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Introduction: Respiratory illness is the most common childhood disease
globally, especially in developing countries. Previous studies have detected
viruses in approximately 70-80% of respiratory illnesses.
Methods: In a prospective cohort study of 234 young children (ages 3-11 years)
and 30 adults (ages 22-51 years) in rural Western Uganda sampled monthly from
May 2019 to August 2021, only 24.2% of nasopharyngeal swabs collected during
symptomatic disease had viruses detectable by multiplex PCR diagnostics and
metagenomic sequencing. In the remaining 75.8% of swabs from symptomatic
participants, we measured detection rates of respiratory bacteria Haemophilus
influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae by
quantitative PCR.
Results: 100% of children tested positive for at least one bacterial species.
Detection rates were 87.2%, 96.8%, and 77.6% in children and 10.0%, 36.7%,
and 13.3% for adults for H. influenzae, M. catarrhalis, and S. pneumoniae,
respectively. In children, 20.8% and 70.4% were coinfected with two and
three pathogens, respectively, and in adults 6.7% were coinfected with three
pathogens but none were coinfected with two. Detection of any of the
three pathogens was not associated with season or respiratory symptoms
severity, although parsing detection status by symptoms was challenged by
children experiencing symptoms in 80.3% of monthly samplings, whereas
adults only reported symptoms 26.6% of the time. Pathobiont colonization
in children in Western Uganda was significantly more frequent than in
children living in high-income countries, including in a study of age-
matched US children that utilized identical diagnostic methods. Detection
rates were, however, comparable to rates in children living in other Sub-
Saharan African countries.
Discussion: Overall, our results demonstrate that nonviral colds contribute
significantly to respiratory disease burden among children in rural Uganda and
that high rates of respiratory pathobiont colonization may play a role. These
conclusions have implications for respiratory health interventions in the
area, such as increasing childhood immunization rates and decreasing air
pollutant exposure.
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1 Introduction

Respiratory illness is the most common childhood disease

globally, especially in low- and middle-income countries (LMICs)

(1). Seminal studies detected viruses in 70%–80% of respiratory

illnesses, but these studies sampled populations in affluent

locations, primarily the US (2, 3) or European countries (4).

However, these studies lack generalizability to children in LMICs,

where the burden of bacterial disease is much higher and uptake

of conjugate vaccines for respiratory pathogens Streptococcus

pneumoniae (pneumococcus, PCV) and Haemophilus influenzae

type b (Hib) is much lower (5). There are currently few

comparable data from Sub-Saharan Africa, which vary by

location and methodology. In a study of Ugandan children under

five years admitted to a hospital for febrile respiratory illness,

80.0% of nasopharyngeal swabs tested positive for a virus by

metagenomics (6), whereas only 48.8% and 45.7% tested PCR-

positive among children of the same age admitted to intensive

care units in Mozambique (7) and South Africa (8), respectively.

Because most people do not seek medical care for relatively mild

respiratory illnesses, particularly where health care access is

limited, such hospital-based studies may not accurately capture

prevalence rates of viral and nonviral colds. We sought to

characterize respiratory illness etiologies in rural Western

Uganda through a community-based longitudinal study.

We conducted a prospective cohort study of young children and

adults in rural communities in Kabarole District, Western Uganda

(9). Each month from May 2019 to August 2021, we collected

paired respiratory symptoms surveys and nasopharyngeal swabs by

visiting participants at their schools, homes, and workplaces. We

first examined whether respiratory symptoms were caused by

common respiratory pathogens using a multiplex PCR panel that

detects 17 viruses and three bacteria. We measured frequencies of

both viral and nonviral respiratory disease and compared them to

elsewhere (2–4, 10).

We then measured CXC chemokine ligand 10 (CXCL10) in

nasopharyngeal swabs. Induced by interferon-γ, CXCL10 plays

an important role in both innate and adaptive antiviral immune

responses by inducing chemotaxis of NK cells, macrophages,

dendritic cells, and T lymphocytes to sites of infection (11) and

polarizing Th1 cells (12). Elevated CXCL10 levels can indicate

active viral infection (13–15). We therefore examined individuals

with high CXCL10 levels using metagenomics to investigate rare

or novel viruses unrepresented on our multiplex PCR panel.

