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Despite the global improvements in neonatal outcomes, mortality and morbidity
rates among preterm infants are still unacceptably high. Therefore, it is crucial to
thoroughly analyze the factors that affect these outcomes, including sex, race,
and social determinants of health. By comprehending the influence of these
factors, we can work towards reducing their impact and enhancing the quality
of neonatal care. This review will summarize the available evidence on sex
differences, racial differences, and social determinants of health related to
neonates. This review will discuss sex differences in neonatal outcomes in part
I and racial differences with social determinants of health in part II. Research
has shown that sex differences begin to manifest in the early part of the
pregnancy. Hence, we will explore this topic under two main categories: (1)
Antenatal and (2) Postnatal sex differences. We will also discuss long-term
outcome differences wherever the evidence is available. Multiple factors
determine health outcomes during pregnancy and the newborn period. Apart
from the genetic, biological, and sex-based differences that influence fetal and
neonatal outcomes, racial and social factors influence the health and well-
being of developing humans. Race categorizes humans based on shared
physical or social qualities into groups generally considered distinct within a
given society. Social determinants of health (SDOH) are the non-medical
factors that influence health outcomes. These factors can include a
person&apos;s living conditions, access to healthy food, education,
employment status, income level, and social support. Understanding these
factors is essential in developing strategies to improve overall health outcomes
in communities.
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Despite the global improvements in neonatal outcomes, mortality and morbidity rates

among preterm infants are still unacceptably high. Therefore, it is crucial to thoroughly

analyze the factors that affect these outcomes, including sex, race, and social

determinants of health. By comprehending the influence of these factors, we can work

towards reducing their impact and enhancing the quality of neonatal care. This review

will summarize the available evidence on sex differences, racial differences, and social

determinants of health related to neonates. This review will discuss sex differences in
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neonatal outcomes in part I and racial differences with social

determinants of health in part II.

Method of Review: The authors reviewed published literature

on sex-based differences related to the specific items of interest

discussed in the manuscript. They did a comprehensive review

and synthesis of available information. The authors’ consensus

on the inclusion and exclusion of available information pertinent

to the focus of this non-structured review was based on this.
Part I. Sex Differences in Neonatal
Outcomes

It is widely acknowledged that there are differences in

outcomes between male and female neonates. However, research

has shown that sex differences begin to manifest in the early part

of the pregnancy. Hence, we will explore this topic under two

main categories: (1) Antenatal and (2) Postnatal sex differences.

We will also discuss long-term outcome differences wherever the

evidence is available.
Antenatal outcomes

Considerable information on sex differences in human

pregnancy is accumulating rapidly. This review cannot present all

the available evidence. However, we will primarily focus on how

fetal sex can affect maternal outcomes and how maternal

conditions and toxins can affect the sexes differently.

Effect of fetal sex on maternal outcomes
The genetic or gonadal sex of the fetus has several ramifications

that extend beyond the complications of the pregnancy. The sex of

the fetus not only determines its own outcome but may impact the

mother’s as well. A few studies have found that pregnant females

carrying a male fetus had a higher risk of developing gestational

diabetes mellitus (GDM) and higher postprandial glycemia

compared to females carrying a female fetus [odds ratio: 1.39

(95% CI: 1.01–1.90)] (1, 2). Similarly, in a study of 108,995

deliveries in Israel, investigators in their retrospective analysis

found that pregnant females with a male fetus had a higher

incidence of GDM than if carrying a female fetus [unadjusted

OR: 1.1 (95% CI: 1.01–1.12)] (2) Thus, the fetus can influence

maternal metabolism. Preterm pre-eclampsia was found to be

more prevalent in females carrying female fetuses than males (3).

Others have reported slight male preponderance in term and

post-term pre-eclampsia. Some speculate that pregnancies with a

male embryo are susceptible to poor placentation, whereby the

pregnancies with a male embryo that are prone to developing

pre-eclampsia due to diminished placentation may have already

been aborted during the first trimester. The male fetuses that

survive the period of placentation are, therefore, expected to

represent a comparatively healthy group of fetuses, leading to a

higher incidence of pre-eclampsia among females (4). On similar

lines, preterm birth, for which placental insufficiency is one of

the important causes, is also common with male fetuses.
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It is argued that conceiving more sons is energy expensive for

mothers than having daughters. Observational studies in

Scandinavia during the pre-industrial era showed that maternal

longevity did not correlate with the total number of children.

However, giving birth to sons compared to daughters

significantly shortened mothers’ lifespan (5). Similarly, mothers

reported more health issues in post-reproductive age if they had

more sons than daughters. Each son increased the odds of health

issues by 11% (6).

Basis for antenatal sex differences
Sex chromosomes and sex hormones play different roles at

various stages of gestation, contributing to sex differences.

Early human embryo studies suggest X chromosome

inactivation occurs in female embryos around 12 days to a month

post-fertilization. However, X-linked transcripts are expressed

2-fold higher in females before X chromosome inactivation.

Some studies suggest that differences in preimplantation growth

may be because of the X chromosome. Sex differences in fetal

development during the first trimester are most likely caused by

the expression of genes on the sex chromosomes or other

effects related to the sex chromosomes. This is because the

production of sex steroid hormones in the fetus begins later in

the first trimester (7).

The fetal testis secretion of testosterone is essential for male

gonadal tract formation and defeminization and masculinization

of male fetal brains. The testosterone secretion from fetal Leydig

cells begins around 8–10 weeks of gestation and peaks at post-

pubertal levels by 16 weeks (8). Male fetuses exhibit higher

testosterone levels between 12 and 16 weeks of gestation,

contributing to sex-specific phenotypic differences such as rapid

growth of external genitalia (9).

Both sexes are exposed to estrogens throughout the pregnancy,

and deficiency of estrogens was not found to affect fetal growth. No

sex differences were noted with prenatal levels of estrone, estradiol,

Estriol, and dehydroepiandrosterone (9, 10). The hypophyseal

portal system is well developed by 18 weeks and begins releasing

hormones to the anterior pituitary (11). However, the human

placentas can synthesize androgens and testosterone by the first

trimester, and the early sex hormone effect is likely from the

placental origin (12). Studies have shown that placental

biomarkers such as placental growth factor and plasminogen

activator inhibitor were significantly increased in females

carrying female fetuses, suggesting a more vascularized placenta

throughout pregnancy in uncomplicated pregnancies (7).

Fetal growth
The differences in fetal growth are described with higher

growth rates in male fetuses (7). The differences in growth

become marked by the second trimester. Please refer to a more

extensive review on sex differences in prenatal growth published

previously (13).

Effect of twin gestation: According to research, male/male vs.

female/female twin gestation and male/female twin gestations can

lead to different outcomes. A registry-based cross-sectional

multicenter study conducted in Japan analyzed 23,804 females
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with dichorionic diamniotic (DD) twins and 14,149 females with

monochorionic diamniotic (MD) twins (14). According to the

study, females who had male/male DD twins were at a higher

risk of preterm birth (adjusted risk ratio [aRR]: 1.07, 95%

confidence interval [CI]: 1.03–1.10) and a lower risk of

preeclampsia (aRR: 0.74, 95% CI: 0.62–0.88) when compared to

females who had female/female DD twins. Similarly, females with

male/male MD twins had a higher risk of preterm birth (aRR:

1.06, 95% CI: 1.04–1.09) than females with female/female MD

twins. Additionally, male small for gestation (SGA) risk was

significantly higher among male/male twins than male/female

DD twins. Among MD twins, the risks of SGA and fetal death

were significantly higher in male/male fetuses. There was a

marked difference between fetal males and females in their

growth trajectory for fetal head measurements. Hence, using sex-

specific fetal growth charts is essential for accurate second-

trimester dating.
Sexual dimorphic effects of maternal conditions
Adverse maternal conditions affect male and female fetuses

differently. Overall, female fetuses appear to be favored to survive

the suboptimal intrauterine conditions.

(a) Asthma: If a woman experiences mild asthma during

pregnancy, it may affect the growth of her female fetus but

not enough to cause intrauterine growth restriction (IUGR).

However, male fetuses can develop strategies that help them

grow normally, even in adverse intrauterine conditions.

Nevertheless, this makes them vulnerable to potential health

risks in case of a second stressful event, such as an acute

asthma attack. On the other hand, females tend to adapt to

a poor intrauterine environment caused by chronic maternal

asthma by reducing their growth. As a result, they become

smaller but not IUGR. This adaptation helps them survive

further compromises in the intrauterine environment, such

as lack of oxygen or nutrition, as the pregnancy progresses

(15). Similar sex-specific growth strategies are reported with

mild pre-eclampsia as well.

(b) Immune response: Sex-specific fetal immune responses have

been observed. The Alabama Preterm Birth Study noted that

male infants born 23–32 weeks gestation were likelier to

have positive placental cultures than female infants [63.4%

vs. 51.8%, p = .01, with an odds ratio: 1.5, (95% CI): 1.0–2.4]

(16). The authors noted higher rates of chronic decidual

inflammation in the placentas in male infants. Similarly,

Ghidini et al. reported chronic decidual inflammation in the

placentas with male infants at the interface between

interstitial trophoblast and maternal decidua (17). They

speculated that maternal immune response varies with the

sex of the fetus. Investigators found differences in placental

gene expression and antibody transfer in response to

maternal SARS-CoV-2 infection based on sex. Maternal

SARS-CoV-2 infection has been found to result in reduced

levels of SARS-CoV-2-specific IgG in mothers, especially

when the fetus is male. In male fetuses exposed to SARS-

CoV-2, there is a decrease in the transfer of SARS-CoV-2-
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specific antibodies from the placenta. Although placental Fc

receptors are up-regulated, IgG levels against SARS-CoV-2

antigens are significantly lower in cord blood of male fetuses

than in maternal plasma. By contrast, pregnancies with

female fetuses exhibit no significant difference in IgG titers

between cord blood and maternal plasma. This may be

attributed to the male fetus’s inability to overcome the

reduced maternal titers. These findings provide insights into

the altered maternal-placental-fetal immune crosstalk in the

presence of viral infection during pregnancy, with fetal sex

playing a crucial role in modifying maternal humoral

responses (18). Animal studies have reported that group B

strep-induced immune signaling involved significantly

higher cytokine levels in male maternofetal tissues than in

females (19). However, investigators in South Africa looked

at the sex-specific differences in in-utero HIV infection and

reported that female fetuses had 1.5–2-fold increased

susceptibility to intrauterine HIV infection (20). Maternal

stress, in general, causes sexually dimorphic responses in the

offspring. Males tend to have a higher incidence of autism

spectrum disorders, whereas females experience more

depression. A prospectively analyzed data from more than

15,000 pregnancies followed over 40 years showed that

maternal bacterial infections were associated with a higher

incidence of psychosis in males than in females (21). It is

suggested that the observed higher levels of proinflammatory

cytokines in male fetuses compared to female fetuses in

response to bacterial endotoxins may explain why male

fetuses are prone to psychosis later in life, given the fact

that proinflammatory cytokines have long been implicated

in schizophrenia and other psychotic disorders (21).

