN (E1), which inhibits PI3K, leading to the dephosphorylation of Akt (E2), ultimately reducing p70S6K activity (E3)
and 4E-BP1 (E4). Thus, 1,25-D may contribute to the suppression of cell growth and angiogenesis in TSC-associated tumors. (F) 1,25-D increases
VDR/β-catenin binding, which increases transcription of the VDR-sensitive gene, DDK-1, competing with Wnt and decreasing Wnt signaling. AKT,
RAC-alpha serine/threonine-protein kinase; CaM, calcium-calmodulin; CYP24A1, 24-hydroxylase; 1,25-D, 1,25-dihydroxyvitamin D3; DDK-1,
Dickkopf-1; DDIT4, DNA damage inducible transcript 4; Deptor, DEP-domain-containing mTOR-interacting protein; 4E-BP1, eukaryotic initiation
factor 4E-binding protein 1; eIF4E, eukaryotic initiation factor 4E; EGFR, epidermal growth factor receptor; ERK1-2, extracellular signal-related
kinase; FKBP12, FK506-binding protein with a molecular weight of 12 kDa; GβL, G protein β subunit-like protein; GTP, guanosine triphosphate;
HIF-1α, hypoxia inducible factor-1-alpha, IKKβ, IκB kinase β; Lamptor, late endosomal/lysosomal adaptor, mitogen-activated protein kinase, and
mTOR activator; LRP5/6, low-density lipoprotein receptor-related proteins 5 and 6; MEK1-2, mitogen-activated protein kinase 1-2; mLST8,
mammalian lethal with SEC13 protein 8; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; P70S6K, 70-kDa ribosome protein
S6Kinase; PDK1, 3-phosphoinositide-dependent protein kinase-1; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-
trisphosphate; PI3K, phosphoinositide 3-kinase; PRAS40, proline-rich Akt substrate of 40 kDa; PTEN, phosphatase and tensin homologue; RAF,
rapidly accelerated fibrosarcoma viral oncogene homologue; RTK, rector of tyrosine kinase; Raptor, regulatory associated protein of mTOR
complex 1; RAS, rat sarcoma viral oncogene homologue; Rheb, Ras homologue enriched in the brain; TSC, tuberous sclerosis complex; VDR,
vitamin D receptor; VEGF, vascular endothelial growth factor.
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5 Second hit by epigenetic alterations
in the vitamin D metabolism and VDR
signaling pathway may be associated
with clinical features in TSC

The correction of histone hyperacetylation in hippocampal

neurons using histone deacetylase (HDAC) inhibitors improves

abnormal synaptic plasticity and epilepsy in TSC (28). While
Frontiers in Pediatrics 03
second-hit mutagenesis may play an important role in the

phenotypic diversity of renal lesions in TSC (29), the VDR and

VDR-responsive genes can be epigenetically modified (30), similar

to histone hyperacetylation in neurons. Therefore, postnatal

epigenetic modifications of VDR-mediated signaling and vitamin

D metabolism may serve as a second hit and contribute to the

clinical variability and severity of TSC, including the development

of tumors, abnormal synaptic plasticity, and epilepsy. As discussed
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above, CaM plays an important role in the TSC2-VDR interaction.

Therefore, increased intracellular calcium and CaM activation

caused by viral infection could increase the attenuation of VDR-

sensitive gene transcription, including that of CYP24A1, by

enhancing the TSC2-CaM interaction or inducing epigenetic

modifications that affect the transcriptional activity of VDR-related

genes (Figure 1C2).