Next, we measured carriage of respiratory pathobionts

(pathogenic bacteria that first colonize the upper respiratory tract

as commensals) Haemophilus influenzae, Moraxella catarrhalis,

and Streptococcus pneumoniae. These pathobionts often cause

acute otitis media, sinusitis, and pneumonia in children (16) as

well as exacerbations of chronic obstructive pulmonary disease in

adults (17, 18). Pathogenic microbiota overgrowth generally

follows acute insult from either respiratory viral infections or air

pollutants. Detection rates and densities increase after respiratory

virus infection by inducing cellular receptors used by bacteria for

adhesion (19, 20) and disrupting epithelial barrier function (21).
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Bacterial components can activate Toll-like receptors, prompting

the release of large amounts of inflammatory cytokines, resulting

in increased risk of wheezing illnesses and asthma exacerbations

(10, 22, 23). Additionally, environmental and household air

pollution can increase levels of these pathobionts, especially in

many parts of Sub-Saharan Africa (e.g., South Africa (24), Ghana

(25), and Malawi (26)) where annual fine particulate matter

(PM2.5) concentrations exceed WHO standards by as much as

10-fold (27). To contrast, we compared respiratory pathobiont

prevalence among children in this study with prevalence among

age-matched, suburban children from a US cohort study that

utilized the same diagnostic methods (10), allowing for direct

comparison of these two populations.

Fortuitously, the study occurred before, during, and after the

emergence COVID-19 when public health measures (e.g., closure

of schools and businesses, prohibition of travel internationally or

between districts in-country, mandatory mask-wearing, etc.) were

instituted, allowing us to capture the changing dynamics of

respiratory disease during a time of intense public health

measures with the goal of reducing respiratory disease

transmission. Our results shed new light on nonviral respiratory

illnesses in Sub-Saharan Africa.
2 Methods

2.1 Study site, subjects, and sample
collection

The design, methods, and study population for this study have

been previously reported in detail (9). Briefly, we conducted a

prospective cohort study between May 2019 and August 2021 in

rural Western Uganda. Household characteristics relevant for

respiratory disease risk in this region include 7.4% adult tobacco

smoking prevalence (28), 89% use of solid biomass cooking fuel

(charcoal) (29), 44% living in dwellings made with permanent

wall materials (30), and 40% access to adequate indoor

ventilation (29). 69% of the local population rely on subsistence

farming for their livelihoods (30). After obtaining written

informed consent from adult participants and parents of child

participants as well as assent from children >8 years old, we

enrolled 234 children (ages 3–11) and 30 adults (ages 22–51),

some of whom were parents of the child participants. Each

month, trained nurses collected monthly nasopharyngeal

swabs and respiratory symptoms scores (9) from all participants

at their schools, homes, or workplaces. After Uganda instated

national lockdown for COVID-19 on March 20, 2020, we

obtained permission from study participants and the Ugandan

government to continue sampling adult participants and their

children (n = 31) at their homes with strict biosafety precautions

to protect participants and study team personnel. Although

primary schools in Uganda did not reopen until January 2022,

some lockdown restrictions began to loosen in October 2020

(e.g., opening businesses, major roads, and the international

airport), a period we denote “late lockdown.” De-identification
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of participant data required for institutional ethics approval

precluded collecting demographic data beyond age ranges for

each cohort.
2.2 Viral diagnostics

We tested nasopharyngeal swabs using the NxTAG Respiratory

Pathogen Panel (RPP) (Luminex Corporation, Austin, TX, USA) as

previously described (31, 32). Immediately upon sample collection,

Dacron swabs were placed in RNAlater preservation buffer (Thermo

Fisher Scientific, Waltham, MA, USA) and stored at −20°C until

shipment on dry ice to Madison, Wisconsin, facilitating molecular

analysis. Nucleic acids were extracted as previously described using

the NucliSENS EasyMag kit (bioMérieux, Marcy-l’Étoile, France)

(31). The RPP tests for influenza viruses A and B, rhinovirus/

enterovirus, adenovirus, parainfluenza viruses 1–4, coronaviruses

(CoV NL63, CoV 229E, CoV HKU1, CoV OC43, and SARS-CoV-

2), respiratory syncytial viruses A and B, metapneumovirus, human

bocavirus, and the bacterial targets Chlamydophila pneumoniae,

Mycoplasma pneumoniae, and Legionella pneumophilia. Sensitivity

and specificity vary by pathogen but on average are approximately

95% and 99%, respectively (33).
2.3 Quantification of CXCL10 and
respiratory bacteria

