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Predictive biomarker of mortality
in children with infectious
diseases: a nationwide data
analysis
Shinya Miura1,2*, Tomohiro Katsuta1 and Yukitsugu Nakamura1

1Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan, 2Graduate
School of Public Health, Teikyo University, Tokyo, Japan
Biomarkers play a crucial role in the early identification of high-risk children with
infectious diseases. Despite their importance, few studies evaluated biomarkers’
capabilities in predicting mortality. The aim of this study was to evaluate the
biomarkers’ predictive capabilities for mortality in children with infectious
diseases. From an inpatient database covering ≥200 acute-care hospitals in
Japan, we included children who underwent blood culture, and received
antimicrobial treatment between 2012 and 2021. Biomarkers’ results from the
day of the initial blood culture were used. Biomarker discriminative capabilities
were assessed using the area under receiver operating characteristic curves
(AUCs). Of 11,365 eligible children with presumed infection, 1,378 (12.1%)
required mechanical ventilation or vasoactive agents within 2 days of blood
culture, and 100 (0.9%) died during admission. Of all children, 10,348 (91.1%)
had community-onset infections and 1,017 (8.9%) had hospital-onset infections.
C-reactive protein and white blood cell demonstrated limited discriminatory
capabilities with AUCs of 0.44 [95% confidence interval (CI): 0.38–0.51] and
0.45 (95% CI: 0.39–0.52). In contrast, pH, prothrombin time-international
normalized ratio, and procalcitonin exhibited strong discriminatory capabilities
with AUCs of 0.77 (95% CI: 0.65–0.90), 0.77 (95% CI: 0.70–0.84) and 0.76 (95%
CI: 0.29–1.00). In conclusions, our real-world data analysis suggested that C-
reactive protein and white blood cell may not be reliable indicators for
predicting mortality in children with presumed infection. These findings could
warrant future studies exploring promising biomarkers, including those from
blood gas analyses, coagulation studies and procalcitonin.
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1 Introduction

Early identification and prompt treatment of children at elevated risk of mortality

from infectious diseases are imperative, especially considering the significant number of

pediatric deaths associated with serious infections (1). Several approaches have been

proposed, including the use of predictive biomarkers for serious bacterial infections and

the definition and identification of pediatric sepsis (2–4). However, the clinical

application of these approaches remains challenging (5, 6).

Many of the existing studies evaluating the capabilities of biomarkers have focused

primarily on serious bacterial infections as the outcome. Such outcome often has a low

positive predictive value for mortality, casting doubts on the robustness of these

biomarkers in predicting mortality (7–9). Moreover, although a few studies have evaluated
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biomarkers’ capabilities to predict mortality, they have mostly been

conducted in pediatric intensive care units (PICUs), which

inherently admit children already deemed at risk of mortality.

Consequently, this bias leaves an unaddressed knowledge gap

regarding the risk stratification of children presenting with

infectious diseases in emergency departments or general wards,

where serious infections are often first recognized (4, 7, 10).

Therefore, our study aimed to evaluate the predictive capabilities of

biomarkers, tested when serious infections were initially suspected,

for mortality in children admitted with infectious diseases across

diverse settings in over 200 acute-care hospitals.
2 Method

2.1 Study design and participants

We performed a retrospective cohort study using an in/

outpatient database managed by the Health, Clinic, and Education

Information Evaluation Institute (Kyoto, Japan), which is a non-

profit research service foundation, with support from Real World

Data Co, Ltd (Kyoto, Japan). Details of the database are described

elsewhere (11); briefly, it includes medical records, blood test

results, and administrative claims data from over 200 hospitals

from Kyushu to Hokkaido region of Japan. The database contains

the following data: patient characteristics, diagnosis, medications

and procedures during admission, and discharge status. This study

was approved by the Institutional Review Board of Teikyo

University (approval number: 22-019; May 20, 2020), and the

procedures were in accordance with the ethical standards of the

responsible committee on human experimentation and with the

Helsinki Declaration of 1975. Due to the anonymity of the data

the requirement of informed consent was waived.

We applied the following inclusion and exclusion criteria. We

included children under 18 years of age who were admitted

between January 2012 and December 2021, underwent blood

culture, and received intravenous antimicrobial agents

(antibiotics, antivirus and antifungals) starting within a window

of 2 days before and after blood culture. Exclusion criteria were

as follows: subsequent infectious events in previously included

cases; neonates hospitalized since birth; use of mechanical

ventilation or vasoactive agents priori to blood culture.

We stratified the children into the four severity groups:

(i) short-term antimicrobial use for <4 days, (ii) antimicrobial

treatment for four or more consecutive days, (iii) critical illness,

defined as the initiation of mechanical ventilation or vasoactive

agents within 2 days after blood culture, (iv) in-hospital death.