However, the specific mechanism for why males are

susceptible is unclear as human evidence is still evolving.

It has been shown that exposure to proinflammatory cytokines

in utero was significantly associated with male and female

differences in brain activity and connectivity measured 45 years

later using negative, stressful stimuli and brain MRI responses

(22). The study results indicated that lower levels of maternal

TNF-α were associated with increased hypothalamic activity in

response to negative stimuli in male and female offspring.

Typically, the hippocampus provides negative feedback to the

hypothalamus in response to negative, stressful stimuli, enabling

the hypothalamic-pituitary axis to inhibit corticotropin-releasing

hormone release and regulate arousal due to stress. With higher

TNF-α (proinflammatory): IL-10 (anti-inflammatory) exposure,

males had lower connectivity between the hypothalamus and

hippocampus and thus less ability to inhibit the higher activity of

the hypothalamus by the hippocampus. Females who were

exposed to higher levels of TNF-α:IL-10 showed increased

connectivity between the hippocampus and hypothalamus.

However, they also had lower hippocampal activation, which

reduced their ability to down-regulate hypothalamic arousal and

potentially corticotropin-releasing hormone release. It is

noteworthy that the dysregulation pattern differed in male and

female offspring. Females had higher hippocampal activity with
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elevated prenatal IL-6 levels. The data suggests that male fetuses

bias the maternal immune response toward a Th1 inflammatory

response, while female fetuses can trigger a more regulatory Th2-

like maternal immune response (12, 23).

Sexual dimorphic effects of environmental toxins
Antenatal exposure to environmental toxins also has

differential effects based on sex. Emerging evidence suggests that

female fetuses are more tolerant of exposure to intrauterine

toxins. In a prospective study conducted in Cincinnati, male

infants exhibited a more significant neurobehavioral deficit at six

months in response to fetal exposure to lead, as assessed by

maternal blood (24). In another study, prenatal lead exposure

was linked with lower cognitive function in males (Spearman

correlation coefficient =−0.239, p = 0.0007), but not in females

(25). Methyl mercury exposure antenatally also showed sex-

specific effects. Males were significantly more affected than

females in childhood (26, 27). Males were noted to manifest

more ADHD-related behaviors than females following antenatal

mercury exposure (28). Many of these substances are considered

endocrine disruptors causing sex-specific effects.

A prospective study from China found that maternal arsenic

levels were associated with specific adverse birth outcomes only

in females during the third trimester. Doubling of 3rd-trimester

arsenic levels was linked to a decrease of 37.66 g (95% CI:

−71.57, −3.75) in birth weight, a decrease of 0.19 cm (95% CI:

−0.32, −0.06) in birth length, and a 34% increase in the risk of

SGA (95% CI: 1.03, 1.73) in females (29).

Following antenatal exposure to opioids such as methadone

and buprenorphine, males manifested more severe symptoms

than females postnatally (30, 31). Interesting observations were

noted with maternal smoking. Smoking ½ packet per day

resulted in smaller weight and head circumferences in males than

in females (32). In a study involving 454 infants, antenatal

smoking exposure specifically was associated with lower levels of

social-approach-related behavior, gross motor movement,

reactivity, and attention in male infants (33). These effects may

be related to differential activation of the hypothalamic–

pituitary–adrenal (HPA) axis, as evidenced by lower salivary

cortisol levels in males exposed to maternal tobacco than in the

control males. Such an effect was not noted in females (34).
Postnatal outcomes

Evolving evidence suggests sex differences in postnatal

complications among preterm and term infants (Table 1). We

provide a summary of the current evidence based on the

affected systems.

Central nervous system
Short term
One of the significant risk factors for poor long-term

neurodevelopmental outcomes is brain injury in the neonatal

period in the form of Neonatal Encephalopathy, Intraventricular

Hemorrhage, or white matter injury, to name a few.
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Intra-ventricular hemorrhage (IVH)
While the percentage of infants with Severe Intraventricular

Hemorrhage (sIVH, grade III and IV IVH) has shown a

decreasing trend over time (57), a recent review showed a

worldwide incidence of 6%–10% among infants born at less than

28 weeks gestational age (58). Incidence and severity of

intraventricular hemorrhage are known to be higher in preterm

males across birth weight categories (RR: 1.271, 95% CI: 1.207–

1.338, p < 0.001) (35, 36). Multiple theories have been proposed

to explain this sexual dimorphism, one of which is a finding of

increased cerebral blood flow and increased cerebral

vasoreactivity to carbon dioxide levels in males (59, 60). Another

proposed mechanism of increased male susceptibility to brain

injury could be a difference in the immune response to injury

between males and females (61). Fine et al. (62) noted a sex

difference in the inflammatory response, with males

demonstrating a heightened response to endotoxin stimulation.

The X chromosome plays a crucial role in immune modulation

by encoding several immune-related genes that may confer a

female advantage. The Interleukin 1 Receptor Associated Kinase

1 (IRAK1) gene and Toll-like receptor 4 (TLR4) gene are a few

examples that are expressed differently in females as compared to

males and are critical in regulating immune responses to

pathogens (63, 64). Animal studies have also demonstrated

increased susceptibility of the male preterm brain to injury

secondary to differences in in-utero intracerebral sex hormone

levels (65). The degree of response to therapies and methods of

preventing IVH has also been noted to vary based on sex. Ment

et al. (37) studied the effect of prophylactic indomethacin in 432

very low birth weight infants and found a significant reduction

in incidence and severity of IVH in male infants as compared to

saline controls (RR = 0.34, p = 0.007) but found no change in

IVH rate or severity in females. However, a secondary analysis of

the 558 infants enrolled in the Trial of Indomethacin in Preterm

Infants (TIPP) (66) found only a weak differential in response by

sex (p = 0.29) (67). Antenatal steroids were also noted to produce

a more significant reduction in the incidence of IVH in females

as compared to males. However, both sexes benefited

significantly from antenatal steroid exposure (incidence of IVH

10.9% vs. 13.9%, p < 0.001) (68).

Retinopathy of prematurity (ROP)
The incidence of retinopathy of prematurity among infants born

between 22 and 28 weeks gestational age remains 12.8% (69).

Males are more likely to be screened for Retinopathy of

Prematurity (ROP), and a higher percentage of male infants are

treated for ROP as compared to female infants (55%, 95% CI:

52–58%) (43). Males are also at higher risk of having severe ROP

(RR: 1.14, 95% CI: 1.07–1.22) (36, 44), suggesting that males are

at higher risk of progression of ROP. This difference could, in

part, be explained by the greater antioxidant capacity of female

infants, both at the cellular level, wherein mitochondria from

female cells produced fewer superoxide radicals than those of

males (70), and at the metabolic level, wherein female infants

had a more robust superoxide scavenging system, especially the

glutathione pathway (71). Besides this, it is well established that
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TABLE 1 Summary of sex-differences in postnatal complications.

Postnatal complications Outcomes in males vs. females
Intraventricular Hemorrhage Higher in preterm males across birth weight categories (RR: 1.271, 95% CI: 1.207–1.338, p < 0.001) (35, 36). Significant reduction with

prophylactic indomethacin in incidence and severity of IVH in male infants as compared to saline controls (R = 0.34, p = 0.007), but no
change in IVH rate or severity in females (37).

Hypoxic Ischemic
Encephalopathy

Significant but modest male predominance in a global metanalysis of incidence of Intrapartum HIE (58.7%, 95% CI: 55.6–61.8) (38). Animal
studies have shown that males tend to have worse outcomes associated with HIE than females (39). Post hoc analysis of the data from the
Hypothermia trial (40) failed to show a sexual dimorphism in the treatment effect of hypothermia in infants with moderate or severe
neonatal encephalopathy (41).

Neonatal Abstinence Syndrome Male infants were more likely to be diagnosed with NAS than females [adjusted odds ratio: 1.18 (95% confidence interval: 1.05–1.33)] and
more likely to have NAS requiring treatment [adjusted odds ratio: 1.24 (95% confidence interval: 1.0401.47)] (42).

Retinopathy of Prematurity Males are more likely to be screened for Retinopathy of Prematurity (ROP), and a higher percentage of male infants are treated for ROP as
compared to female infants (55%, 95% CI: 52–58%) (43). Males are also at higher risk having severe ROP (RR: 1.14, 95% CI: 1.07–1.22) (36,
44), suggesting that males are at higher risk of progression of ROP.

Neurodevelopmental
Impairment

Male sex has been identified in multiple studies as an independent risk factor for poor neurodevelopmental outcomes, including cerebral
palsy (45–47), with Chounti et al. finding that males have a 30% higher incidence (95% CI: 11%–53% p = 0.002) of CP.

Respiratory Distress Syndrome Male infants born preterm are at increased risk of RDS as compared to females (RR = 1.090, 95% CI: 1.042–1.140, p < 0.001) (36), as well as
increased severity of RDS (48) with more males born <29 weeks gestational age requiring mechanical ventilation and surfactant therapy in
the first 6 h of life as compared to females (60.8% males vs. 46.2% females, p = 0.026).

Bronchopulmonary Dysplasia BPD was found to be more common in males than in females among infants born at 24–27 weeks (p < 0.001) but not significantly different
among males and females born at 22–23 weeks (49). In infants with established BPD, there was no sex-related difference in rates of
mechanical ventilation at 36 weeks (males 5.23%, females 3.6%), with OR = 1 for death or tracheostomy for male-to-female infants (95% CI:
0.7–1.5) (50).

Patent Ductus Arteriosus No significant sex-related difference in the risk of developing any PDA (37 studies, RR: 1.03, 95% CI: 0.97–1.08), risk of hemodynamically
significant PDA (81 studies, RR: 1.00, 95% CI: 0.97–1.02), or rate of response to pharmacological treatment of PDA (45 studies, RR: 1.01,
95% CI: 0.98–1.04) (51).

Hypotension In infants <1,000 grams birth weight, males were at higher risk of requiring inotropic support in the first 4 days of life as compared to females
(67.1% vs. 50.6%, p < 0.05), had lower mean arterial blood pressure in the first 12–24 h of life (25 vs. 28, p < 0.05), and were more likely to
develop “resistant hypotension” defined as the need for dobutamine or hydrocortisone in addition to volume and dopamine to treat
hypotension (25.9 vs. 11.5, p < 0.05) (48).