We measured CXCL10 mRNA levels via quantitative PCR

(qPCR) in a representative subset of swabs (n = 232) to

interrogate potential cryptic viral infections in samples that tested

PCR-negative as described elsewhere (15) using specific primers

(Table 1). Levels of H. influenzae, M. catarrhalis, and

S. pneumoniae were measured in a subset of PCR-negative swabs

from adults (n = 30) and children aged 3–6 years (n = 125) as

described elsewhere (34–36) using specific primers (Table 1).

CXCL10 and bacteria qPCR reactions were performed in 25 µl

volumes consisting of 13.8 µl POWER SYBR Green PCR Master

Mix (Thermo Fisher Scientific), 100 µM each primer, PCR-grade

water, and 2 µl cDNA. Thermal cycling parameters consisted of

an initial incubation of 50°C for 2 min and 95°C for 10 min,

followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. The

qPCR assay was performed using a CFX96 Touch Real-Time

PCR Detection System (Bio-Rad, Hercules, CA, USA).
TABLE 1 Primers used in this study.

Name Sequence 5’ → 3’ Target gene
CXCL10-F GCCATTCTGATTTGCTGCCT CXCL10

CXCL10-R GCAGGTACAGCGTACAGTTC CXCL10

hpdF822 GGTTAAATATGCCGATGGTGTTG Haemophilus influenzae hpd

hpdR952 TGCATCTTTACGCACGGTGTA Haemophilus influenzae hpd

copB-F GTGAGTGCCGCTTTACAACC Moraxella catarrhalis copB

copB-R TGTATCGCCTGCCAAGACAA Moraxella catarrhalis copB

lytA-F ACGCAATCTAGCAGATGAAGCA Streptococcus pneumoniae lytA

lytA-R TCGTGCGTTTTAATTCCAGCT Streptococcus pneumoniae lytA
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2.4 Metagenomic sequencing and
bioinformatics

Metagenomic sequencing was used to identify viruses in 24

nasopharyngeal swabs from children who displayed moderate to

severe respiratory symptoms (symptoms scores = 6–16) but

tested virus-negative by RPP, using previously described

methods (37–40). Briefly, Dacron swab tips were homogenized

with 50 μl RNAlater suspension and 350 μl Hanks’ Balanced

Salt Solution (HBSS) and centrifuged to clarify. The supernatant

was treated with nucleases to digest nucleic acids not

encapsidated within virions (41). Nucleic acids were extracted

using the QIamp MinElute Virus Spin Kit (Qiagen, Hilden,

Germany), with carrier RNA omitted. RNA was converted to

double-stranded cDNA with the Superscript IV system (Thermo

Fisher), which was purified using Agencourt AMPure XP beads

(Beckman Coulter, Brea, CA, USA) as previously described

(37–40). Genomic libraries were prepared using the Illumina

Nextera XT kit (Illumina, San Diego, CA, USA) and sequenced

on an Illumina MiSeq instrument using 300 × 300 cycle paired-

end (V3) chemistry.

Sequences of low quality (Phred score <30) and short length

(<50 bp) were trimmed and sequences matching known

contaminants and host DNA were discarded using CLC Genomics

Workbench v. 20.0.4 (Qiagen, Hilden, Germany). Remaining reads

were then subjected to de novo assembly using the metaviral option

in SPAdes v. 3.15.2 (42). The resultant contiguous sequences

(contigs) were compared to viruses in NCBI databases at both the

nucleotide and amino acid levels using the BLASTn and BLASTx

algorithms, respectively (43, 44).
2.5 Comparison of nonviral colds and
bacteria colonization with suburban US
children