Vasoactive agents included dopamine, epinephrine, norepinephrine,

phenylephrine, or vasopressin.
2.2 Outcomes, biomarkers, and statistical
analyses

The primary outcome was in-hospital mortality. We

examined the following biomarkers: C-reactive protein (CRP),
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procalcitonin, white blood cell, platelet, prothrombin time

international normalized ratio (PT-INR), pH, base excess,

lactate, aspartate aminotransferase, alanine aminotransferase,

bilirubin, creatine. The primary test was to calculate the area

under a receiver-operator characteristic curve (AUC) of the

results of biomarkers tested on the same day as blood culture

for predicting in-hospital mortality. For each biomarker

analysis, patients with missing data were excluded and no

imputation for missing data was performed. We performed

sensitivity analyses to assess the robustness of the primary test,

by (i) using the worst values of biomarkers within 3 days and

7 days of blood culture, (ii) by time of infection onset,

(iii) by dispositions, (iv) by age categories, (v) by excluding

immunocompromised children, defined as those with malignant,

haematological or immunological diagnoses, and (vi) by using

an area under the precision-recall curve. Patients were classified

as “community-onset infection” if neither blood culture nor

antimicrobial initiation occurred on the first or second day of

admission, or both, or “hospital-onset infection” if both blood

culture and antimicrobial initiation occurred on the third day of

admission or later (12). Patients were classified as “ICU” if

admitted to an intensive care unit (ICU) or “ward” if admitted

to a non-ICU setting on the day of blood culture collection. All

analyses were performed using STATA 17 (StataCorp LLC,

College Station, TX, USA).
3 Results

3.1 Patient characteristics

Of 11,365 eligible children with presumed infectious diseases,

1,378 (12.1%) required mechanical ventilation or vasoactive

agents within 2 days of blood culture, and 100 (0.9%) died

during admission (Figure 1). The median age was 1 year

(interquartile range: 0–5 years) with 4,958 (43.6%) being female.

Of all children, 10,348 (91.1%) had community-onset infections

and 1,017 (8.9%) had hospital-onset infections. By disposition,

2,024 (17.8%) children were admitted to ICUs on the day of

blood culture (Table 1). Six biomarkers were tested in at least

80% of these children: CRP, white blood cell, platelet, aspartate

aminotransferase, alanine aminotransferase, creatine. Meanwhile,

pH, base excess and lactate were tested in 31.9%, 32.0% and

27.8%. PT-INR and Procalcitonin were tested in 24.1% and

16.6%, respectively (Table 2).
3.2 Predicting mortality

CRP and white blood cell showed poor discriminatory

capabilities with AUCs of 0.44 [95% confidence interval (CI):

0.38–0.51] and 0.45 (95% CI: 0.39–0.52). On the other hand, pH,

PT-INR and procalcitonin demonstrated strong discriminatory

capabilities with AUCs of 0.77 (95% CI: 0.65–0.90), 0.77 (95%

CI: 0.70–0.84) and 0.76 (95% CI: 0.29–1.00), respectively

(Table 2 and Supplementary Figure S1).
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FIGURE 1

Patient flow.
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3.3 Sensitivity analyses

Sensitivity analyses by using the worst values of the biomarkers

within 3 and 7 days showed similar results. The AUCs of CRP

increased slightly to 0.57 (95% CI: 0.51–0.64) and 0.63 (95% CI:
TABLE 1 Characteristics, therapies and outcomes of 11,365 children with
presumed infectious diseases.

n (%)
Age, year, median (IQR) 1 (0–5)

Neonate 1,324 (11.6)

<1 year 2,978 (26.2)

2–5 years 4,462 (39.3)

6–18 years 2,601 (22.9)

Female 4,958 (43.6)

Complex chronic conditions

Any 710 (6.2)

Cardiovascular 148 (1.3)

Neuromuscular 135 (1.2)

Malignancy 106 (0.9)

Hematological/immunological 105 (0.9)

Renal 92 (0.8)

Respiratory 83 (0.7)

Congenital/genetic 36 (0.3)

Transported from other hospitals 608 (5.3)

Community-onset infectiona 10,348 (91.1)

Hospital-onset infectionb 1,017 (8.9)

Therapies within 2 days of blood culture
day

Invasive ventilation 1,326 (11.7)

Vasoactive drugs 611 (5.4)

Renal replacement therapy 20 (0.2)

ECMO 21 (0.2)

Mortality 100 (0.9)

IQR, interquartile range; ICU, intensive care unit; ECMO, extracorporeal membrane

oxygenation.