Sepsis Male infants were at a significantly greater risk of late-onset sepsis as compared to female infants (R = 1.051, 95% CI: 1.026–1.077, p < 0.001)
(36). Male sex was an independent risk factor for early onset sepsis (RR = 2.7, 95% CI: 2–5) (52). Estradiol inhibits the stimulatory effect of
LPS (Lipopolysaccharide) on the Hypothalamic-Pituitary Axis (HPA) in adult females (53), and Estriol sensitizes Kupffer cells to LPS (54),
both of which are theorized to be the explanation for the sex-based difference in risk of neonatal sepsis.

Necrotizing enterocolitis Among infants born between 22 and 29 weeks gestational age, males had a significantly higher rate of NEC than females (10.1% vs. 8.4%,
AOR = 1.2, 95% CI: 1.17–1.24) (55). Among infants with a diagnosis of NEC, female sex was associated with a 3-fold increase in risk of
mortality (56).
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preterm male infants are more likely to require intubation at birth,

need higher and more prolonged respiratory support, and are at

higher risk of other preterm morbidities such as sepsis and

Necrotizing Enterocolitis (NEC) (36), all of which increase their

risk of progression of ROP.

Hypoxic-ischemic-encephalopathy (HIE)
Hypoxic Ischemic Encephalopathy is a brain injury that is caused

by inadequate blood supply to the brain as a result of a hypoxic-

ischemic event that occurs during the perinatal period (72). The

prevalence of HIE in term and late preterm infants in the United

States remains approximately 1 per 1,000 live births (73). Animal

studies have shown that males have worse outcomes associated

with HIE than females. In a term rodent model of HIE, female

mice were less likely to develop seizures and had a smaller

infarct size as compared to male mice on day 3, along with lower

inflammatory cell infiltrate in the brain as compared to male

mice (39). This could be explained by recent studies suggesting

that the primary apoptotic pathway in males, the Apoptosis-

Inducing Factor (AIF) pathway, is more easily triggered by

inflammatory stimuli than the caspase-3 pathway, which is

predominant in females (74). In contrast to most recent human

studies, Lee et al. (38) did show a significant but modest male

predominance in a global metanalysis of the incidence of
Frontiers in Pediatrics 05
Intrapartum HIE (58.7%, 95% CI: 55.6–61.8). One possible

explanation for the lack of any sex difference in treatment in

more recent human studies could be inadequate sample size (41).

Therapeutic hypothermia
Post hoc analysis of the data from the Hypothermia trial (40) failed

to show sexual dimorphism in the treatment effect of hypothermia

in infants with moderate or severe neonatal encephalopathy (41).

However, in animal studies conducted by Wood et al. (75), they

found that hypothermia conferred a significantly more significant

benefit in female animals as compared to male animals (median

difference in area of brain loss between normothermia group and

hypothermia group was 11.1% in females and 3.2% in males,

p < 0.001). They postulated that this difference in the degree of

benefit from hypothermia might be because hypothermia

primarily suppresses the classical caspase-dependent apoptotic

pathway, which is the dominant pathway of cell death in females,

as compared to males, in whom the dominant pathway of cell

death is caused by cellular depletion of NAD+ due to activation of

PARP-1[poly(ADP-ribose)polymerase1] (76). Per Zhou et al. (77),

“One reason for the lack of any obvious sex effects in humans

and large animals may be that hypothermia suppresses a rather

broad range of mechanisms of cell death (78), and so offers

correspondingly broad protection between males and females.”
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Neonatal abstinence syndrome (NAS)
The incidence of Neonatal Abstinence Syndrome in the United

States increased from 4.0 per 1,000 live births in 2010 (95% CI:

3.3–4.7) to 7.3 per 1,000 live births in 2017 (95% CI: 6.8–7.7)

(79). Multiple studies have looked into sex-related differences in

adverse effects of in-utero exposure to opioids, with varying

results. Unger et al. (80) carried out a secondary analysis of the

data from the MOTHER trial (81), which was a double-blind,

double-dummy, flexible dosing, randomized, controlled trial

which compared buprenorphine with methadone for use in the

comprehensive care of pregnant females with opioid use

disorder. They found no specific sex-related differences in the

variables concerning NAS course and treatment variables.

O’Connor et al. (31) conducted a retrospective cohort study of

infants born to mothers who were on a buprenorphine treatment

program and found that males had significantly higher mean

peak NAS scores (10.04 vs. 7.98, p = 0.028) and were more likely

to require pharmacological treatment for NAS (39.1% vs. 11.4%,

p = 0.005). Similarly, Charles et al. (42) conducted a retrospective

cohort study of mothers and infants enrolled in the Tennessee

Medicaid Program and found that of the more than 100,000

infants enrolled in the study, male infants were more commonly

diagnosed with NAS than females [adjusted odds ratio: 1.18

(95% confidence interval: 1.05–1.33)] and more likely to have

NAS requiring treatment [adjusted odds ratio: 1.24 (95%

confidence interval: 1.0401.47)]. However, of the 927 infants that

were diagnosed with NAS, they found no sex-based differences

in the severity of NAS. Jansson et al. (82) studied 65 infants

born to mothers enrolled in an opioid addiction treatment

program and found that males displayed significantly higher

NAS scores each day than females (p < 0.05). They further found

that although Males were not significantly more likely to be

treated for NAS (81% vs. 69%, p≫ 0.05) when they were treated,

their treatment duration (13.4 vs. 9.0 days, p < 0.05) and their

hospital stay was longer (15.9 vs. 12.0, p < 0.05). While no one

coherent theory has been accepted for these results, animal

studies have shown a similar heightened vulnerability of the male

neonate to in-utero methadone exposure (83).

Long term
Preterm infants are at higher risk of Cerebral Palsy (CP), and this

risk increases with decreasing gestational age (84). In a population-

based cohort study of infants born at less than 27 weeks gestational

age and surviving beyond one year, the lifetime prevalence of CP

up to 6.5 years was 10.5% (85). Male sex has been identified in

multiple studies as an independent risk factor for poor

neurodevelopmental outcomes, including cerebral palsy (45–47),

with Chounti et al. finding that males have a 30% higher

incidence (95% CI: 11%–53% p = 0.002). An NRN database

study (47) looking at neurodevelopmental outcomes in infants

born at <28 weeks GA and with birth weight <1,000 grams

at 18–22 months corrected age found increased odds for

Neurodevelopmental Impairment in males as compared to

females in the absence of severe IVH or PVL (OR, 95% CI for

males vs. females: 1.79, 1.46–2.19). However, they further found

that in the presence of severe IVH or PVL, there was no
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difference is likely secondary to a central, biological difference

between the sexes that is not currently quantifiable. These

findings have been corroborated with large meta-analyses like the

one done by Linsell et al. (86), which showed that in very

preterm and very low birth weight infants, the male sex was an

independent risk factor for global cognitive impairment at less

than five years of age, however, in studies that assessed cognitive

function at greater than five years of age, they did not find a sex-

related difference. In terms of language development, multiple

studies (87, 88) have shown a male disadvantage among preterm-

born infants at 24 months of corrected age. Concerning the risk

of Autism Spectrum Disorder (ASD), a study conducted by Allen

et al. (89) followed 416 infants born prematurely (average GA

30.8 weeks, SD = 3.3) to the ages of 2–14 years (average age 4.2

years, SD = 2). Their results showed that among females, the risk

of ASD was higher with lower gestational age, with the

probability of ASD of 31% at 25 weeks vs. 0% at 32 weeks

(Wilcox approximately Z = 2.7, p < 0.01). In preterm males,

however, they found no significant difference in the gestational

age of those who received a diagnosis of ASD (Mean = 31.7

weeks, SD = 3.2) vs. those who did not (Mean = 31.1 weeks, SD =

3.3, p > 0.05). They theorized that this was due to a possible

“two-hit hypothesis,” causing females to be at heightened risk of

ASD mainly due to prematurity, while males remained at high

risk for ASD even at near-term gestational age. Indeed, a post

hoc analysis of the ELGAN study (90) found that in infants born

between 23 and 27 weeks of gestational age, the male-to-female

ratio of incidence of ASD increased with increasing gestational

age from 2.1:1 to 4:1 (91).

These above findings of heightened male vulnerability to CNS

insults and downstream consequences have been well documented

in animal studies (39, 92). Theories explaining this sex-related

heightened vulnerability include differential protective

catecholamine response to in-utero hypoxia (93), chromosomal

variants on X-chromosome (94), and immune dysregulation (39),

to name a few.

Respiratory
Respiratory distress syndrome (RDS)
Respiratory Distress Syndrome (RDS) is one of the most common

causes of morbidity and mortality in preterm neonates. The

incidence of RDS is inversely proportionate to gestational age,

with nearly 100% of infants between 22 and 24 weeks having

RDS (95), 10% of male infants of European descent at 34 weeks,

and down to 1% by 37 weeks (96).

It has been well established that males suffer a distinct

disadvantage in terms of respiratory morbidities as compared to

females. Male infants born preterm are at increased risk of RDS

as compared to females (36) (RR = 1.090 (95% CI: 1.042–1.140,

p < 0.001), as well as increased severity of RDS (48) with more

males born <29 weeks gestational age requiring mechanical

ventilation and surfactant therapy in the first 6 h of life as

compared to females (60.8% males vs. 46.2% females, p = 0.026).

Similar sexual dimorphism was seen concerning the risk of

developing pneumothorax (36) (RR = 1.24, 95% CI: 1.104–1.393,
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p < 0.001), and Bronchopulmonary Dysplasia (BPD) (RR = 1.2,

95% CI: 1.091–1.319, p < 0.001). Similar differences were found

in animal studies (97–99). The difference in early respiratory

morbidity may be due to delayed maturation of male lungs, with

females having the benefit of 17-beta estradiol and progesterone

influence on surfactant protein expression (100), combined with

the lack of inhibitory effect of androgens on surfactant

production (101) and levels of tissue glucocorticoid receptor

mRNA and protein (102). Fleisher et al. (103) found that the

required 2:1 ratio of lecithin to sphingomyelin and the

production of phosphatidylglycerol occurred more than a week

earlier in female fetuses compared to males. Binet et al. (104)

demonstrated that despite the use of exogenous surfactant and

antenatal steroids, the female advantage for respiratory

morbidities persisted.

Bronchopulmonary dysplasia (BPD)
The primary risk factor for developing Bronchopulmonary

Dysplasia (BPD) is prematurity, with incidence varying widely

between centers. This is likely due to differences in clinical

management and varying definitions of BPD. According to data

from the NICHD Neonatal Research Network (57), the rates of

BPD have increased from 2009 to 2012, likely secondary to

increased active resuscitation and survival of smaller and more

immature infants. It may follow, given the need for higher and

more prolonged respiratory support earlier in life in males, that

they would be at higher risk of developing BPD. In a

retrospective whole-population study consisting of nearly 12,000

infants born at less than 28 weeks gestational age, Dassios et al.

