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Background: The primary cause of death for children under the age of five is
acute respiratory infections (ARI). Early predicting acute respiratory tract
infections (ARI) and identifying their predictors using supervised machine
learning algorithms is the most effective way to save the lives of millions of
children. Hence, this study aimed to predict acute respiratory tract infections
(ARI) and identify their determinants using the current state-of-the-art
machine learning models.
Methods: We used the most recent demographic and health survey (DHS)
dataset from 36 Sub-Saharan African countries collected between 2005 and
2022. Python software was used for data processing and machine learning
model building. We employed five machine learning algorithms, such as
Random Forest, Decision Tree (DT), XGBoost, Logistic Regression (LR), and
Naive Bayes, to analyze risk factors associated with ARI and predict ARI in
children. We evaluated the predictive models’ performance using performance
assessment criteria such as accuracy, precision, recall, and the AUC curve.
Result: In this study, 75,827 children under five were used in the final analysis.
Among the proposed machine learning models, random forest performed best
overall in the proposed classifier, with an accuracy of 96.40%, precision of 87.9%,
F-measure of 82.8%, ROC curve of 94%, and recall of 78%. Naïve Bayes accuracy
has also achieved the least classification with accuracy (87.53%), precision (67%),
F-score (48%), ROC curve (82%), and recall (53%). The most significant
determinants of preventing acute respiratory tract infection among under five
children were having been breastfed, having ever been vaccinated, having media
exposure, having no diarrhea in the last two weeks, and giving birth in a health
facility. These were associated positively with the outcome variable.
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Conclusion: According to this study, children who didn’t take vaccinations had
weakened immune systems and were highly affected by ARIs in Sub-Saharan
Africa. The random forest machine learning model provides greater predictive
power for estimating acute respiratory infections and identifying risk factors. This
leads to a recommendation for policy direction to reduce infant mortality in
Sub-Saharan Africa.

KEYWORDS

prediction, acute respiratory infection, machine learning, Sub-Saharan Africa, SHAP
(SHapley additive exPlanations), hyper parameter tuning
Introduction

Children’s immune systems are particularly vulnerable to

infection (1). In developing nations, malnutrition, diarrheal

diseases, and acute respiratory infections (ARI) are the main causes

of illness and mortality among children (2). One of the most

prevalent diseases in children is acute respiratory tract infection,

which nearly always causes serious health issues and even leads to

death in children under five (1). The most common acute

respiratory infections are influenza, common cold, sinusitis,

tonsillitis, and laryngitis. They are caused by viruses. It is the

greatest global public health burden, and developing nations

particularly those in Sub-Saharan Africa (SSA), where Ethiopia is

located continue to bear an excessive burden of this infection (2).

Approximately 20% of the deaths of children globally are caused by

acute respiratory infections (ARI) (3). With 80% occurring in Sub-

Saharan Africa and southern Asia in 2021 (4). In Sub-Saharan

Africa, the highest child mortality rate was 27 deaths per 1,000 live

births. Children born in Sub-Saharan Africa are 11 times more

likely to die in the first month of life than those born in Australia

and New Zealand (5). Similar to this, numerous poor wealth

statuses have been attributed to acute tract infections in Sub-

Saharan African countries (2, 6, 7). ARI diseases rank fourth among

childhood illnesses with a higher rate of morbidity, according to

WHO data from 2019. ARI illnesses rank higher among

communicable diseases that cause death than other comorbidities

when compared with malaria (8). Some previous studies found

wealth status, breastfed, place of delivery, birth size, media exposure,

diarrhea, stunting, and wasting were the most significant predictors

of ARI (3, 4). Despite the fact that malnutrition and an appropriate

low birth weight are linked to a very high risk of dying from ARI in

developing countries. Even though various local studies on the

prevalence and factors associated with ARIs among children under

the age of five have been conducted in Sub-Saharan African

countries. Used a variety of models and methodologies using

conventional methods, including retrospective analysis, inferential

statistics, survival analysis, regression models, mapping and spatial

analysis, multilevel analysis, and multivariate decomposition (4–7).