Symptoms status, viral infection status, and bacteria

colonization status were compared to data collected as part of

the 2006–2008 RhinoGen study described in detail elsewhere

(10, 22, 45). Three hundred eight children (166 with asthma

and 142 without asthma) aged 4–12 years living in Madison,

Wisconsin, a suburban college town in the US, were enrolled

in the study. Children provided weekly nasal lavage samples

(45), which have been shown to yield similar rates of bacterial

detection as nasopharyngeal swabs (22). Methods utilized for

viral diagnostics and qPCR for H. influenzae, M. catarrhalis,

and S. pneumoniae were identical to those used in this study

(10), allowing for direct comparison. Only age-matched

children (4–6 years) were included (n = 289).
2.6 Statistical analysis

Parametric model assumptions were assessed with Shapiro-

Wilk tests for verification of normality and with Levene’s test for
frontiersin.org

https://doi.org/10.3389/fped.2024.1379131
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Weary et al. 10.3389/fped.2024.1379131
verification of homogeneity of variances. For power analysis for the

bacteria assays, we utilized the functions cohensD and pwr.t.test in

R (46) on a pilot subset of samples (n = 31), aiming for a

significance level of 0.05 and a power of 0.8. Symptoms status,

viral infection, and age class were compared to bacteria

colonization by X2 test or Fisher’s exact test for association.

Presence of nonviral colds or bacteria colonization were

compared to calendar month with ANOVA or Kruskal-Wallis

test. Levels of CXCL10 or bacteria, measured by qPCR Ct values,

were compared to age class or symptoms status by Mann-

Whitney U test. A two-sided p-value of less than 0.05 was

regarded as statistically significant.
FIGURE 1
3 Results

In total, we collected 2,047 symptoms scores (534 scores from 30

adults and 1,513 scores from 234 children) and 1,989

nasopharyngeal swabs from 264 individuals (538 swabs from

adults and 1,451 swabs from children) from May 2019 through

August 2021. We obtained 1,976 paired swabs and symptoms scores.

Contingency analysis of presence/absence of viral respiratory
pathogens and respiratory symptoms (n= 1,976 paired
nasopharyngeal swabs and symptoms scores).
3.1 Nonviral colds

If participants reported experiencing any respiratory

symptoms, their nasopharyngeal swabs were 2.3 times more

likely to test PCR-positive for at least one of 17 common

respiratory viruses than if they experienced no symptoms

(Fisher’s exact test, p < 0.001) (Figure 1). However, samples

which tested PCR-negative but were collected from people

experiencing respiratory symptoms (“S+/V-”; n = 993) accounted

for 50.3% of the total sample set (n = 1,976 paired swabs with

symptoms scores) and 75.8% of all swabs collected during

symptomatic disease (n = 1,310) (Figure 1). The proportion of S

+/V- swabs decreased significantly during the most stringent

period of lockdown (March 2020–September 2020; 6.0%)

compared to the pre-pandemic (May 2019–February 2020;

23.6%) or late lockdown (October 2020–August 2021; 18.7%)

periods (one-way ANOVA with Tukey HSD, pairwise p = 0.004

pre-pandemic vs. March–September 2020, pairwise p = 0.03

March–September 2020 vs. October 2020–August 2021) (Figure 2).
3.2 CXCL10 expression

CXCL10 expression levels were higher in virus-infected people

than virus-negative, as determined by multiplex PCR (Mann-

Whitney U test, p < 0.0001) (Figure 3A). People experiencing

moderate to severe cold symptoms (symptoms scores > 4),

regardless of etiology, had higher CXCL10 levels than people

experiencing no cold symptoms (symptoms scores = 0) (Mann-

Whitney U test, p = 0.032) (Figure 3B). Experiencing cold

symptoms with a PCR-positive viral infection (S+/V+) was

associated with increased CXCL10 levels compared to S+/V-

cases (Kruskal-Wallis test with Dunn’s multiple comparison,
Frontiers in Pediatrics 04
p < 0.0001) and S-/V- cases (Kruskal-Wallis test with Dunn’s

multiple comparison, p = 0.0001) (Figure 3C).
3.3 Metagenomic sequencing

Following quality trimming and in silico subtraction of host

and known contaminant sequences from the sequenced S+/V-

samples, we retained a total of 26,756,296 reads with an average

length of 141.5 bp for analysis. No reads mapped to genomes of

mammalian viruses, whereas 100% of reads matched phage,

bacteria, or fungi (data not shown).
3.4 Bacterial detection in children and
adults

Prevalence of respiratory pathobionts H. influenzae, M.

catarrhalis, and S. pneumoniae detected in nasopharyngeal swabs

was higher in children than adults (87.2% vs. 20.0%, X2 = 167.7,

p < 0.0001) (Table 2). Levels were also significantly higher in

children than adults for each bacterial species (Mann-Whitney

U test, p < 0.0001 for each species) (Figure 4). Of the three

species, M. catarrhalis was detected with the highest frequencies

(X2 = 16.6, p = 0.0002) (Table 2) and levels (Kruskal-Wallis with

Dunn’s multiple comparison, p < 0.0001) (Figure 4).