(49) found that BPD was more common in males than in

females among infants born at 24–27 weeks (p < 0.001) but not

significantly different among males and females born at 22–23

weeks. These findings were corroborated by Farstad et al. (105).

Dassios et al. postulated that the loss of male dominance in

respiratory morbidity below 24 weeks may result from an

inadequate protective effect of progesterone and 17-beta estradiol

in female infants. Fulton et al. (106) analyzed the transcriptome

of mesenchymal stem cells recovered from tracheal aspirates of

13 preterm infants and found that males who developed BPD

expressed lower levels of specific genes involved in distal lung

development. Hammond et al. (50) studied infants with

established BPD. They found that there was no sex-related

difference in rates of mechanical ventilation at 36 weeks (males

5.23%, females 3.6%), with OR = 1 for death or tracheostomy for

male-to-female infants (95% CI: 0.7–1.5).

Cardiovascular
Blood pressure
Emery et al. (107) studied arterial blood pressure in infants with

very low birth weights in the first 48 h of life. They found that

male infants had significantly lower blood pressure as compared

to female infants on the first day of life (mean of 42.4 mmHg in

males vs. 45.6 mmHg in females, 95% CI: 05–5.6 mmHg,

p < 0.05) and that this difference did not persist on the second

day of life. More recently, Elsmen et al. (48) found in their study

of infants <1,000 grams birth weight that males were at higher
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compared to females (67.1% vs. 50.6%, p < 0.05), had lower mean

arterial blood pressure in the first 12–24 h of life (25 vs. 28,

p < 0.05), and were more likely to develop “resistant hypotension”

defined as need for dobutamine or hydrocortisone in addition

to volume and dopamine to treat hypotension (25.9 vs. 11.5,

p < 0.05). Baik-Schneditz et al. (108) assessed cardiac output

using electrical velocimetry in term neonates for 15 min after

birth and found that males and females had comparable cardiac

output at 5 and 10 min of life, but at 15 min of life, male infants

had significantly higher cardiac out as compared to female

infants (217 ml/kg/min vs. 178 ml/kg/min, p < 0.001).

Patent ductus arteriosus (PDA)
Van Westering-Kroon et al. (36) found no difference in rates of

hypotension or Patent Ductus Arteriosus (PDA) between males

and females in their meta-analysis of 41 studies. These findings

were corroborated by a more recent meta-analysis by Borges-

Lujan et al. (51), which included 146 studies and found no

significant sex-related difference in the risk of developing any

PDA (37 studies, RR: 1.03, 95% CI: 0.97–1.08) or risk of

hemodynamically significant PDA (81 studies, RR: 1.00, 95% CI:

0.97–1.02). They also did not find a significant sex-related

difference in the response rate to pharmacological treatment to

PDA (45 studies, RR: 1.01, 95% CI: 0.98–1.04). There have been

some studies with conflicting results, such as the one by Ahamed

et al. (109), which found that the male gender was associated

with a higher likelihood of successful PDA closure following

Indomethacin treatment.

Long-term cardio-vascular system outcomes
Sheiner et al. (110) conducted a population-based cohort study of

over 240,000 infants born between 1991 and 2013 and followed

them up to the age of 18 years. They found that male sex

(independent of birth weight or gestational age) was associated

with a greater risk of pediatric cardiovascular morbidity (ARR:

1.37, 95% CI: 1.16–1.63, p < 0.001). They further found that male

newborns exhibited a significantly greater incidence of total

cardiovascular hospitalizations (log-rank p = 0.001), arrhythmia

(log-rank p = 0.005), and heart failure (log-rank p = 0.023). In

contrast, a study by Hovi et al. (111)found that adults who were

born at a Very Low Birth Weight (VLBW) had higher systolic

blood pressures than controls born at term (systolic 3.4 mmHg,

95% CI: 2.2–4.6), this difference was more marked in females

(4.7 mmHg, 95% CI: 3.2–6.3) than in males (1.8 mmHg, 95% CI:

0.1–3.5). Other studies found no sex-related difference in the

degree or incidence of hypertension in long-term studies of

adults born preterm (112, 113).

SEPSIS
The rate of late-onset sepsis in Very Low Birth Weight infants

has declined from 29.5% in 1995 to 2000 to 13% in 2013 to 2019

(114). Westering-Kroon et al. (36) found in their meta-analysis

that male infants were at a significantly greater risk of late-onset

sepsis as compared to female infants (R = 1.051, 95% CI: 1.026–

1.077, p < 0.001), which was corroborated by Garfinkle et al.
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(115) (ARR for males = 1.04, 95% CI: 0.99–1.09) in their

retrospective cohort study of Canadian infants. Similarly, Dutta

et al. (52) found that male sex was an independent risk factor for

early onset sepsis (RR = 2.7, 95% CI: 2–5). Indeed, even among

infants with congenital CMV, there was found to be a sex-related

difference, with females being more likely to have brain

anomalies secondary to congenital CMV infection as compared

to males (24% vs. 12%, p = 0.004) (116). Animal studies have

indicated a sexual dimorphism in the immune response to

infection (117). One of the explanations for this sex-based

difference is the influence of sex hormones on immune function

(118). For example, in murine T-cells, Araneo et al. (119) found

that Dihydrotestosterone (DHT) exerts an immunosuppressive

effect by reducing IL-4, IL-5, and IFN-γ production levels. Puder

et al. (53) found that Estradiol inhibits the stimulatory effect of

LPS (Lipopolysaccharide) on the Hypothalamic-Pituitary Axis

(HPA) in adult females. Furthermore, Enomoto et al. (54)found

that Estriol sensitizes Kupffer cells to LPS, which induces a

strong response. The above is postulated (120) to be the primary

reason females fare better against bacterial infections than males.

Necrotizing enterocolitis (NEC)
Necrotizing enterocolitis (NEC) is a disease that primarily affects

preterm infants, with a worldwide incidence of 0.3–2.4 infants

per 1,000 live births. It affects 2%–5% of all premature infants,

with a mortality rate that ranges from 10% to 50%. Multiple

studies have shown conflicting results regarding the presence of a

sex-related difference in the risk of developing or dying from

NEC. Shim et al. (121) conducted a retrospective observational

study of Very Low Birth Weight infants in the Korean Neonatal

Network. They found no significant sex-difference in the

incidence of NEC at any gestational age. Carter et al. (121, 122)

analyzed data from 134 infants less than 35 weeks gestational age

at high risk of NEC due to birth weights of less than 1,500 grams

or the need for mechanical ventilation at birth. Medical records

of these infants were reviewed until the time of discharge.

Medical NEC was defined as having pneumatosis intestinalis on

x-ray and being treated with antibiotics for NEC for more than

48 h. Surgical NEC was defined as NEC requiring surgical

intervention (peritoneal drain, exploratory laparotomy with

diverting ostomy creation, primary anastomosis, intestinal

resection, and stoma creation). Of the 134 infants, 24 developed

symptoms that fit their criteria for NEC-15 males and nine

females. The incidence of NEC in this study was 10% for males

vs. 7% for females (p = 0.497). While their results did not reach

statistical significance, they did show a trend towards increased

susceptibility to NEC in males. These findings were corroborated

by Ito et al. (123], who conducted a retrospective observational

cohort study on Very Low Birth Weight Infants in the Neonatal

Research Network of Japan between 2003 and 2012 with similar

baseline demographics and rate of antenatal steroid exposure and

found that among infants between the gestational ages of 23–25

weeks, NEC occurred at a significantly higher rate in male

infants as compared to female infants (1.9 vs. 1.3, p < 0.001,

OR = 1.469, 95% CI: 1.243–1.736). They postulated that the lack

of sex-difference in older gestational ages was likely secondary to
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the rarity of NEC in infants born after 25 weeks gestational age.

Similarly, Boghossian et al. (55) looked at single center data from

2006 to 2016 for 250,750 infants born between 22 and 29 weeks

gestational age and found that males had a significantly higher

rate of NEC as compared to females (10.1% vs. 8.4%, AOR = 1.2,

95% CI: 1.17–1.24), and remained constant throughout the study

period. Since the etiopathogenesis of NEC is multifactorial and

has not yet been clearly delineated, it is difficult to explain the

role of sex in the risk of NEC.

Regarding outcomes following surgical NEC, Siahaan et al. (56)

studied outcomes following a diagnosis of NEC in 52 infants. They

found that female sex was associated with a 3-fold increase in risk

of mortality. Similarly, Garg et al. (124) found that the female sex

was associated with a higher risk of morbidity following surgical

NEC, wherein morbidity was categorized as strictures, fistulas,

wound dehiscence, surgical site infections with abscesses, any

adhesions, and perforations.
Nutrition & growth
This topic has been extensively dealt with recently elsewhere,

and we will summarize the findings in this review (13, 125). As

discussed in this review, growth rates differ between male and

female fetuses. These differences persist at birth and

subsequently. It is important to note that the growth

characteristics of preterm infants vary depending on their sex.

Therefore, specific anthropometric standards are necessary for

male and female preterm infants, such as Fenton’s growth chart

2013, starting from 22 weeks of gestation onwards (126). To

illustrate, at 24 weeks of gestation, the weight of male infants at

the fiftieth percentile is 651 grams, compared to that of females

at 606 grams. Additionally, male preterm infants have higher

head circumference and length, which strongly indicates that

they have higher growth rates.
Differences in body composition-males vs.
females

The body composition of males and females differs

significantly at birth. In term male infants, the body fat

percentage is 9.57%, while in females, it is 11.54% (127). The

InterGrowth 21st project revealed that males have a higher fat-

free mass at 34 weeks of gestation (p < 0.001 (128). The body fat

percentage is higher in females at 10.7% compared to 9.6% in

males, and this difference increases over the first few months. It

is worth noting that females, both preterm and term infants,

have higher amounts of subcutaneous fat. A follow-up study

conducted on preterm infants born less than 32 weeks showed

that early postnatal weight gain is positively associated with BMI,

waist circumference SD scores, fat mass, fat-free mass, and

percentage body fat at 19 years of age (129). Long-term effects

can result from changes in growth rate due to changes in body

composition. The factors associated with differences in growth,

growth velocity, and body composition among males and females

are currently unknown.
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Nutritional requirements—are they different?
Breast milk composition studies suggest possible sex differences

in nutritional requirements. Both animals and humans produce

sex-specific nutrient composition in breast milk. Human studies

have shown that carbohydrate and caloric content may be higher

in breast milk for male infants (125). According to the Add-

Health study (130), breastfeeding had an impact on the growth

of same-sex twins. Breastfed same-sex twins (either male or

female) were found to be 1 inch taller and 12 pounds heavier

than their opposite-sex counterparts during their adolescent

years. On the other hand, same-sex twins who were never

breastfed did not show any significant difference in height or

weight compared to their opposite-sex counterparts. This finding

suggests that breast milk composition may be tailored for each

sex specifically to promote optimal growth.