Recent research suggested machine learning, data mining, and deep

learning (DL) have the potential to speed up this progress. These

techniques have shown significant performance in a variety of fields,
d health survey; SSA, Sub-Saha
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including the fields of public health and medicine. Nevertheless,

there is not enough proof to support the prediction of ARIs and the

identification of determinants using machine learning techniques,

and no prior research has attempted to do so in Sub-Saharan

African countries. A predictive model enables real-time children’s’

ARI of risk stratification, which guides primary attention to care for

the children’s good health outcomes. The decision-making process

is automated using machine learning algorithms. When these

methods are utilized in the healthcare sector, patients’ health

outcomes are enhanced and healthcare costs are decreased. We

create a novel method for predicting them using machine learning

algorithms that determine the child’s ARI status.

This study made use of data from the Demographic and Health

Surveys (DHS), which were carried out using nationally representative

samples in 36 Sub-Saharan African nations between 2005 and

2019.Hence, this study aimed to predict ARI status and identify its

predictors using the current state-of-the-art machine learning models.

In conclusion, the two primary questions this study seeks to

address are as follows:
RQ1

Which determinants are the most significant for acute

respiratory infection (ARI) status?
RQ2

Which machine learning models help to effectively predict

acute respiratory infection (ARI) status?
Methods

Study setting

This studywas conducted in Sub-SaharanAfrican countries using

the most recent Demographic and Health Survey (DHS) dataset from

36 Sub-Saharan African countries. Geographically, east Africa is a

sub-region of Africa that includes 54 internationally known
ran Africa; WHO, World Health Organization; RF, random forest; XGB, extreme
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countries, among which Angola, Burkina Faso, Benin, Burundi, Dr

Congo, Congo, Cote devoirs, Cameron, Ethiopia, Gabon, Ghana,

Gambia, Guinea, Kenya, Comoros, Liberia, Lesotho, Madagascar,

Mali, Malawi, Mozambique, Nigeria, Niger, Namibia, Rwanda, Sera

Leone, Senegal, Sao Tome, Swaziland, Chad, Togo, Tanzania,

Uganda, South Africa, Zambia, and Zimbabwe conducted the study.
Data source

This study used measured DHS program data, accessed online,

comprising the Kids Record dataset (KR file). Among 54 Sub-

Saharan African countries, 36 DHS datasets were eligible for

analysis since the rest of the Sub-Saharan African countries had no

recorded acute respiratory infection, and we did not get the DHS

dataset in the years from 2005 to 2022 that were included in this study.
Sample size determination and sampling
technique

The DHSs were a nationally representative survey that collected

data on basic health indicators like mortality, morbidity, family

planning service utilization, fertility, and maternal and child

health-related indicators (8). This study used a weighted

sample of 75,827 children aged under five across 36 Sub-Saharan

African countries using the recent DHS dataset. For this study,

we used the Kids Record dataset (KRFile). A two-stage stratified

cluster sampling technique was used to select study participants.

In the first step, a stratified sample of enumeration areas (EAs)

was selected at random; in the second stage, households were

selected using systematic random sampling in the selected EAs.

In each selected household, mother or father were interviewed

with an individual questionnaire.
Population, and eligibility criteria

In this study, only children under age five who had

symptoms of acute respiratory infection (ARI) in the two

weeks before the survey in Sub-Saharan African during the

survey period who were in the selected enumeration areas at

the time of DHS data collection were the study populations

and included in this study.
Study design and study period

This study adopted a design science approach for analysis and

building a model of the DHS dataset, which was conducted from

2005 to 2022. The design science approach focuses on solving

practical problems through the creation and evaluation of

innovative artifacts. Through this approach, the study contributes

to both theoretical and practical aspects by offering a novel

solution to a specific problem (9). Finally, we develop a

predictive model that predicts the determinants or factors of

acute respiratory infection among under-five children.
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Study variables

The outcome variables
Acute respiratory tract infection is defined as children having a

history of coughing within two weeks preceding the survey.