Epigenetic silencing of VDR, which is also mediated by

HDAC3, is crucial in 1,25-D resistance (30), and the treatment

of VDR promoter hypermethylation with 5-aza-2′-deoxycytidine
restored VDR mRNA expression (31). In addition,

hypermethylation of CYP27B1, which activates 25-D to 1,25-D,

can reduce the tissue levels of 1,25-D (30). High blood 25-D and

1,25-D levels may be required in this condition.
6 SEGA responds to 1,25-D under
increasedVDRexpression and sensitivity

Although VDR expression is increased in human glioblastoma

(GB) cells (32), high VDR expression in GB is associated with 1,25-

D treatment success (33). In an in vitro study, calcitriol and vitamin

D analogue blocked the stem-like properties of glioma cells (34),

induced DNA fragmentation (35), and inhibited the migration of

GB cells (33). Furthermore, 1,25-D restores responsiveness to

itself by upregulating VDR expression (36). Based on these

observations, VDR expression in SEGA potentially correlates

with 1,25-D sensitivity or aggressiveness. It’s also speculated that

SEGA, exhibiting resistance or recurrence to mTOR inhibitors,

may respond to 1,25-D similar to GB.

Vitamin D3 analogue can suppress the activation of the

phosphatidylinositol 3-kinase (PI3K)/RAC-alpha serine/threonine-

protein kinase (AKT) pathway and extracellular signal-regulated

kinase (ERK)/Mitogen-activated protein kinase (MAPK) pathway

due to mTORi therapy.

S6Kinase (S6K) activation via mTORC1 suppresses the PI3K/

AKT and ERK pathways via negative feedback (Figure 1D).

Therefore, S6K inhibition by mTORi contributes to the activation

of both pathways, thereby contributing to the pathology of

mTORi-resistance. Therefore, combination therapy with MAPK

inhibitors may be useful (37). Notably, vitamin D and its analogs

restrict gliomas by inducing cell cycle arrest via multiple

mechanisms, including the PI3K/AKT pathway (12). Importantly,

while therapy with mTORi and PI3Kα inhibitor is necessary for

GB treatment (38), activation of the PI3K/AKT (39) and MAPK/

ERK pathways (40) also plays an important role in SEGA

development. Moreover, in TSC, the Raf-1/MAPK/ERK cascade,

in addition to mTOR, leads to 4E-binding protein 1

phosphorylation, increased cyclin D protein levels, and increased

protein synthesis (41). The active vitamin D analog, maxacalcitol,

decreased hyperphosphorylation of MAPK-38p and ERK1/2 in

the brain tissue of a mouse model of Alzheimer’s disease (42).

Therefore, the vitamin D3 analog may suppress the growth of

renal cancer and SEGA in the same way. Particularly in patients

with mutations in the tumor suppressor gene phosphatase and

tensin homologue (PTEN), PI3K/AKT activation leads to tuberin
Frontiers in Pediatrics 04
phosphorylation and decreased activity of tuberin-hamartin

complex, resulting in the activation of mTOR/70kDa-S6K1

signaling (43). A novel vitamin D3 analog, Gemini-23-yne-26,27-

hexafluoro-D3, not only increased the expression of PTEN and

caused the dephosphorylation of Akt, Ark target proteins, and

mTOR, but also decreased the phosphorylation of its

downstream effectors, S6Ks, and eukaryotic translation initiation

factor 4E-binding protein 1, thereby suppressing protein

synthesis and tumor proliferation (44) (Figures 1E1–E4).

Similarly, tumors associated with Tuberous Sclerosis Complex

(TSC), such as SEGA, might see improved treatment outcomes

with novel vitamin D derivatives. These derivatives activate

PTEN, suppress the PI3K/AKT/mTOR pathway, and enhance the

effectiveness of mTOR inhibitors, potentially leading to safer and

more effective therapies compared to using mTOR inhibitors alone.
7 Suppressing wingless/int-1 (Wnt)/
β-catenin signaling

Abnormal Wnt/β-catenin signaling plays an important role in

tumorigenesis (45). The TSC1-TSC2 complex negatively regulates

cell proliferation through β-catenin signaling (46), which plays an

important role in the pathogenesis of angiomyolipomas and

lymphangioleiomyomatosis (47). Importantly, 1,25-D increases

VDR/β-catenin binding, which, in turn, increases the

transcription of one of the VDR target genes, the Wnt inhibitor

Dickkopf-1, to a greater degree than that of the T-cell factor (48)