Coinfection was much more likely in children than in adults

(Table 3). Coinfection was also more common than

monoinfection in children, whereas the opposite was true for

adults. The most common colonization status in children was
frontiersin.org
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FIGURE 2

Proportions of symptoms-negative/virus-negative (S-/V-; healthy), symptoms-positive/virus-negative (S+/V-; nonviral cold), symptoms-negative/
virus-positive (S-/V+; asymptomatic infection), and symptoms-positive/virus-positive (S+/V+; symptomatic infection) samples, May 2019-August
2021 (n= 1,976 paired nasopharyngeal swabs and symptoms scores). There were no samplings in December 2019 or April 2020.
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infection with all three pathobionts. No children tested negative for

all three pathobionts, whereas a triple-negative was the most

common colonization status in adults.

Colonization with any of the three bacterial species was not

associated with increased symptoms scores in either children or

adults (Supplementary Table S1). Positive cases also were not

associated with sampling month for any of the three bacteria

(Kruskal-Wallis test, all pairwise comparisons p > 0.05)

(Supplementary Figure S1).
3.5 Comparison of nonviral cold prevalence
and bacteria colonization with US suburban
children

Age-matched children living in a suburban US community (see

Methods) were just as likely as rural Ugandan children from this

study to have PCR-positive viral infections when they

experienced respiratory symptoms (OR: 2.2 vs. 2.3; see Figure 1).

However, the Ugandan children had frequencies of nonviral

colds two times higher than the US children (50.2% vs. 25.3% of

samples). Prevalence of all three bacterial species was

significantly higher in the Ugandan children (Hflu: X2 = 151.0,

p < 0.0001; Mcat: X2 = 154.2, p < 0.0001; Spn: X2 = 17.4,

p < 0.0001) than in the virus-negative US children (Table 4).

While nearly a third (32.9%) of the virus-negative US

children were PCR-negative for all three pathobionts, no

Ugandan children similarly tested triple-negative (Table 5).
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If the US children tested positive for any bacteria, the most

commonly detected was S. pneumoniae (25.3%), whereas

S. pneumoniae only was the least common detection (0.8%) in

the Ugandan children (Table 5).
4 Discussion

In this study of respiratory illness in rural Western Uganda,

people were 2.3 times more likely to test PCR-positive for at least

one of 17 common respiratory viruses if they were experiencing

respiratory symptoms than if they felt healthy. However, 50.2%

of all nasopharyngeal swabs, including 75.8% of swabs collected

during symptomatic disease, tested PCR-negative for respiratory

viruses (S+/V-), which was confirmed by metagenomic

sequencing for a subset of samples with high symptoms scores.

We then tested S+/V- samples for the respiratory pathobionts

H. influenzae, M. catarrhalis, and S. pneumoniae and found that

all child participants tested positive for at least one bacterial

species, with coinfections of all three species as the most

common presentation (70.4% of swabs). These children had

much higher prevalence rates and levels of these bacteria than

adults as well as much higher prevalence rates compared to age-

matched children living in the suburban US community of

Madison, Wisconsin. Adults tested positive for each of the three

pathobionts, although detection rates in adults were much lower

than in children.
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FIGURE 3

CXCL10 expression levels quantified by Ct values for (A) virus-
positive (n= 100) vs. virus-negative (n= 132) people, as diagnosed
by multiplex PCR panel, (B) no symptoms (n= 23) vs. moderate-
to-severe symptoms (n= 209), as measured by symptoms scores
(SS), and (C) symptoms-negative/virus-negative (S-/V-) (n= 23),
symptoms-positive/virus-negative (S+/V-) (n= 109), and
symptoms-positive/virus-positive (S+/V+) (n= 100) people.

FIGURE 4

Levels of (A) Haemophilus influenzae (Hflu), (B) Moraxella catarrhalis
(Mcat), and (C) Streptococcus pneumoniae (Spn) in nasopharyngeal
swabs of virus-negative adults (n= 30) and children (n= 125).