Children under age five who had symptoms of acute respiratory

infection (ARI) in the two weeks before the survey. Then, the

outcome variable was categorized as yes or no (acute respiratory

infection). The first category [children under age five who had

symptoms of acute respiratory infection (ARI) in the two weeks]

was given a “1” value, and the second category (children who

had no symptoms of acute respiratory infection) was given a

value of “0,” respectively. This classification and analysis was

conducted according to the guide to the DHS (10, 11).

Independent variables
The features (independent variables) used in this study include

individual, household, community, and health service factors.

Incorporate the mother’s age (15–24, 25–34, and 35–49), birth

size (small, normal, large), stunting (normal or severe),

underweight (normal or severe), media exposure (yes or no),

breastfeeding (ever or never), diarrhea (yes or no), and the

child’s vaccination history (yes or no). And Sub-Saharan

countries (central, east). The health service factors determine the

mode of delivery of services (health facility, home).
Data analysis procedure

Machine learning algorithms were used to come up with

objective predictions about acute respiratory tract infection and

to identify the factors that influence respiratory tract infection.

Data processing is a machine learning technique that transforms

raw data into an understandable format (12). Data processing

and analysis will be performed using Python software and some

basic packages like Panda, Scikit-Learn, Imblearn, Numpy, and

Seaborne utilized for gathering data, preparing data, discretizing

data, transforming data, and choosing, training, and evaluating

models. Finally, we develop a predictive model that predicts both

the acute respiratory tract infection and its associated

determinants (Figure 1).
Data preprocessing

We employed data preprocessing to remove incomplete values,

noisy data, outliers, and incompatible data since it is done in its raw

form. Major data Pre-processing, such as data cleaning, data

integration, transforming, and discretizing data, is important

(13). In this study, we utilized major t data preprocessing.
Data cleaning

Data cleaning is the most important process for data analysis to

ensure the dataset removes incorrect or erroneous data (14). We
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FIGURE 1

Overall data preparation and analysis process for predicting acute respirator trace infection.
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employed data cleaning, which typically includes noise and missing

values. Raw data is always missing, and that data cannot be sent

through modeling, building, or testing (15). We utilized data

cleaning, which typically includes outlier values, imbalanced

outcome variables, noise, and missing values. A large fraction of

the 75,827 records available had less than 579 missing data for

the critical 16 features, comprising nearly 1.7% of the data set.

Missing values are present in our dataset for both continuous

and categorical data. For the continuous and categorical

variables, we addressed these missing values using mean and

mode imputation, respectively. We found outliers in the

continuous nature of the data and dealt with them using

visualization methods like the box-plot and subplot.
Frontiers in Pediatrics 04
Feature selection

Feature selection is a process of removing irrelevant or

redundant features from the number of features while developing

a predictive model (16). In this study, the dataset includes over a

thousand features; therefore, feature selection is essential.

Excessive features make it time-consuming and resource-

intensive (17). The feature selection methods were used in data

preprocessing to achieve efficient data reduction and select the

most important determinants. In this study, we utilized recursive

feature elimination (RFE) and SHAP values to identify the most

relevant variables for predicting acute respiratory infection

among under-five-year-old children.
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Data transformation

Data transformation involves converting the data into one

format that is suitable for analysis, which involves converting data

types, scaling data, normalizing data, smoothing, and renaming

(18). In this study, we employed one hot-encoding technique to

convert string data to an integer to provide the uniform data type

for machine learning classifiers. Before creating the model, we also

scaled the dataset to make it look uniform, suitable for analysis and

improving model training and evaluation.
Data discretization

In order to make the data easier to analyze, we did data

discretization, which changes continuous data in the interval or

range. In this study, we use binning as a method for converting

continuous input into categorical input in order to improve the

performance and interpretability of classification algorithms. By

labeling continuous input into distinct groups or bins, the

algorithm is able to make distinctions between different classes of

data based on specific values of the input variables. Mother’s age

is continuous; variables were discretized into 15–24, 25–34, and

35–49 according to DHS guidelines.
Data splitting

In this study, we utilized a simple holdout method like 80% for

training and 20% for testing to ensure robust model evaluation.