(Figure 1F). As a result, 1,25-D decreases the transcription of β-

catenin/T-cell factor-target genes that regulate cell proliferation,

cell cycle regulation, and cellular metabolism (48). Therefore,

1,25-D may inhibit the growth of TSC-associated tumors.
8 Identification of 1,25-D-induced
microRNAs (miRNAs) that suppress the
growth of TSC-associated tumors and
re-sensitize mTORi-resistant tumors

miRNAs are short noncoding RNAs with a wide range of gene

regulatory activities at the post-transcriptional level (49). 1,25-D re-

sensitizes everolimus-resistant hepatocellular carcinoma by

upregulating miRNA-375, which regulates the oncogenes

responsible for drug resistance (50). In addition, miRNA-22

mediates the suppression of several genes by 1,25-D, contributing

to its antiproliferative and antimigratory effects in colon cancer

cells (49). Therefore, it’s worth exploring if 1,25-D also triggers

miRNA-mediated antitumor effects in TSC and enhances the

effectiveness or sensitivity to mTORi.
9 Initiating 1,25-D therapy in infancy
improves brain development in TSC

Vitamin D is essential for brain development (51), and loss of

TCS2 function in brain endothelial cells, neurons, oligodendrocytes,
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astrocytes, and microglia may increase the degradation of vitamin D

and decrease its bioavailability by the same mechanism discussed

above. Therefore, central nervous system vitamin D deficiency in

TSC might be one of the drivers of impaired neural and synaptic

maturation, as well as of tumorigenesis. Notably, blood levels of

25-D higher than 40 ng/ml can improve the autism spectrum

disorder (ASD) rating (52). Thus, the same therapeutic effects can

be expected in TSC. If the sensitivity of neural and brain endothelial

cells to vitamin D is increased, early vitamin D treatment

from infancy can improve brain development and pediatric

TSC-associated neuropsychiatric disorders, including the core

symptoms of ASD and refractory epilepsy.mTOR-dependent

synaptic hyperconnectivity is implicated in ASD pathogenesis in

Tsc2+/− mice (53). mTORi are effective in rescuing synaptic

hyperconnectivity and controlling autistic behavior (53) and

epilepsy in patients with TSC (54).

Neurological problems can be associated with decreased 1,25-D

bioavailability in neurons and neuronal unresponsiveness to 1,25-D

in the developing brain, owing to the epigenetic silencing of VDR-

mediated signaling. In either case, the combination of mTORi and

1,25-D may synergistically improve brain development.

In addition, 1,25-D inhibits IKKβ phosphorylation and

suppresses nuclear factor-κB (25), which plays an important role in

the switch from oxidative stress to inflammation that contributes to

epileptogenesis (55). Thus, 1,25-D may be promising for the reversal

of TSC-associated brain pathological conditions and may play a role

in suppressing the development of SEGA and reducing the clinical

severity of comorbid neurological disorders.
10 Potential considerations in vitamin
D treatment: therapy resistance and
tumor growth

Since mTOR inhibition provides survival advantage for tumor

cells (56), it is important to consider the risk of 1,25-D increasing

tumor growth by inhibiting mTOR through DDIT4 activation. In

silico analysis has shown that high DDIT4 expression, but not

PI3K/mTOR activation, is associated with poor prognosis in

some cancers, suggesting that DDIT4 inhibitors may be effective

in these cases (56).