The number and percentage of variables were described when not specified.
aInfection on admission was defined if neither blood culture nor antimicrobial

initiation occurred on the first or second day of admission, or both.
bHospital-onset infection was defined if both blood culture and antimicrobial

initiation occurred on the third day of admission or later.

Frontiers in Pediatrics 03
0.45–1.00), while the AUCs of white blood cell experienced

negligible increases, standing at 0.49 (95% CI: 0.37–0.61) and

0.50 (95% CI: 0.56–0.69) for 3 and 7 days, respectively. In

contrast, pH, PT-INR and procalcitonin consistently

demonstrated strong discriminatory capabilities, irrespective of

the duration of biomarkers’ tests (Table 2).

Sensitivity analyses by time of infection onset and disposition

showed similar results (Supplementary Tables S1 and S2). CRP

and white blood cell recorded AUCs ranging between 0.33–0.57

and 0.42–0.50, depending on the patient situation. Meanwhile,

pH, PT-INR and procalcitonin exhibited AUCs spanning 0.65–

0.87, 0.73–0.77 and 0.53–1.00, respectively. Sensitivity analyses

by age and immunocompromised status showed similar results

with the primary test (Supplementary Tables S3 and S4).

Sensitivity analysis using precision-recall curves showed a 5-

fold or greater increase in discriminatory accuracy for

procalcitonin, PT-INR, pH, lactate, aspartate aminotransferase,

alanine aminotransferase and creatine. In contrast, CRP and

white blood cell did not improve the discriminatory accuracy

(Supplementary Table S5).
3.4 Biomarkers by severity

By severity groups, 2,807 (24.7%), 7,155 (63.0%), 1,303 (11.5%),

and 100 (0.9%) children fell in (i) antimicrobials <4 days, (ii)

antimicrobials ≥4 days, (iii) critical illness, and (iv) in-hospital death,

respectively. In the higher severity groups, there were progressively

worsening trends in eight biomarkers: procalcitonin, PT-INR,

platelet, pH, lactate, base excess, aspartate aminotransferase, alanine

aminotransferase (Figure 2). In contrast, CRP and white blood cell

did not display consistent trends across varying severities.
4 Discussion

This analysis of real-world data evaluating biomarkers’

capabilities to predict in-hospital mortality in children with
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TABLE 2 Biomarkers’ discriminatory capabilities for mortality—primary and sensitivity analyses.

Primary test Within 3 days Within 7 days

n AUC (95% CI) n AUC (95% CI) n AUC (95% CI)
CRP 9,624 0.44 (0.38–0.51) 9,982 0.57 (0.51–0.64) 10,054 0.63 (0.45–1.00)

White blood cell 9,777 0.45 (0.39–0.52) 10,039 0.49 (0.37–0.61) 10,105 0.50 (0.56–0.69)

Procalcitonin 1,892 0.76 (0.29–1.00) 2,100 0.73 (0.42–0.55) 2,174 0.73 (0.44–0.56)

Platelet 9,801 0.68 (0.61–0.74) 10,070 0.72 (0.65–0.78) 10,132 0.75 (0.69–0.81)

PT-INR 2,735 0.77 (0.70–0.84) 3,156 0.87 (0.82–0.92) 3,325 0.86 (0.81–0.81)

pH 3,626 0.77 (0.65–0.90) 3,759 0.71 (0.59–0.84) 3,849 0.73 (0.61–0.85)

Base excess 3,638 0.62 (0.42–0.82) 3,776 0.65 (0.29–0.93) 3,865 0.64 (0.49–0.80)

Lactate 3,162 0.68 (0.52–0.84) 3,269 0.72 (0.49–0.82) 3,340 0.71 (0.57–0.85)

AST 9,661 0.72 (0.65–0.78) 9,960 0.75 (0.58–0.87) 10,067 0.76 (0.70–0.82)

ALT 9,634 0.69 (0.62–0.76) 9,940 0.72 (0.65–0.79) 10,049 0.74 (0.67–0.80)

Bilirubin 8,748 0.50 (0.42–0.57) 9,158 0.56 (0.50–0.63) 9,334 0.61 (0.55–0.67)

Creatine 9,626 0.69 (0.62–0.75) 9,935 0.72 (0.66–0.78) 10,042 0.74 (0.64–0.80)

In the primary test, the results of the biomarkers tested on the same day as the first blood culture were analyzed to evaluate the discriminatory capability of the biomarkers.

As sensitivity analyses, the worst values of each biomarker within 3 and 7 days of blood culture were analyzed.

AUC, area under the receiver operating characteristic curve; CRP, C-reactive protein; PT-INR, prothrombin time international normalized ratio; AST, aspartate

aminotransferase; ALT, alanine aminotransferase.