The dataset was divided into training and testing sets, with the

former used to build and train the model and the latter used to

evaluate its performance on previously unseen data.
Class balancing

Before training the prediction model, an unbalanced dataset was

resampled; thismight be viewed as a data pretreatment step.Machine

learning algorithms are prone to bias toward the majority class when

given an unbalanced data set (19, 20). To avoid machine learning

models biased toward the majority class (acute respiratory

infection), the dataset was balanced using the synthetic minority

oversampling technique. We employed SMOTE oversampling by

creating synthetic examples (new observations) that resemble the

minority class by interpolating between minority classes samples in

the feature space rather than creating exact copies of existing

examples. SMOTE has been shown to almost continually increase

classification performance for resampling imbalanced datasets (21).
Model selection

The predicted variable in this study was binary classification, since

acute respiratory infection status was divided into two “yes” or “no.”

For model building, five classifiers: random forests, XGBoost, logistic
Frontiers in Pediatrics 05
regression, Naïve Bayes, and decision trees were used. The algorithms

were chosen in accordance with previous research that used machine-

learning methods to predict tasks (22, 23). The rationale behind its

ease of implementation, interpretability, training efficiency,

reduction of overfitting, and speed in predicting unknown records

(24, 25). Our aim for this study is to apply the ML method to

predict acute respiratory tract infections and to provide insight for

the government and policymakers.
Decision tree

In this study is a novel integrated supervised learning algorithm to

efficiently handle vast amounts of survey data. As a result, the study’s

technique is novel and innovative, combining theory and practice due

to its predictability and ease of use. Decision trees are one of the most

popular approaches for representing classification (26). Due to easily

interpretable machine learning algorithms, they may be pretty

powerful when used in ensemble algorithms and robust to outliers.
Random forest

Random forest is a machine learning algorithm that ensembles

multiple decision trees to make predictions for classification and

regression problems. The concept of multiple random tree generation

is used in each split decision, along with a voting system, sample

bagging, training bootstrapping, and randomly selected features.

Random Forest overcomes these limitations of decision trees by using

an ensemble of decision trees. An ensemble of models is used by the

machine learning process known as bootstrap aggregating, sometimes

known as bagging, to increase prediction accuracy and stability (27).
XGBoost (extreme gradient boosting)

An ensemblemachine learning algorithm based on decision trees

is used in Extreme Gradient Boosting, or XG Boost, a supervised

learning technique (28). Each independent variable is given a

weight, which the decision tree then uses to generate predictions.

The Extreme Gradient Boosting classifier is an adaptable technique

that combines numerical and categorical features in an easy-to-

read format. It can handle the overfitting problem, but due to its

sensitivity to outliers, scalability on bigger datasets is a concern.
Evaluation criteria

In this study, the performances of predictive models were

evaluated. We divided the dataset into training (80%) and test

(20%) sets. Then, the performance of the trained models was

evaluated using the test set based on the criteria of accuracy score,
frontiersin.org
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TABLE 1 Confusion matrix.

N=Number of
instances

Confirmed by observation

Predicted by test Yes No

Yes TP (had symptoms ARI) FP ()

No FN () TN(had no symptoms ARI)

TABLE 2 Description of acute respiratory tract infection in Sub-Saharan
Africa countries, evidences from DHS (N = 75,827).