A study conducted by Poindexter et al. (131) revealed that male

preterm infants who received low early amino acid intake had a

smaller head circumference at 18 months of age than those who

received it later (47.7 ± 1.6 for the early and 47.2 ± 1.8 cm and

late groups, respectively; p = .03). The odds ratio for males having

head circumference less than the 10th percentile was 2.0 (95%

CI: 1.0–4.0) and was 3.3 (95% CI: 1.4–7.7) for head

circumference less than the 5th percentile. According to a recent

study conducted in Europe (132), a higher intake of amino acids

during the first week of life leads to higher weight gain in male

infants during the first five weeks of life. Additionally, the study

found that at 2 years of age, the mental developmental index

(MDI) was higher in females, while the psychomotor

developmental index was higher in males. Van den Akker et al.

(133) in their only glucose vs. glucose with 2.4 g/kg/day of amino

acids from birth, showed that VLBW males had 6.2 times [95%

confidence interval (CI) 1.0–38.5] higher odds of achieving

normal outcomes, i.e., without significant disability significantly

(if amino acids were received from birth) more often than

females. Females had a 10.1-point (95% CI: 18.6–1.6) lower MDI

scores if amino acids were administered from birth onward. The

studies suggest that providing the same early nutrition to

premature infants of both sexes may result in different

anthropometric or neurodevelopmental outcomes.

A study conducted in New Zealand (134) compared the

nutrition provided to infants during the first week and the first

month with their neurodevelopmental outcomes at the age of two

years. The study found that although both males and females

received similar nutrition, females had better survival rates

without any neurodevelopmental impairments. They also noted

that lipid intake during the first week was associated with better

survival without neuro impairment in females. The limited data

suggests that lipid provision may affect female preterm infants,

while protein provision may impact males during early life.

Robust prospective studies are needed to support this observation.

A retrospective review was conducted on extremely low birth

weight (ELBW) infants born between 2014 and 16 at our level 4

neonatal intensive care unit (NICU) (n = 135). We investigated

the impact of calories and protein on weight gain during the

nutrition transition phase (TP) in extremely low birth weight
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(ELBW) infants, with a focus on sex differences. As expected, the

calories and protein provided were similar in both sexes since

NICU feeding guidelines were unisex. Therefore, equal amounts

of volume, calories, and protein were given through nasogastric

feeding. The entire group showed a significant correlation

(r = 0.22, p = 0.026) between the intake of total calories and the

change in weight percentiles. However, when analyzed by sex,

the effect was only observed in females (r = 0.28, p = 0.015).

Protein intake did not correlate with the change in weight

percentile or sex (135).

Significance: Due to differences in their growth rate and body

composition, preterm infants’ nutritional requirements may vary

according to sex. This is an essential consideration because

preterm infants are incapable of regulating their intake through

ad-lib feedings, and there are no sex-specific guidelines for

providing nutrition.

Preterm infants born before 32 weeks of gestation lack an

established sucking and swallowing reflex and an immature

digestive system. As a result, provider-dependent nutrition is

required for their growth and development. Oral feeds are

attempted once these infants reach around 33 weeks of corrected

gestational age, but significant respiratory support may make oral

feeds unfeasible. This often results in prolonged enteral feeding

via a nasogastric tube, with prescribed amounts of volume,

calories, and protein to improve weight gain.

It is worth considering if preterm nutrition should be tailored

based on sex, as suggested by postnatal nutrition studies. Despite

having different growth trajectories, no studies have examined

the potential differences in nutrition requirements between male

and female preterm infants. Consequently, existing nutrition

guidelines for preterm infants are not sex-specific and may not

be optimal for both sexes.
Discussion

An analysis of research literature has shown that infant sex

plays a significant role in various aspects of neonatal outcomes,

both before and after birth. A recent study suggests that the sex

ratio is equal at conception, and overall mortality for females is

higher during pregnancy (136). Although the National Institutes

of Health (NIH) recommends including sex as a biological

variable in research studies, researchers have not followed this

recommendation strictly. Studies conducted on animals have

revealed that therapeutic treatments may affect males and

females differently. However, translating these findings into

human studies has been slow to materialize. A better

understanding of sex differences in response to drug therapies

could help us achieve precision medicine. Therefore, more

extensive and specific research studies are necessary to determine

whether therapeutic hypothermia is beneficial for females (75)

and whether caffeine is helpful for males. Similarly, we need

precise research to confirm whether the early use of

hydrocortisone prevents bronchopulmonary dysplasia (BPD) in

females specifically (137) and whether prophylactic indomethacin

reduces the incidence and severity of intraventricular hemorrhage
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(IVH) in males (37). Future research studies should also address

whether a mother’s own breast milk is more effective than donor

breast milk in maintaining sex-specific body composition in

premature infants.
Part II. Effect of racial and social
determinants of health on perinatal
outcomes

Multiple factors determine health outcomes during pregnancy

and the newborn period. Apart from the genetic, biological, and

sex-based differences that influence fetal and neonatal outcomes,

racial and social factors influence the health and well-being of

developing humans. Race categorizes humans based on shared

physical or social qualities into groups generally considered

distinct within a given society (138). Social determinants of

health (SDOH) are the non-medical factors that influence health

outcomes. These factors can include a person’s living conditions,

access to healthy food, education, employment status, income

level, and social support. Understanding these factors is essential

in developing strategies to improve overall health outcomes in

communities. The Centers for Disease Control and Prevention

(CDC) has adopted the SDOH definition from the World Health

Organization, which states that—SDOH are “the conditions in

which people are born, grow, work, live, and age, and the wider

set of forces and systems shaping the conditions of daily life.

These forces and systems include economic policies and systems,

development agendas, social norms, social policies, and political

systems.” (139). Social Determinants of Health (SDOH) have

been variously categorized based on society and living

conditions’ influence on human health and disease.

The intersection of race and SDOH is complex. Structural

racism makes the interaction of race and social environment

even more complicated (140). Although the effects of race and

ethnicity are intertwined with SDOH, evidence exists that the

effects of SDOH may be manifest independently (141–143). The

goal of this review is to evaluate the current evidence for the role

of Race and SDOH on maternal and neonatal outcomes.
Effect of racial differences on neonatal
outcomes

Introduction
Racial differences in neonatal outcomes explore the disparities

in the health and survival of newborns from different racial and

ethnic groups. It reflects the social and environmental factors

that affect maternal and child health and the quality and equity

of healthcare services. Studies have shown that there are

significant differences in neonatal outcomes among non-Hispanic

Black, non-Hispanic White, Hispanic, and other racial and ethnic

groups in the United States and other countries. These

differences are influenced by a complex interplay of biological,

genetic, behavioral, cultural, and socio-economic factors and

access to and quality prenatal and neonatal care. Understanding
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in neonatal outcomes is essential for improving the health and

well-being of mothers and infants.

The infant mortality rate (IMR) has declined from 7.57 per

1,000 in 1995 to 5.89 per 1,000 births in 2015 (144). The IMR in

the United States is higher than in Canada or England. Despite

the decline in the IMR, the racial differences in infant mortality

show huge differences between black and white infants (145).

The infant mortality rate among white infants was 4.8 per 1,000

births in 2015 compared to 11.7 per 1,000 births among African

American infants (146). Thus, in 2015, non-Hispanic black

infants were 2.3 times more likely to die than white infants. The

IMR for black infants remained at 10.55 compared to 4.36 for

white infants in 2021. This high IMR among black infants is

more than the other non-white races, such as 7.46 in American

Indians and 4.76 in Hispanic infants (147). All the five major

causes of IMR are 1.2–3.8 times higher in black infants than in

white infants. The percentage of mothers who received first-

trimester prenatal care is lower in non-Hispanic black mothers

(68.4%) vs. non-Hispanic white mothers (82.8%). The percentage

of mothers who received late or no prenatal care in 2020 was

two times higher among non-Hispanic black mothers.

Annual trends in IMR were analyzed from 1999 to 2015. The

average annual percent change for all-cause mortality by age and

race in the USA was −1.99, −1.53, and −1.17 for black,

Hispanic, and white infants, respectively, from 1999 to 2015

(148). A decrease in sudden infant death syndrome (SIDS) and

congenital malformations was responsible for the decline among

all races, followed by a decrease in short gestation/low birth

weight among black individuals. However, the SIDS rate for

black infants is still much higher at 80.52/100,000 births

compared to 38.78/100,000 births in white infants in 2015.

However, higher mortality rates were observed for unintentional

suffocation and strangulation in bed among infants. Hence,

better public education and SIDS campaigns may help reduce the

IMR among all races, including black infants. Although mortality

rates for children in the U.S. have improved significantly, they

remain higher and are improving at a slower pace compared to

Canada and England/Wales.

In a population-based retrospective cohort study in New York

from 2010 to 2014 (6 years), the investigators analyzed the racial/

ethnic differences in severe morbidities among 582,297 very

preterm infants born at 24 weeks of gestation and later. The

authors used a fetus-at-risk approach based on a collider

stratification strategy (149). In the fetuses-at-risk analysis in this

study, black infants have a higher risk of developing certain

complications. Specifically, they have a 4.40 times higher rate of

necrotizing enterocolitis (with a 95% confidence interval of 2.98–

6.51), a 2.73 times higher rate of intraventricular hemorrhage

(with a 95% confidence interval of 1.63–4.57), a 4.43 times

higher rate of bronchopulmonary dysplasia (with a 95%

confidence interval of 2.88–6.81), and a 2.98 times higher rate of

retinopathy of prematurity (with a 95% confidence interval of

2.01–4.40). Hispanic infants had a nearly two times higher rate

for all outcomes, and Asian infants had higher risk for

retinopathy of prematurity alone (adjusted hazard ratio: 2.43;
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95% CI: 1.43–4.11). Neonatal caregivers should be vigilant and

ensure that all races receive the same evidence-based care to

reduce biased outcome differences.

Vermont Oxford Network investigators analyzed 219,134

infants to understand if differences in outcomes between race

and ethnicity changed over 12 years (2006–2017) in preterm

infants born before 30 weeks gestation (150). The analysis

included 40.6% white, 34.8% African American, 20.4% Hispanic,

and 4.2% Asian American infants. Maternal hypertension

increased in the groups but was highest in black mothers. The

use of antenatal steroids showed an increase of 18.7% in black

mothers vs. 13% in white and 21% in Hispanic mothers. In

comparison to white infants, African American infants had a

more rapid decrease in mortality, hypothermia, NEC, and LOS.