Miura et al. 10.3389/fped.2024.1381310
presumed infectious diseases, demonstrated poor discriminatory

capabilities in CRP and white blood cell and strong

discriminatory capabilities in pH, PT-INR and procalcitonin.

While previous studies reported a strong discriminatory

capability of CRP for serious bacterial infection, we found its

poor discriminatory capability for mortality. One study

reported the discriminatory capabilities of CRP with AUCs of

0.81 for serious bacterial infection and 0.43 for mortality in

children presenting with suspected meningitis or pneumonia

(13). One possible interpretation was that the outcome setting

could significantly affect the biomarker’s discrimination, given

serious bacterial infections, defined as culture-proven invasive

infections in many studies, do not necessarily indicate a high

risk of death and need for intensive care (14). Another

possible reason for our findings could be the delayed rise in

CRP levels. A systematic review reported an improved

discrimination of mortality with late-phase CRP levels

compared to early-phase CRP levels recorded within 48 h.

Similarly, our sensitivity analyses showed improved

discrimination of CRP over extended observation periods.

However, such marginal improvements did not suggest the

clinical usefulness of CRP as an early predictor, as early

recognition and timely treatment are crucial in managing

severely-ill children (15). In addition, the cohort in our study

may have included non-infectious cases characterized by high

CRP levels and low mortality (e.g., Kawasaki disease, etc.). The

international variation in disease incidence may have led to

the discrepancy in CRP’s performance. Furthermore, elevated

CRP levels have been associated with improved outcomes in

previous studies of selected cohorts with severe infections.

This might be explained by spuriously low CRP levels due to

an insufficient hepatic production, as CRP is a protein mainly

synthesized in liver hepatocytes (16).

In our study, white blood cell count failed to discriminate the

mortality. This aligned with previous studies showing its poor
Frontiers in Pediatrics 04
discrimination for mortality, with a limited sensitivity and

specificity (8, 17).

Our study identified potentially predictive biomarkers

including procalcitonin, pH, and PT-INR. Previous studies

have shown that procalcitonin is useful in the early

identification of children with serious bacterial infections at

risk of mortality. It may be the time to discuss the

implementation of procalcitonin testing among severely-ill

children at risk of mortality, although the test should be

judiciously reserved for properly-selected children due to its

high cost. Similar to our findings, some of the biomarkers have

been successfully used in ICU severity scores to accurately

predict mortality e.g., PT-INR, aspartate aminotransferase,

platelet, creatinine and pH in PELOD 2 and PRISM 3,

although their validation in the general pediatric cohort

hospitalized with infectious diseases is limited (17, 18). Other

studies have demonstrated strong discriminatory capabilities of

acidosis and PT-INR as a single biomarker or as a part of the

prediction model (18–20). However, these studies have

predominantly focused on specific conditions such as malaria

or non-infectious cohorts (e.g., patients with traumatic

injuries). Consequently, there is still a knowledge gap in the

application of pH and PT-INR to predict mortality in children

with infectious diseases. This gap warrants future studies to

explore these potentially promising biomarkers.
4.1 Strengths and limitations

To the best of our knowledge, this was the first study to

evaluate the biomarkers’ capabilities to predict mortality in

children in a huge sample size. However, this study had

limitations. First, the inclusion criteria based on blood culture

test and the initiation of intravenous antimicrobial agents may

have resulted in different cohorts from those in other studies.
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FIGURE 2

Biomarkers’ results by the severity of infection. Children were classified into the four severities groups: (i) short-term antimicrobial use for <4 days, (ii)
antimicrobial treatment for ≥4 days, (iii) critical illness, defined as the initiation of mechanical ventilation or vasoactive agents within 2 days after blood
culture, (iv) in-hospital death. PT-INR, prothrombin time international normalized ratio.

Miura et al. 10.3389/fped.2024.1381310
However, we believe that our approach was the best available and

reproducible to incorporate children with presumed infectious

diseases into this analysis. Secondly, since not all children

underwent every type of blood test, we could not directly

compare the discriminatory capabilities of biomarkers. Third, in

immunocompromised children, the discriminatory capabilities of

biomarkers may have been affected due to their decreased

baseline levels and suppressed biomarker responses. However, a

sensitivity analysis by excluding immunocompromised children

showed a similar result (Supplementary Table S2). Lastly,

biomarkers that were tested less frequently may have been

indicative of severely-ill children, who physicians thought needed
Frontiers in Pediatrics 05
more extensive evaluation. This may have influenced the

calculated AUCs.
4.2 Conclusion

Our real-world data analysis suggested that CRP and white

blood cell may not be reliable indicators for predicting mortality

in children with presumed infectious diseases. These findings

could warrant future studies exploring promising biomarkers,

including those from blood gas analyses, coagulation studies

and procalcitonin.
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