Variable Frequency (%) ARI

YES NO

Ever vaccinated
Yes 46,338 (61%) 6,704 (8%) 39,634 (53)

No 29,018 (39%) 27,191 (36%) 1,827 (3%)

Breastfed
Ever 70,154 (92%) 7,411 (9.7) 62,743 (82.3)

Never 5,673 (8%) 4,553 (6%) 1,120 (2%)

Diarrhea
Yes 15,363 (20) 2,724 (3.6) 12,639 (17.4)

No 60,464 (80) 5,807 (7.7) 54,657 (72.3)

Place delivery
Health facility 50,014 (65%) 5,261 (6%) 44,753 (59%)

Yehuala et al. 10.3389/fped.2024.1388820
ROC curve, and precision (P), recall (R), and F-measure as follows:

Precision ¼ (TP)=(TPþ FP)

Recall ¼ (TP)=(TPþ FN)

F–Measur ¼ (2�Precisio�Recall)=(Precisionþ Recall)

Accuracy ¼ ((TPþ TN)=(TPþ TNþ FPþ FN))� 100
Home 25,813 (34%) 22,543 (30%) 3,270 (4)

Stunting
Normal 27,711 (36.5) 3,584 (4.7%) 24,127 (31.8%)

Moderate 9,229 (12.5) 1,071 (1.8%) 8,158 (10.7)

Severe 38,887 (51%) 35,011 (46%) 3,876 (5%)

Media exposure
Yes 41,618 (55%) 4,842 (6.3%) 36,776 (48.7%)

No 34,209 (45%) 3,689 (4.8%) 30,520 (40.2%)

Birth size
Normal 33,179 (44%) 2,906 (4%) 30,273 (40%)

Large 26,032 (34%) 3,175 (4%) 22,857 (30%)

Small 16,616 (22%) 14,166 (18.8) 2,450 (3.2)
In Table 1 a false positive (FP) indicates not symptoms of acute

respiratory tract infection that were incorrectly identified as having

symptoms of acute respiratory tract infection; a true positive (TP)

indicates had symptoms of acute respiratory tract infection that

were correctly identified as having symptoms of acute respiratory

tract infection; a true negative (TN) indicates not symptoms of

acute respiratory tract infection correctly identified as not having

symptoms of acute respiratory tract infection; and a false negative

(FN) indicates had symptoms of acute respiratory tract infection

incorrectly identified as not having symptoms of acute respiratory

tract infection (29). Furthermore, the ROC curve (receiver operating

characteristics curve) provides a comprehensive assessment of the

accuracy of a model by screening the range of threshold values for

the decision-making.
Hyper parameter tuning

In this study, we utilized hyper parameter tuning for selecting

the optimal values for the machine learning model. Grid search was

used to adjust the selected algorithm’s hyper parameters since

choosing the right hyper parameter has always been a critical

stage in the creation of machine learning models and greatly

affects model prediction performance (30, 31).
Results sociodemographic characteristics
of the study participant

In this study, we investigated a sample of 75,827 children under

the age of five from 36 countries in Sub-Saharan Africa that were

part of a demographic and health survey. Overall, it was shown that

11% of children with symptoms of acute respiratory tract infection

(ARI) disease and 89% of children who had no symptoms of ARI

disease. Demonstrates that compared to vaccinated children (8%),

children who were not vaccinated had a higher prevalence of acute

respiratory tract infections (53%), and approximately 6% of children

with ARI symptoms were never breastfed, while 82.3% of children

who were properly breastfed did not exhibit any ARI symptoms.

Approximately 30% of children were delivered at home with ARI

symptoms, compared to 6% who were delivered in a medical facility.
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Compared to the 6.3% of children who experienced media exposure

and exhibited ARI symptoms, 48.7% of children did not exhibit any

symptoms. The majority of children reported were found to have

stunting status; 51% were in the severe stage. Among those, 46%

had ARI symptoms, compared to 5% who had no ARI symptoms.