On the other hand, Hispanic infants had a quicker decline in

mortality, RDS, and pneumothorax. However, despite these

improvements, by 2017, mortality and various health

complications remained high, particularly among African

American infants.

A study looked at the education level of the mothers to address

whether socio-economic factors played a role in neonatal

outcomes. The study used the U.S. vital statistics data sets, which

included 2.2 million females (151). The researchers compared the

maternal and neonatal outcomes of females with bachelor’s

degrees who delivered a normal live singleton baby between 24

and 40 weeks of pregnancy. Non-Hispanic black females had a

higher risk of experiencing adverse maternal outcomes compared

to non-Hispanic white females, while Hispanic females had a

lower risk. Compared to non-Hispanic white females, non-

Hispanic black females have a significantly higher risk of

experiencing a negative maternal outcome (adjusted relative risk

aRR: 1.20; 95% CI: 1.13–1.27). On the other hand, Hispanic

females have a lower risk of experiencing a negative maternal

outcome (aRR: 0.69; 95% CI: 0.64–0.74) when compared to non-

Hispanic white females. The rate of adverse neonatal outcomes

was 11.6 per 1,000 live births. The risk of adverse neonatal

outcomes was significantly higher among neonates born to non-

Hispanic black mothers (aRR: 1.25; 95% CI: 1.20–1.30) but lower

among neonates born to Hispanic mothers (aRR: 0.71; 95% CI:

0.68–0.75), compared to neonates born to non-Hispanic white

mothers. This risk also varied across gestational age. Thus,

maternal education as a proxy of socio-economic status does not

explain the racial differences in maternal and neonatal outcomes.

What do we know about racial differences and
perinatal outcomes?

The purview of this article is broad, and hence, detailed

discussion is beyond the scope of this article. We will summarize

some of the findings that are currently available. Racial

minorities have historically been limited to low-income

neighborhoods (152) and received healthcare at lower-quality

hospitals compared to the white population (153–155). Such

suboptimal living conditions and access to healthcare can

contribute to part of the racial differences in the health outcomes

noted. Residential segregation in the United States is considered

a manifestation of structural racism (156).
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With its vast NICU database, Vermont Oxford Network

attempted to study the extent of segregation (uneven

distribution of racial/ethnic groups across NICUs) and

inequality (concentration of racial or ethnic groups in lower-

quality NICUs) (157). In their cohort of 117,982 very low-

birthweight and very preterm infants, it was found that NICUs

were segregated by race and ethnicity. They used Baby-

MONITOR (Measure of Neonatal Intensive Care Outcomes

Research), a hospital-level composite score of NICU quality

based on nine infant-level measures. A higher score on the

Baby-MONITOR indicates better quality care. Baby-MONITOR

was tested in samples of California NICUs and is considered a

strong indicator of quality-of-care delivery in the NICUs (158).

This study looked at 743 hospital NICUs and found that Black,

Hispanic, and Asian infants had NICU segregation indices of

0.50 (95% CI: 0.46–0.53), 0.58 (95% CI: 0.54–0.61), and 0.45

(95% CI: 0.40–0.50) respectively. This means that non-white

infants went to different hospitals than white infants, showing

significant segregation of minority patients The study found that

Hispanic and Asian infants were treated at higher-quality

NICUs than white infants, with NICU inequality indices of

−0.10 (95% CI, −0.17 to −0.04) and −0.26 (95% CI, −0.32 to

−0.19), respectively.
In contrast, the NICU inequality index for black infants was

0.07 (95% CI: 0.02–0.13), indicating that black infants were

treated at lower-quality NICUs. The concentration of Hispanic

parents in the regions with high-quality care hospitals may

explain such differences to some extent. According to a

regression model for Baby-MONITOR scores, a 10% increase in

the proportion of black infants is associated with an estimated

decrease of 0.05 in the Baby-MONITOR score. Similarly, a 10%

increase in the proportion of Hispanic infants corresponds to an

increase of 0.04 in the score, while a 10% increase in the

proportion of Asian infants corresponds to a significant increase

of 0.31 in the score. The findings suggest that there is a

concerning correlation between the presence of a higher

proportion of black infants in NICUs and lower-quality care.

Even after adjusting for different regions, the results remained

consistent. This implies that the concentration of black infants in

lower-quality NICUs cannot be attributed to regional differences

alone. These results underscore the need for further research and

action to address the underlying causes of racial disparities in

neonatal care.

The factors driving the segregation of minority infants into

lower-quality NICUs are not fully comprehended. However,

potential drivers include practices of residential segregation,

systemic racism, poverty, and healthcare access-related factors

like health insurance may play a role (159). Minority families

often face limited options when seeking healthcare services. This

is because their neighborhoods constrain their choice of

healthcare facilities. The inability to access high-quality

healthcare is closely linked to racial and economic segregation.

For instance, a study conducted in New York found that females

residing in neighborhoods that are racially and economically

polarized are likely to give birth in hospitals located in similarly

polarized neighborhoods (160).
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A few studies examined hospital structure, such as nursing

characteristics, to understand the racial differences in NICU

outcomes (161). The authors studied two National Quality

Forum (NQF) nurse-sensitive perinatal care standards,

nosocomial infection and breast milk, which have long-term

health implications for VLBW (162). High-black hospitals had

greater rates of infection (18.4 percent vs. 14.3 percent; p < .001)

and discharge without breast milk (63.4 percent vs. 43.0 percent;

p < .001) compared to low-black hospitals. Both black and non-

black infants had poorer outcome rates in the high-black

hospitals. Understaffing was also higher in high-Black hospitals

than in low-Black hospitals. However, in models controlling for

nurse understaffing and the nursing practice environment, high-

black hospital status was no longer significantly associated with

either outcome. The results underscore the importance of

nursing as a factor driving the disparities between these hospital

types. This is further supported by the subsequent study, which

evaluated missed nursing care in disproportionately black and

non-black-serving hospitals (163). Missed nursing care was

defined as necessary activities but left undone due to lack of

time. It has been observed that there is a significant difference in

the patient-to-nurse ratio between high-black hospitals and low-

black hospitals. The nurses in high-black NICUs miss about 50

percent more nursing care as compared to those in low-black

NICUs. The odds of missed care increase significantly with lower

nurse staffing, while better practice environments decrease the

odds. On average, nurses miss 1.23 care activities out of 12, most

of which are in the planning/communication domain. It has also

been observed that 44 percent of nurses miss one or more

necessary nursing activities. This percentage is significantly

higher in high-black NICUs (52%) as compared to low-black

NICUs (38%). Therefore, hospitals should strive to ensure a

better nurse-patient ratio to improve patient outcomes.

It is also reported that breast milk feeding rates are the lowest

for black infants cared at high-black hospitals. However, when

different NICUs were compared, black infants gained the most

by being cared for in NICUs, with a higher percentage of

white infants (161).

What needs to be done regarding race and
perinatal outcomes

Increasing public awareness of racial and ethnic disparities in

healthcare is crucial. We can achieve this by launching media

campaigns and educational initiatives targeting healthcare

consumers, payors, providers, and health systems administrators.

Additionally, organizations responsible for training and licensing

healthcare professionals should develop tailored programs to

raise awareness of healthcare disparities among current and

future providers. By increasing public and provider awareness,

we can take the first step towards eliminating healthcare

inequalities (164, 165).

According to Glazer et al.’s report, clear discrimination is not

frequently observed. However, Black and Hispanic mothers often

face disrespectful care and ineffective communication, which

pose significant barriers to family engagement in infant care

(166). This inadequate communication not only creates anxiety
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and stress for families but also impacts critical care processes in

the NICU, such as skin-to-skin care and breastfeeding, which are

essential for infant development. Hence, hospitals should invest

in educating the clinical staff to prioritize communication and

family engagement in patient care. A structured approach is

proposed to address racial disparities by improving readiness,

recognition, and response to the needs of minority families,

reinforced by continuous learning within systems (167).

However, these racial differences in neonatal outcomes are

prevalent globally. A recent individual patient data meta-analysis

of more than two million pregnancies from around the world

showed that Black females are at increased risk of poor perinatal

outcomes of neonatal death, stillbirth, preterm birth, and small-

for-gestational-age babies than White females, even after

adjusting for maternal characteristics (168). Hence, the

involvement of the WHO may provide a better understanding of

providing equitable care.
Effect of SDOH on maternal and neonatal
outcomes

Introduction
Fetal and neonatal health outcomes are determined not only by

biological, genetic, or racial variables but also by social factors. As

per the World Health Organization (WHO), “Social determinants

of health (SDOH) are the nonmedical factors that influence health

outcomes. They are the conditions in which people are born, grow,

work, live, and age, and the wider set of forces and systems shaping

the conditions of daily life. These forces and systems include

economic policies and systems, development agendas, social

norms, social policies, and political systems” (139).

The WHO has listed ten factors that can positively or

negatively influence health (139). They are: “(1) Income and

Social Protection; (2) Education; (3) Unemployment and Job

Insecurity; (4) Working Life Conditions; (5) Food insecurity; (6)

Housing, Basic amenities, and the Environment; (7) Early

Childhood Development; (8) Social Inclusion and Non-

discrimination; (9) Structural Conflict; and (10) Access to

Affordable Health Services of decent quality”.

These factors influence all infants’ conception, intra-uterine

growth, birth, and postnatal health or disease. They also

influence pregnancy status and pregnancy outcomes. Structural

racism makes the interaction of race and social environment

even more complicated (140). Although the effects of race and

ethnicity are intertwined with SDOH, evidence exists that the

effects of SDOH may be manifest independently (141–143). The

goal of this review is to evaluate the current evidence for the role

of SDOH on fetal and neonatal outcomes. For this review, the

effect of a particular SDOH factor on pregnancy, fetus, and

newborn infants after birth will be evaluated based on the ten

distinct SDOH categories listed under the WHO definition (139).

Only findings from clinical and epidemiologic studies will be

included, and non-human studies will be excluded.

Factors within the SDOH are interrelated and can affect

pregnancy outcomes through complex interactions (169, 170).
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Pre-pregnancy health and health behaviors, such as hypertension

and lack of physical activity, can increase the risk for maternal

morbidity and mortality. These factors are influenced by the

availability of safe places to exercise and access to affordable,

nutritious food (171). The financial insecurity resulting from

SDOH often compromises the physical and mental health of

females (172). Additional studies of maternal health emphasize

the influence of racism on stress, health, and well-being (173).

SDOH also has an effect on neonatal outcomes at multiple

levels (174). Temporal trends for outcome changes based on

SDOH in the U.S. have not been reassuring. The infant mortality

discrepancy between the high and low Socioeconomic Status

(SES) groups, as shown in a study using US Vital Statistics The

data indicates a significant difference in post-neonatal and infant

mortality rates between individuals belonging to lower and

higher socio-economic status groups. In 1985–89, the neonatal

mortality rate was 36% higher in the most deprived group as

compared to the least deprived group. However, the gap

increased to 43% higher neonatal mortality rate in the most

deprived group in 1995–2000 (175).