Weary et al. 10.3389/fped.2024.1379131
The prevalence of nonviral colds was much higher in our study

(50.2%) in rural Western Uganda than recorded elsewhere in the

world. Nonviral colds accounted for 22% of samplings in the

Tecumseh study, a seminal respiratory disease cohort study

performed in the US in the 1960s (2, 47), as well as 31% of

samplings in Finland in the 1990s (4). Despite using the same

diagnostic methods as in this study, nonviral colds only

accounted for 25.3% of samplings among age-matched children
TABLE 2 Prevalence of respiratory pathobionts Haemophilus influenzae,
Moraxella catarrhalis, and Streptococcus pneumoniae detected in
nasopharyngeal swabs of virus-negative adults (n = 30) and children
(n = 125).

Bacteria Adults n (%) Children n (%)
Haemophilus influenzae 30 (10.0) 109 (87.2)

Moraxella catarrhalis 11 (36.7) 121 (96.8)

Streptococcus pneumoniae 4 (13.3) 97 (77.6)

Totals do not add up to sample sizes due to coinfection in some individuals (see

Table 3).
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in Madison, Wisconsin, in the RhinoGen study (10). It has been

argued that purportedly nonviral colds may be caused by viruses

yet to be identified (48), especially after the discoveries of human

metapneumovirus (49) and human bocavirus (50) in the past 20

years. However, we did not find any novel viruses in these

samples using metagenomic DNA sequencing, a technique our

group has used extensively to identify novel infectious agents in

a variety of host species (38, 51, 52).

On average, S+/V- samples had lower CXCL10 expression than

S+/V+ samples, concurring with current understanding that

CXCL10 expression is increased significantly during

inflammation induced by viral infection (11), including by

respiratory viruses such as rhinovirus (53), respiratory syncytial

virus (54), and coronaviruses (55). However, CXCL10 expression

is not always specific to viral infection, as evidenced by the S

+/V- samples that also had higher CXCL10 expression than

S-/V- samples, despite testing negative for viruses by multiplex

PCR panel and metagenomic sequencing. Indeed, CXCL10

expression has been demonstrated to increase in response to

infection with bacterial and protozoal infections common in

Uganda, such as tuberculosis (56), scrub typhus (57), malaria
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TABLE 3 Respiratory pathobiont coinfection in adults (n = 30) and
children (n = 125).

Bacteria Adults n (%) Children n (%)
Haemophilus influenzae only 1 (3.3) 2 (1.6)

Moraxella catarrhalis only 9 (30.0) 8 (6.4)

Streptococcus pneumoniae only 2 (6.7) 1 (0.8)

Hflu +Mcat 0 (0.0) 18 (14.4)

Hflu + Spn 0 (0.0) 1 (0.8)

Mcat + Spn 0 (0.0) 7 (5.6)

Hflu +Mcat + Spn 2 (6.7) 88 (70.4)

None 16 (53.3) 0 (0.0)

Hflu =Haemophilus influenzae; Mcat =Moraxella catarrhalis; Spn = Streptococcus

pneumoniae.

TABLE 4 Prevalence of respiratory pathobionts Haemophilus influenzae,
Moraxella catarrhalis, and Streptococcus pneumoniae detected in nasal
samples of age-matched, virus-negative Ugandan children (n = 125) and
US children (n = 289).

Bacteria Ugandan childrena

n (%)
US children

n (%)
Haemophilus influenzae 109 (87.2) 63 (21.8)

Moraxella catarrhalis 121 (96.8) 86 (29.8)

Streptococcus pneumoniae 97 (77.6) 160 (55.4)

aValues identical to Table 2.
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(58), and leishmaniasis (59), as well as in noninfectious

inflammatory disorders, such as asthma (60) and chronic

obstructive pulmonary disorder (COPD) (61). We therefore

explored nonviral causes of S+/V- illnesses in our data set.

Carriage of respiratory pathobionts H. influenzae,M. catarrhalis,

and S. pneumoniae was ubiquitous among young children

experiencing nonviral colds in our study; 100.0% of S+/V- swabs

from children tested positive for at least one species. Although the

goal of the current study was to elucidate causes of nonviral colds,

previous studies have shown that pathobiont carriage increases with

respiratory viral infections (10, 22) and data for this population in

future studies would be a valuable comparison. For each bacterial

species, detection rates were much higher than those among

children in Madison, Wisconsin, using the same qPCR methods as

this study (10). There is growing evidence that pathobiont carriage

rates among children differ geographically (62) and by

socioeconomic status (63). For example, rates were similar to those
TABLE 5 Respiratory pathobiont coinfection in nasal samples of age-
matched, virus-negative Ugandan children (n=125) and US children (n=289).