The results of this study revealed that there is a high ARI symptom

rate seen in central Sub-Saharan Africa (6%) and east Sub-Saharan

Africa (5.5%) this present (Table 2).
Class balancing

In order to balance the target features for this study, we applied

the Synthetic Minority Oversampling Technique (SMOTE). This

technique generates additional synthetic observations from the

minority category in order to balance the unequal distribution of

the outcome variable. Prior to smote balancing, the prevalence

of children not having symptoms of ARI was 67,483 (89%),

while the prevalence of children having symptoms of ARI was

8,341 (11%). We obtained a balanced sample of children who

had ARI with counts of label 67,483 and children who had ARI

during with counts of label 67,483.
Feature selection

In this study, the recursive feature selection method (RFE) was

utilized. Feature selection and feature importance rank were
frontiersin.org
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FIGURE 2

Importance features selected by recursive feature selection.
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techniques for identifying a subset of features by removing irrelevant

or redundant features. The importance of feature selection was

reducing the cost of learning by reducing the number of features,

increasing model performance, and reducing storage and time. In

this study, the dataset contains 45 features with 75,827 records. To

select the most important features, we employed fast recursive

feature elimination. This approach offers flexibility in controlling

the number of features retained and infers features’ relevance

using an estimate of their importance from the algorithm; all

features are selected. The most important features—mother age,

breastfed, place of delivery, birth size, media exposure, diarrhea,

stunting, underweight, country, wasting, ever vaccinated, and

weight were selected by (fast recursive feature) RFE, and these

determinants were used for model building Figure 2.
Model explanation using SHAP values

The high values of the ever vaccine variable have a high negative

contribution to the ARI, while low values have a high positive

contribution (32). Interpreting the results of machine learning

algorithms can be significantly more challenging compared to

classical statistical analysis methods. It is challenging to interpret

how predictions were made, but techniques like SHAP provide a

unified framework, proposed by Lundberg and Lee, to interpret the

outputs of a wide range of machine learning models by calculating

SHAP values to gain insights into the contributions of individual

determinants for the model’s predictions.

In this study, we employed the Random Forest Classifier in

combination with model-agnostic SHAP values to find the
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most significant predictors of acute respiratory infections. By

evaluating the mean absolute SHAP values throughout the

dataset, the study identified the most important predictors of

acute respiratory infections. As shown in (Figure 3), where the

SHAP values are positive, features contribute to an increased

children having no symptom ARI. This is represented by the

red line, indicating the category coded as “1” or a high value,

and SHAP values are negative; this is represented by the blue

line, indicating the category coded as “0” (had symptom of

ARI) or a low value. The features tend to increase the

predicted values of children who had no symptom ARI, such

as features like having media exposure, being ever vaccinated,

giving birth in a health facility, having no diarrhea in the last

two weeks, and the stunting status. Other features have a

positive impact; children had not acute respiratory infections.

The features like not ever vaccinated, the stunting status being

severe, having diarrhea in the last two weeks, having no media

exposure, and giving birth at home have a negative impact on

children with ARI.
Training and testing data

The data set was divided into training and test sets. Eighty

percent (80%) of the input dataset is used for model building,

while the remaining twenty percent (20%) is used for validating

the model. which are 60,661 samples and 15,166 samples for

training and testing, respectively. In all experiments, 11 selected

attributes (ever vaccinated, breastfed, place of delivery, birth size,

media exposure, diarrhea, stunting, country, wasting, and weight)
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FIGURE 3

The positive (in red) and negative (in blue) contributions features for acute respirator trace infection among under five children.
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were used. The outcome variable is a binary response, which is

acute respiratory infection was “yes” or “not.”
FIGURE 4

AUC score for five machine learning model.
Comparisons of selected machine learning
model

The goal of this study was to build a predictive model for acute

respiratory infection and identify the important determining

children who had acute respiratory symptoms for evidence-based

decision-making. Supervised machine learning algorithms were

used, such as Random Forest, Decision Tree (DT), Logistic

Regression (LR), XGB (Extreme Gradient Boosting), and the

Naïve Bayes method, with the same testing parameters. Since

accuracy, AUC, precision, recall, and F-measure are the

parameters used to evaluate the performance of the model.