Evaluating the effect of individual items within the SDOH

construct is very near impossible. However, individual studies

have tried to focus on one or more factors as the primary drivers

of outcomes. In this review, we will classify the primary factor

within one of the ten items of SDOH and evaluate the current

evidence of their effect.
Specific SDOH items and maternal/neonatal
outcomes
1. Income, insurance, or social protection

The wealth gap between white families and black families in the

U.S. is vast, with the median white family holding almost ten times

more wealth than the median black family. One of the primary

factors contributing to this disparity is historical redlining, a

discriminatory practice that restricted access to financing and

economic opportunities, leading to the development of highly

segregated communities across the country. Generally,

communities with lower levels of wealth and income, and higher

levels of poverty, are at a greater risk of suffering from morbidity

and mortality (176).

A large retrospective cross-sectional study using the U.S.

multicenter Kid’s Inpatient Database evaluated newborn infants

diagnosed with sepsis and compared mortality with maternal

SDOH, including insurance coverage, household income, and

race. There was increased mortality (3.26 times higher) among

those with self-pay when compared with privately insured

families. Families with low household income had 1.19 times the

odds of mortality compared to those with higher household

incomes families (177). It has been found that babies born to

low-income families have a higher rate of low birth weight,

preterm birth, infant mortality, and developmental delays

compared to those born to higher-income families (178–181). A

study based on the Niday Perinatal Database from Ontario also

showed that lower ranges of neighborhood income were

associated with increased risks of stillbirths. In live-born infants,
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there was a higher incidence of small for gestational age babies,

low birth weight, and preterm birth (182).

The relationship between socio-economic status and neonatal

outcomes is complex. In one large population study conducted in

Europe, there were no associations between income levels alone

and neonatal outcomes of prematurity or mortality. However,

when there is a combination of income level with one more

SDOH-related factor, the risk for prematurity increases

significantly (183).

2. Education and literacy

Education interplays with health and other social factors in

many ways. Higher education is associated with a higher socio-

economic status (SES). However, Education is not always a proxy

for SES (184). Lower education level was highly correlated with

late prenatal care and LBW irrespective of the socio-economic

status of the families (184). One reason for this may be because

education improves the ability of parents to access and

understand health information and services for themselves and

their babies. Other comprehensive reviews on the subject have

also concluded that babies born to mothers with low levels of

education are more likely to have poor health outcomes than

those born to mothers with higher levels of education (179, 180).

Analysis of U.S. National Vital Statistics System data linked to

county-level socio-economic data consisting of education

indicators, among others, showed a greater mortality associated

with lower maternal education. The discrepancy worsened with

each lesser year of schooling. It was, however, difficult to tease

out the independent effect of education level from other factors

such as social conditions, smoking during pregnancy, and

availability of healthcare services (175). A three-generation study

noted that a higher level of grandmother’s education was

associated with higher birth weight in the grand offspring,

especially if the mother’s education level was not very high (181).

3. Unemployment and job insecurity

While strenuous work during pregnancy may be harmful to

pregnant females’s health, being unemployed and the associated

burdens of its consequences probably also have an adverse

effect on pregnant mothers and their babies. Data from Texas

shows that unemployment is associated with lower birthweights

and higher infant mortality rates than employment (185). The

effect was especially notable when unemployment preceded

market work (185).

The effect of one or both partner employment is also

significant. Four groups were defined and analyzed in an

Australian study to evaluate employment status based on one or

both unemployed partners (186). “The groups were: Group 1

females unemployed, partners not unemployed. Group 2 females

not unemployed with unemployed partners. Group 3 comprised

females and partners who were both unemployed (186). In

Group 4, neither partner was unemployed”. Although

unemployment of any of the partners was associated with a

higher risk of LBW and PTB, the association was less robust

when other health factors, such as smoking, were included in the

analysis (186). According to a report on unemployment that
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took into account either one or both partners being unemployed, it

was found that unemployed females were more likely to have

infants who were small-for-gestational-age (SGA), with an odds

ratio (OR) of 1.26 (95% CI: 1.12–1.42). In families where both

parents were unemployed, the risk of SGA was even higher, with

an OR of 1.43 (95% CI: 1.18–1.73) (187).

The effect of unemployment may also vary with the safety net

provided by unemployment benefits in different countries. A study

during the Great Recession evaluated the effect of unemployment

variations and birth outcomes in Britain (188). In this study,

they found that unemployment most adversely affects babies

(LBW and PTB) conceived in the average to the lowest socio-

economic areas. In contrast, the opposite is true for the ones

conceived in the wealthiest areas. Their data also shows that

average to lowest SES babies are most damaged by recessions

(188). A study of births in Spain found that females from regions

with high unemployment rates had double the risk of stillbirth

(adjusted OR: 2.60; 95% CI: 2.08–3.21) (189). A birth and death

linked database from the Netherlands was studied, and it was

found that Perinatal mortality was independently associated with

the father’s and mother’s employment status (190). In a

longitudinal study of families from the U.K. According to the

‘Understanding Study,’ pregnant females who experienced job

loss, whether it was their own or their partner’s, had a higher

risk of pregnancy loss. This increased risk persisted even after

considering socio-economic and partnership-related factors. The

odds ratio for this risk was 1.81, with a 95% confidence interval

of 1.20–2.73 (191).

Countries with a robust unemployment benefits program tend

to have a lower adverse effect on unemployment and job security.

This suggests that the issue of unemployment and job insecurity

affecting pregnancy and newborns is very complex and nuanced

and needs further evaluation.

4. Working life conditions

The effect of work-life stress and work hours during pregnancy

is expected to affect the fetus and newborn. There is probably a

threshold effect with adverse outcomes above a particular

threshold. The Amsterdam Born Children and Their

Development study found a significant association between

reduced birthweight and extended work week of more than 32 h

(mean decrease of 43 g) and high job strain (mean decrease of

72 g) (192). Longer work week >32 h (mean birthweight decrease

of 43 g) and high job strain (mean birthweight decrease of 72 g)

were significantly associated with birth weight (192). In another

study, working >50 h/wk [odds ratio (OR) = 1.59], standing more

than seven hr/d (OR = 1.40), and no antenatal leave (OR = 1.55)

were associated with an increased risk of IUGR (193).

Job hazards, especially with manual work during pregnancy,

may have an adverse impact on the mother and the fetus. In one

study, job hazards contributed to very low birth weight and

extremely preterm births, and physical demands of work

contributed to low birth weight and all preterm births (194). In a

cross-sectional, population-based study from Norway, it was

shown that the adverse effects (prematurity and LBW) of
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strenuous work during pregnancy were primarily seen in

nulliparous females (195).

Job stress may be another factor of influence. A population-

based study from Denmark showed an increased risk of

spontaneous abortion [OR = 1.28, 95%, (CI) 1.05–1.57] for

females with high job stress (196). Even after accounting for

potential bias, they found worse neonatal outcomes for

congenital malformation, 1.23 (95% CI: 0.93–1.63); prematurity,

1.03 (95% CI: 0.77–1.39); small for gestational age, 1.08 (95% CI:

0.83–1.40); and stillbirth/death within the first year of life, 1.42

(95% CI: 0.90–2.24) (196).

Night shifts at work are another contributor to pregnancy-

related stress on the mother and fetus. In a Danish National

Birth Cohort study, researchers found that fixed night work was

associated with fetal loss (OR = 1.85, 95% CI = 1.00–3.42).

However, as measured in this study, job stress was not associated

with fetal loss (197).

5. Food insecurity

Food insecurity, especially during pregnancy, has an impact on

the mother and the unborn fetus. In a systematic review of

published studies, it was found that food -insecurity was

associated with higher maternal stress and higher neonatal

mortality, especially in studies from Africa (198). In contrast, one

study from Malawi failed to show a relationship between food

insecurity and adverse pregnancy outcomes, although the overall

status of the population may have confounded this issue (199).

In one retrospective mother-infant dyad study from the U.S., the

risk of prematurity was three times higher (95% CI: 1.0–8.9, P

= .05) in pregnant mothers who experienced food insecurity (200).

Infant sex, among other factors, may modify food insecurity

risk (Based on PRAMS data of live births from 11 states during

2009–2017.) (201). They found that food-insecure mothers had a

significantly increased risk of delivering a low-birthweight baby.

Other covariates could account for the association among male

infants, but the magnitude of risk remained high in female

infants despite adjusting for covariates (adjusted OR: 1.13; 95%

CI: 0.94, 1.35) (201).

Evidence for this factor also comes from the effects of proper

correction of food insecurity in low and middle-income countries

where balanced protein-calorie supplementation programs have

shown a decrease in stillbirth rates with a Risk Ratio of 0.60%

and 95% CI: 0.39–0.94 (202). More studies and systematic reviews

are currently in progress to fully explore this relationship (203).

6. Housing, neighborhoods, basic amenities, and the environment

The neighborhood environment influences the in-utero and ex-

utero health of the baby. Neighborhood and community factors are

critical influences on the quality of health care and social support

for babies and their families (179, 180). Females from

disadvantaged neighborhoods have a 27% higher risk of

prematurity and 11% higher risk for low-birth-weight babies

(204). Babies born to families living in neighborhoods with high

levels of deprivation, crime, violence, pollution, lack of resources,

and opportunities are more likely to experience poor health

outcomes than those born in families that live in more
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advantaged neighborhoods (205). Using a composite measure of

neighborhood influences—the Childhood Opportunity Index

(COI) (145), Shanahan et al. showed a significant relationship

between poor COI and poor life expectancy at birth (205).

Specific neonatal morbidity involving intraventricular

hemorrhage (IVH) in the brain is higher in communities that

have residential racial segregation (RSS) with compounding

effects of race and residence (180, 206).

The actual condition of the house itself may be an additional

risk factor. In a study of housing conditions of indigenous people

in Canada, the need for major household repairs was associated

with an increased risk of infant death (aRR = 1.69, 95% CI: 1.00–

2.85) (207). In one particular indigenous group, the First Nations,

household crowding was also associated with an increased risk of

infant mortality (aRR = 1.57, 95% CI: 0.97–2.53) (207).

Neighborhoods with exposure to environmental pollutants are

known to contribute to maternal morbidities such as

preeclampsia and placental abruption, which in turn can raise the

risk of maternal mortality (208, 209). Exposure to housing

renovation during the periconceptional period increases the risk

of Congenital Heart Disease (adjusted OR: 1.77, 95% CI: 1.34,

2.33) (210).