Tumor hypoxia, a condition in which solid tumors have

hypoxic regions with an insufficient oxygen supply, contributes

to resistance to chemotherapy (57). This may also occur in TSC-

associated tumors. Under hypoxia, HIF-1α production is

activated, which transcriptionally upregulates DDIT4 through a

negative feedback loop of suppression against mTOR inhibition

(15). Thus, when DDIT4 is overexpressed in TSC-associated

tumors, mTOR/HIF-1α may persistently be overactivated by this

mechanism, leading to a resistance to mTORi and 1,25-D. Under

these conditions, DDIT4 inhibitors, but not 1,25-D, can

minimize the dose of mTORi and avoid the need to discontinue

treatment owing to side effects. Therefore, in vitro studies are

important to determine the effectiveness of 1,25-D or its

potential to exacerbate tumor progression, particularly in cases of

high DDIT4 levels within the tumor tissue.
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Moreover, while cholecalciferol exerts beneficial antidepressant

effects through the activation of brain-derived growth factor/

tyrosine receptor kinase B (TrkB) signaling in the prefrontal

cortex (58), TrkB signaling plays an important role in TSC-

associated neuropsychiatric disorders and epileptogenesis (59).

While activation of the brain-derived neurotrophic factor/TrkB

pathway by early 1,25-D therapy may improve brain

development in children with TSC, epidemiological studies are

required to investigate whether long-term 1,25-D treatment may

improve neuropsychiatric disorders and epilepsy.
11 Epidemiological studies using large
medical datasets may be useful for
testing hypothesis

Considering the above discussion, it cannot be excluded that

the clinical phenotypic variability in TSC, including tumor

development, progression, and neurological problems, is partly

due to the second hit in epigenetic modification of VDR and vit

D-metabolizing enzyme genes by the environment, as well as

dietary and supplemental vitamin D intake, use of multiple

anticonvulsants, and reduced sun exposure. It is necessary to

investigate whether 1,25-D treatment can reduce the risk or

worsen the severity of TSC-associated tumors, refractory

epilepsy, and neuropsychiatric conditions, including the core

symptoms of ASD.

Analyzing medical big data or conducting retrospective

studies on tumors, cancer incidence, prognosis, cognitive

performance, and epilepsy severity in patients who received

1,25-D therapy compared to those who didn’t, including

assessing blood 25-D levels and the duration of 1,25-D

therapy, may help determine if early and long-term treatment

can benefit patients with TSC and TSC-associated tumors.

Additionally, comparing the efficacy and side effects of

mTORi alone vs. in combination with 1,25-D could provide

valuable insights. However, conducting prospective studies

raises ethical concerns due to the essential role of vitamin D

in bone growth and immunity. Therefore, the analysis of

medical big data could contribute to the discussion of the

advantages and disadvantages of early 1,25-D therapy in

patients with TSC.
12 Discussion

Since vitamin D has beneficial effects on several signaling

pathways involved in the mechanism of TSC-associated tumors,

1,25-D and its analogs may be the first treatment choice. In

children with TSC who have undertaken polytherapy of

antiepileptic drugs, if vitamin D supplementation can not only

prevent or slow tumor development but also improve brain

development and reduce the core symptoms of TSC-associated

neuropsychiatric disorders, it should be started immediately

after diagnosis, preferably in infancy, in and added to

anticonvulsant therapy. In addition, the possible increased
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metabolism of 25-D in TSC-associated tumors and the

downregulation of the transcriptional activity of VDR-sensitive

genes at a relatively high dose (blood levels of 25-D > 40 ng/ml)

seems reasonable. As 1,25-D is relatively inexpensive and safe,

children who are intolerant to mTORi, those in long-term care

facilities, those receiving home care, or those unable to receive

expensive medical care may benefit from 1,25-D therapy. Thus,

1,25-D may be a promising drug candidate for enhancing the

effects of mTORi and improving tolerability, although it is also

important to study whether it has any side effects. Particularly,

the study of VDR signaling, including the epigenome, in TSC

may have implications for drug discovery. Therefore, it is

necessary to study vitamin D signaling and search for novel

vitamin D analogs that are more effective and have fewer side

effects, such as hypercalcemia in TSC-associated tumors.

In vitro studies are required to evaluate the efficacy of 1,25-D in

TSC associated tumors, brain development, and core symptoms of

psychiatric disorders.
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