After comparing proposed machine learning models, random

forest emerged as the best predictive model with an accuracy of

96.40%, precision of 87.9%, F-measure of 82.8%, ROC curve of

94%, and recall of 78%, with parameters criterion=’entropy’,

max_features=’sqrt’, min_samples_split = 13, estimators = 500,

random state = 0, max_depth = 22, max_leaf_nodes = 500, jobs

= −1, random forest is the best classifier in this study. In

addition, random forests had high specificity (98%) and

sensitivity (78%).

The true positive rate of random forest was 87%, the false positive

rate was 2.6%, and the AUC curve was high, 94%. Moreover, decision

tree (DT) accuracy of 92.8%, recall of 98%, precision of 93%, F1 score

of 96%, and an average AUC curve of 84% with parameters
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criterion=’entropy’,max_features=’sqrt’,min_samples_split = 12,

random_state = 0, max_depth = 30, max_leaf_nodes = 600.

The decision tree had high specificity (97%) and sensitivity

(79%). The true positive rate of the decision tree was 87%, the

false positive rate was 2.8% among the proposed models, and

Naïve Bayes was the one with an accuracy of 87.55%, precision of

67%, F-measure of 48%, recall of 53%, and an AUC score of 82%.

The low true positive rate was 4.4% and the high false positive

rate was 98%; hence, the Naïve Bayes model was highly

misperdicted, as shown in (Figure 4 and Table 3).
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TABLE 3 Accuracy, precision, recall and F-measure for the machine learning algorithms.

ML model Accuracy Precision Recall F-measure AUC Parameters
Random forest(RF) 96.40% 87.9 78% 82.8 94 criterion=’entropy’, max_features=’sqrt’, min_samples_ split = 13, estimators = 500,

random state = 0, max_depth = 22, max_leaf_nodes = 500, jobs =−1
Decision Tree (DT) 95.76% 82 79 80 91 criterion=’entropy’,max_features=’sqrt’, min_samples_split = 12, random state = 0,

max_ depth = 30, max_leaf_nodes = 600

XGB(Extreme
Gradient Boosting)

89.30% 86 42 60 80 criterion=’entropy’,max_features=’sqrt’, min_samples_ split = 13, estimators = 500,
random state = 45, max_depth = 32, max_leaf_nodes = 100

Logistic Regression
(LR)

88.90% 88% 57 64 67 max_depth = 2, learning rate = 0.2, estimators = 100,silent = True,
objective=’binary: logistic’ booster=’gbtree’, jobs = 1, nthread = None

Naïve Bayes 87.53% 67 53 48 82 depth = 3, iterations = 202, l2_ leapfrog = 1, learning rate = 0.15

Yehuala et al. 10.3389/fped.2024.1388820
Discussion

In this study, we utilized amachine learningmodel to examine acute

respiratory tract infections and their determinants among under-five

children in Sub-Saharan Africa that can be used for intervention.

Among the proposed machine learning algorithms, random forest

exhibited superiority with an accuracy of 96.40%, precision of 87.9%,

F-measure of 82.8%, ROC curve of 94%, and recall of 78%. Key

determinants included maternal age, breastfed, place of delivery, birth

size, media exposure, diarrhea, stunting, country, wasting, and weight.

The determinants are important for evidence-based decision-making

and uncovering hidden patterns in data.

Our results were best with those made in Uganda, which

indicated that the random forest model was highly significant for

predicting childhood ARI symptoms with an accuracy of 88.70%

(33). This might be a result of the disparities in socioeconomic

status, culture, way of life, and study area.