The stability of a household plays a role in the evaluation of

housing and its effects on health. In a systematic review of

housing instability and its impact on perinatal outcomes, the

reviewers found that housing instability and homelessness while

pregnant were considerably associated with preterm birth and

delivery complications in the mother (211). The babies born to

these mothers had worse outcomes, such as low birth weight and

neonatal intensive care unit admission (211).

7. Early childhood development

An area of great concern is that childhood adversity may have

health consequences for the current and future generations. In

one study, a mother’s childhood economic hardship (assessed by a

questionnaire) was associated with multiple adverse neonatal

outcomes, even after adjusting for other confounders such as

demographics, maternal education, and obstetrical conditions.

Females raised in disadvantaged conditions had higher

prematurity rates. Their babies had lower birth weights, were

more likely to be small for gestational age, and more extended

hospital stays (212). The Childhood Opportunity Index (COI) is a

validated measure of early childhood influences on health.

Females from lower COI areas had higher adverse pregnancy

outcomes and had newborns with lower birth weight, birth length,

and head circumference (213). An interesting association has been

discovered between a woman’s childhood exposure to educated

parents and the birth weight of her offspring. If the grandmother

is educated and even if her daughter is not as well educated, the

progeny of that child is protected from being LBW (181).

Another type of childhood adversity is sexual abuse. Females

exposed to childhood sexual abuse (CSA) had more complicated

pregnancies (41.2%/19.4%; OR: 2.91, CI: 1.64–5.17). They also

had more complications such as premature contractions (38.8%/

20%; OR: 2.54 CI: 1.43–4.51), cervical insufficiency (25.9%/9.4%;
Frontiers in Pediatrics 15
OR: 3.36, CI: 1.65–6.82), and premature birth (18.8%/8.2%; OR:

2.58, CI: 1.19–5.59) (214).

When adverse childhood experiences (ACE) were semi-

quantitatively analyzed for their effect on later pregnancy-related

outcomes, a study from Wisconsin reported that cumulative

ACE scores were associated with an increased pregnancy loss

(OR = 1.12; 95% CI = 1.08–1.17), preterm birth (OR = 1.07;

95% CI = 1.01–1.12), and low birth weight (OR = 1.08; 95%

CI = 1.03–1.15) (215). There is probably a threshold effect of the

quantity of adverse childhood experiences (ACE). In one report,

mothers exposed to 4 or more ACEs had a 3.74 times risk for

low birth weight (0.050 vs. 0.187) and a 1.74 times greater risk

for prematurity (0.085 vs. 0.148) than those whose mothers

reported no ACE exposure (216). The biological basis for adverse

early childhood events leading to adverse maternal and fetal

outcomes later in life may be explained by epigenetic changes

and DNA methylation (217).

8. Social inclusion and non-discrimination

Evaluation of social inclusion or discrimination is subjective.

However, several objective methods exist for categorizing this

variable in evaluating mother and newborn outcomes. Based on

the cohort identified in the Black Females’ Health Study, further

study was done among Black people who experienced

discrimination or other forms of racism. The results of the study

indicated that females who reported unfair treatment at their

workplace had an adjusted odds ratio (O.R.) of 1.3 [with a 95%

confidence interval (CI) of 1.1–1.6] for preterm birth. Similarly,

females who reported experiencing fear from others at least once

a week had an adjusted O.R. of 1.4 (with a 95% CI of 1.0–1.9)

for preterm birth.

A report from the subjects enrolled in the CARDIA study

evaluated the preterm and LBW outcomes among black persons

and white persons based on their perceived level of

discrimination. It was found that self-reported experiences of

racial discrimination were associated with higher odds of preterm

Adjusted OR: 1.11 (95% CI = 0.51, 2.41 and low birthweight

Adjusted OR: 2.43 (95% CI = 0.79, 7.42) deliveries (218).

Discrimination interfaces not only with racism but also with

depressive symptoms and stress. A study quantified racism based

on a score and reported its interaction with other factors. They

found that high Racism scores were associated with a higher risk

of preterm birth in three subgroups where depressive symptoms

and stress modulated the effect (219). The effect of

discrimination varies based on ethnicity. A cross-sectional study

was done with data from the Community Child Health Research

Network multisite cohort of subjects, showing that African

American and Latina females with the highest tertile of

discrimination had a higher prevalence of preterm birth adjusted

hazard ratio (aHR) = 1.5 (95% CI; 0.7–3.1) and 3.6 (95% CI: 0.9–

14.4), respectively (220). Discrimination based on immigration

status was shown to affect pregnancy outcomes in Turkish

immigrants in Germany. Within the subsample of Turkish

immigrant females, perceived discrimination was related to a

significantly higher PTB risk [OR: 4.91, 95% CI (1.76–15.06)]

(221). In a systematic review of studies on discrimination and its
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effects on adverse obstetric outcomes, it was reported that perceived

racism was associated with poor obstetric outcomes (222).

A decrease in racial discrimination in black persons can

occur with a reduction of inequity in education. In such

instances, it has been shown that there was a 10% decrease in

black infant mortality when educational inequity with white

persons was eliminated (223).

9. Structural conflict

Although race and ethnicity are categories that independently

influence health and outcomes, they are also determinants of

social conflict. Babies born to racial and ethnic minorities,

especially Black, Hispanic, and American Indian/Alaska Native

families, face higher risks of preterm birth, low birth weight,

infant mortality, and other health problems than white babies

(179, 180). These disparities are partly explained by the effects of

centuries of structural racism, discrimination, and historical

trauma on the health and well-being of these communities (169,

179, 180). Because of the legacy of redlining and sustained

housing segregation, pregnant and birthing people of color are

more likely compared to white pregnant or birthing people to

reside in communities with higher rates of instability,

interpersonal violence, crime, and over-policing.

Conflict and an environment of violence are associated with

higher maternal mortality (224). Intimate Partner Violence

(IPV), specifically, has been shown to affect maternal health

adversely (e.g., poor prenatal care, poor nutrition, or inadequate

weight gain), as well as adverse neonatal outcomes (low birth

weight, preterm birth, and intrauterine growth restriction) and

maternal and neonatal mortality (225). Mass incarceration is

correlated with higher maternal mortality and higher rates of

prematurity (226).

10. Access to affordable health services of decent quality

Access to health care depends on income, insurance, and

housing location. Redlining and other structural factors have led

to black persons living in poorer neighborhoods with access to

hospitals that may also provide poorer care. In a study

examining the relationship between Infant Mortality (I.M.) and

the Maternal Health Care Services Access Index (MHCI) in

Nigeria, it was noted that The I.M. rate reduced from 119 per

1,000 live births among females whose MHCI score was poorest

to 50 per 1,000 live births among those with the best MHCI

access score (227).

In a study using data from the Nationwide Inpatient Sample of

the Healthcare Cost and Utilization Project, a federal-state-industry

partnership that the Agency sponsors for Healthcare Research and

Quality, it was found that deliveries in high and medium black-

serving hospitals had higher rates of severe maternal morbidity

rates compared with those in low black-serving hospitals in

adjusted analyses (17.3 and 16.5 vs. 13.5 per 1,000 deliveries,

respectively; p < .001) (228). In this case, there was an interaction

of race and neighborhood, with black females delivering at high

black-serving hospitals having the highest risk of poor outcomes

(228). However, another study based on the State Inpatients

Database for New York showed that for their effects on maternal
Frontiers in Pediatrics 16
morbidity and mortality, patient-related factors such as access to

care were more significant than the hospital or neighborhood-

related factors (229).

The urban-rural gap in health access also affects infant

outcomes. A California Perinatal Quality Collaborative study

reported that major morbidity in VLBW survivors decreased

with increasing rurality, and the relationship remained significant

for small rural/isolated areas (OR: 0.79, p = 0.03) (230).

Access to health has a high potential of being correctable.

Efforts to improve access have already shown an improvement in

health outcomes. Availability of insurance coverage increased

under the Affordable Care Act, and thus, an improvement in

access led to a reduction in maternal mortality and morbidity (231).
Discussion

It is clear from a review of the literature that race and social

determinants of the health of families have a significant impact

on various aspects of neonatal outcomes. Higher infant and

neonatal mortality in black infants may, in part, be related to

inherent biological differences. However, differences in neonatal

and perinatal outcomes based on race and social determinants of

health have a complex relationship. Disadvantaged races appear

to get care in underprivileged areas where hospital staffing and

quality indicators are poorer, and it is not surprising that they

are associated with poorer health outcomes. The continuing

perpetuation of this vicious cycle may be one of the explanations

for the persistent temporal trends of poorer outcomes in blacks

without a significant narrowing of the racial divide.

Among the various contributors to the social determinants of

health, many are interrelated and co-related with each other and

other racial and ethnic influences, creating cumulative effects on

babies and their families. In the U.S., SDOH disproportionately

affects people of color, owing to systemic racism and policies

dating back a few centuries that have been discriminatory in

their design and implementation. These policies have resulted in

significant racial disparities in healthcare access, education, food

security, safe housing, employment, and ultimately health

outcomes. Addressing these factors requires comprehensive and

coordinated policies and interventions that promote health equity

and social justice for all babies (179, 180). Recognizing this, there

has been an increase in programs addressing SDOH as part of

the healthcare spending in the U.S., with about $ 2.5 billion

spent between 2017 and 2019 (232). There have been attempts to

synthesize the interplay of different SDOH items and formulate

SDOH patterns, which can then be analyzed within a defined

group—SDOH pattern one from affluent communities and

lowest social vulnerabilities; SDOH pattern 2—from high stigma

environment and high level of implicit bias; SDOH pattern three

from highly deprived socio-economic environments characterized

by low income and poverty; and lastly SDOH pattern four from

high crime and disruptive environments with lowest levels of

support and highest levels of disruption (233). In a study using

these patterns, physical and mental outcomes in later childhood

were highly correlated with the SDOH patterns (233).
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Furthermore, new data collection and analysis tools using data

mining from EMRs could incorporate SDOH to help anticipate

and manage population health (234).

Achieving broad and ambitious goals requires specific and

achievable objectives. National attention to SDOH and its

relation to maternal and newborn outcomes has helped develop

the “Healthy People 2030” vision. Healthy People 2030 sets data-

driven national objectives to improve health and well-being over

the next decade. Healthy People 2030’s overarching goals are to

“(i) Eliminate health disparities, achieve health equity, and attain

health literacy to improve the health and well-being of all. (ii)

Create social, physical, and economic environments that promote

attaining the full potential for health and well-being for all. (iii)

Promote healthy development, healthy behaviors, and well-being

across all life stages”. The future of health care is not only about

managing disease but also about understanding the personal

factors (race, ethnicity, and sex) and social determinants of

health and developing strategies to promote their beneficial

effects and prevent their adverse effects.
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