Bacteria Ugandan childrena

n (%)
US children

n (%)
Haemophilus influenzae only 2 (1.6) 13 (4.5)

Moraxella catarrhalis only 8 (6.4) 19 (6.6)

Streptococcus pneumoniae only 1 (0.8) 73 (25.3)

Hflu +Mcat 18 (14.4) 2 (0.7)

Hflu + Spn 1 (0.8) 22 (7.6)

Mcat + Spn 7 (5.6) 39 (13.5)

Hflu +Mcat + Spn 88 (70.4) 26 (9.0)

None 0 (0.0) 95 (32.9)

Hflu =Haemophilus influenzae; Mcat =Moraxella catarrhalis; Spn = Streptococcus

pneumoniae.
aValues identical to Table 3.
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measures elsewhere in Sub-Saharan Africa among Gambian

neonates (64) as well as HIV-positive children living in Tanzania

(65) and Ethiopia (66). Seasonality did not appear to affect

pathobiont carriage, as has been reported in other studies (67–69),

in which rates were inversely proportional to temperature with a

peak during winter months. However, these studies all took place in

temperate regions of the US where seasonality is more pronounced.

It is possible that patterns of respiratory pathobiont colonization are

more variable in tropical regions, similar to patterns described for

respiratory viruses (70, 71).

Pathobiont colonization was not associated with increased

symptoms severity, in contrast to previous studies (16, 22).

Because children in this study reported experiencing respiratory

symptoms during 80.3% of samplings and adults reported

symptoms only 26.6% of the time (9), it is possible we did not

have the statistical power to differentiate symptoms status by

colonization status. In fact, we assayed every sample from children

with no symptoms and adults with at least moderate symptoms

(symptoms scores > 4) and we still failed to detect significant

differences between these groups and the more common

symptomatic children and asymptomatic adults, respectively.

Mechanisms explaining the observed association between

pathobiont colonization and respiratory symptom severity in our

study cohorts therefore remain unknown. Nonetheless, high

pathobiont detection rates in early childhood have well known

associations with clinically significant conditions, such as acute

otitis media, sinusitis, pneumonia, and asthma (16). Children in

this population may be at increased risk for these conditions.

Future studies should investigate pathobiont diversity measures

(e.g., alpha and beta diversity) and Th1 cytokine pathways beyond

CXCL10 to further characterize the relationship between

colonization with these bacteria and airway inflammation.

Although adults had much lower frequencies of respiratory

pathobiont colonization than children, these frequencies, especially

for M. catarrhalis, were still higher than those recorded elsewhere,

including among healthy adults in England (72) and adults with

COPD in the US (17). In fact, M. catarrhalis, H. influenzae, and

S. pneumoniae cause approximately half of COPD exacerbations

among adults (18). Chronic bacterial colonization in the

respiratory tract leads to sloughing of highly immunogenic cell

wall antigens that leads to the hallmark airway inflammation of

COPD (18). COPD is a growing problem across Sub-Saharan

Africa and is expected to overtake HIV/AIDS as the leading cause

of death in this region by 2030 (73). In previous study in Uganda,

place of residence (rural vs. urban) was the most significant

determinant of COPD diagnosis, with COPD being more

prevalent in rural areas (74). Asymptomatic carriage of these

bacteria, however, is common among adults (18) and children (75,

76). Thus, PCR positivity should not be used exclusively to

diagnose COPD in study participants, although we suspect it may

contribute to the high prevalence of nonviral respiratory illnesses.

Other potential causes of nonviral colds in children and adults

include allergic rhinitis, asthma, or air pollutant exposure.