By using SHAP values, the findings revealed that having media

exposure, being ever vaccinated, giving birth in a health facility,

having no diarrhea in the last two weeks, and the normal

stunting status were all important variables for the children who

had no symptom ARI.

Vaccinated status among children was among the sets of

predictors studied in Ethiopia, Tigray regional state, and high

mortality counters also support this finding (7, 34, 35). Effective

vaccines in childhood prevent key viral respiratory illnesses

(36, 37). In the current study, breastfeeding could provide

protection against a number of acute gastrointestinal and

respiratory illnesses. These findings are supported by similar

findings in Ethiopia, Cambodia, Uganda, and Kenya’s (3, 33, 38,

39). Due to disparities and barriers to health facilities, it is a big

problem that people are less likely to seek healthcare (40).

Inadequate facilities may also make it more difficult for mothers

to give birth in medical facilities. According to our research,

children who were born in medical facilities were more likely to

visit medical centers for postnatal care and vaccinations, as well

as to seek healthcare overall. Mothers may bring their child

for medical attention if they experience any ARI symptoms

while traveling to these services. Findings are supported by

similar findings (4, 5, 33). Children from rural areas in

Sub-Saharan Africa typically get diarrheal diseases as a result of

rotavirus infections (41).

Compared to children who have never experienced diarrhea,

those who have experienced diarrhea within the last two weeks
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are more likely to experience ARI symptoms. This is consistent

with study findings in Ethiopia (7). ARI was significantly more

common in children who were small in birth than in children

who were average size, where smaller-sized children had a 18.8%

higher chance of developing an ARI. This is consistent with

study findings in Ethiopia (42), North Jayapura Sub-District (43).

Mothers of a child who had access to media exposure were more

likely to seek treatment for ARI (44). Mothers are more likely to

seek medical attention when they are exposed to media that

alters their views, attitudes, and social norms. This also makes

mothers more conscious of the significance and urgency of

providing healthcare for their children. The impoverished,

however, might not be able to afford radio or television. This

study was supported in Bangladesh (45). It has been

demonstrated that children who are stunted are more likely to

have ARI. This result is also consistent with research carried out

in Ethiopia (46, 47). According to this study, children who are

malnourished have weakened immune systems and are more

vulnerable to ARI and other illnesses.

There were certain restrictions on this investigation. The

important variables regarding acute tract infection among under five

children due to DHS data collection are self-reported, which may

have introduced some information biases. The outcomes of this

investigation may also be applied to the development of a mobile

application that operates online and anticipates acute respiratory

tract infections in children under five. This would enable moms or

other caregivers to identify indications of acute tract infection in

children who are at high risk early on and help them receive the

necessary therapies.
Conclusion

Usingmachine learning approaches, it is possible to classify certain

secret knowledge that is unable to be classified by conventional

statistical tools. Machine learning method approaches have high

performance compared to conventional statistical methods. Among

the five machine learning models used in this study, the random

forest was predicted as the best classifier to be used for the predictive

model of acute trace infection and estimating risk factors compared

to other machine learning models used in this study. The model of

the random forest technique highlighted more important variables,

such as revealed ever vaccinate, breastfed, place of delivery, birth size,

media exposure, diarrhea, stunting, country, wasting, and weight.
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It is recommended that policymakers take into account the findings of

this research and provide a strategy for prevention of acute trace

infection among children in Sub-Saharan Africa based on the

relevant variables that have been identified. Even though a

fascinating result was obtained, future works were required by

applying alternative types of techniques with a different parameter.
Strength and limitations

This study attempted to forecast acute trace infection and more

accurately evaluate the key predictors. Also, this study made use of the

DHS data set in Sub-Saharan Africa, which contains almost every

demographic risk group that is vulnerable and a large data set.

However, this study has certain limitations because the DHS data

collection is self-reported, which may have introduced some

information biases.
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