Respiratory allergies can also provoke non-infectious nasal and

chest symptoms in children, but is an unlikely explanation for

symptoms in Uganda, where the prevalence of allergic rhinitis is
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<5% (77). Evidence from other studies suggests that asthma may be

underdiagnosed in Uganda, both in young children (78) and adults

(79). Critically, however, both indoor and outdoor air pollution in

Western Uganda regularly exceed levels deemed unsafe by the

WHO by four to six times (80). Annual mean PM2.5

concentrations in the Western Uganda region measure in the top

quintile for the country (27). Smoke and carbon monoxide from

indoor charcoal-fueled cookstoves used in the area may contribute

to respiratory disease symptoms (29), including asthma in children

(81) and COPD exacerbations in adults (73). This association is

not unique to Uganda or Sub-Saharan Africa. In urban areas of

the US, spikes in air pollutants similarly can produce upper and

lower respiratory illnesses in children (82). Air pollution also

exacerbates COPD in adults all over the world (83). We advocate

for mitigating exposure to non-infectious respiratory disease

factors that are prevalent in rural Uganda, such as indoor biomass

smoke and outdoor air pollution from vehicles, industrial and

agricultural practices, or fires (84).

In summary, our findings demonstrate that people living in rural

Western Uganda experience high frequencies of nonviral colds.

Although we detected high detection rates of respiratory bacteria,

especially in children, carriage was not associated with increased

cold symptoms severity. However, this may be due to the low

number of children not reporting any respiratory symptoms in the

study. Our data do not support treatment of these bacteria as a

way to reduce the frequency and severity of nonviral colds in this

population. Although there is evidence that azithromycin reduces

wheezing illness in babies and preschool-aged children (85, 86),

suggesting a relationship between wheezing and airway bacteria

dysbiosis (87), serious risks include antimicrobial resistance, killing

healthy microbes, drug costs, and potential side effects. Antibiotic

therapy therefore is not advised in uncomplicated colds.

Vaccinations against these pathobionts are either already in use

for S. pneumoniae (PCV13) (88) or in development for M.

catarrhalis and non-typeable H. influenzae (89). Since they were

first licensed in 2000, pneumococcal conjugate vaccines have

altered population-level detection rates of non-vaccine type S.

pneumoniae (90), H. influenzae (91, 92), and M. catarrhalis (91).

Although the current study is limited by a lack of individual

participant health and demographic information, such as age and

immunization status, due to required data de-identification,

differential immunization rates between the US and Uganda could

explain the differences in pathobiont colonization we observed

between the two populations compared here. Indeed, childhood

immunization rates are currently “suboptimal” in Uganda (93).

For example, Uganda introduced PCV10 in 2013, later than

neighboring Kenya (2011), Tanzania (2013) or Rwanda (2010),

after experiencing funding challenges that hindered vaccine rollout

and health worker training (94, 95). In July 2023, the official

Ugandan government estimate for full three-dose PCV coverage

was 90% [at the time of the RhinoGen study, PCV coverage in the

US was 93% after introduction in 2000 (96)], but the Ugandan

figure was disputed by the WHO and UNICEF estimates of

national immunization coverage (WUENIC) because no nationally

representative household survey had been conducted in the

previous five years (97). Closing this gap in vaccine uptake
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presents an opportunity for increasing protection against

respiratory illnesses and their sequelae in Ugandan children.

Incidentally, our study occurred before, during, and after the

emergence of COVID-19 in Uganda. We documented that the

proportion of S+/V- samples decreased sharply during the most

stringent part of COVID-19 lockdown in Uganda from March to

September 2020, mirroring a drop in respiratory viral illnesses

observed around the world during the same period (98). The

decrease in nonviral colds we observed may have been associated

with nonpharmaceutical interventions relied upon before the

introduction of COVID-19 vaccines that would have protected mask-

wearers from inhaling noxious particulate matter (99) and children

staying home from school from pathobiont transmission (100).

Lockdown had many deleterious social and economic effects across

Sub-Saharan Africa due to lost social safety nets, daily wages, and

educational opportunities (101–103). However, our findings support

the fact that there were significant improvements to respiratory

health in rural Uganda, particularly among children. Therefore,

future public health policy measures should build upon these gains

by exploring strategies that are more sustainable in the long-term. For

example, based on the results of this study, the local government

health office has changed its clinical response to respiratory disease in

our study population by reducing overcrowding in primary school

classrooms and laying cement over dirt floors to avoid particulate

inhalation. We hope this study continues to serve as a model of how

such research can have clinical implications and result in direct,

meaningful, and specific changes in practice.
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