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The mediating role of metabolites
between gut microbiome
and Hirschsprung disease:
a bidirectional two-step
Mendelian randomization study
Zhe Wang1, Bingjun Gao1, Xiao Liu2 and Aiwu Li1*
1Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China, 2Department of
Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
Background: Gut microbiome (GM) was observed to be associated with the
incidence of Hirschsprung disease (HD). However, the effect and mechanism
of GM in HD is still unclear. To investigate the relationship between GM and
HD and the effect of metabolites as mediators, a bidirectional two-step
Mendelian randomization (MR) study was conducted.
Methods: The study selected instrument variables (IVs) from summary-level
genome-wide association studies (GWAS). The MiBioGen consortium provided
the GWAS data for GM, while the GWAS data for metabolites and HD were
obtained from the GWAS Catalog consortium. Two-sample MR analyses
were performed to estimate bidirectional correlations between IVs associated
with GM and HD. Then, genetic variants related to 1,400 metabolite traits
were selected for further mediation analyses using the Product method.
Results: This study found that seven genus bacteria had a significant causal
relationship with the incidence of HD but not vice versa. 27 metabolite traits
were significantly correlated with HD. After combining the significant results,
three significant GM-metabolites-HD lines have been identified. In the
Peptococcus-Stearoyl sphingomyelin (d18:1/18:0)-HD line, the Stearoyl
sphingomyelin (d18:1/18:0) levels showed a mediation proportion of 14.5%,
while in the Peptococcus-lysine-HD line, the lysine levels had a mediation
proportion of 12.9%. Additionally, in the Roseburia-X-21733-HD line, the
X-21733 levels played a mediation proportion of 23.5%.
Conclusion: Our MR study indicates a protective effect of Peptococcus on HD
risk that is partially mediated through serum levels of stearoyl sphingomyelin
(d18:1/18:0) and lysine, and a risk effect of Roseburia on HD that is partially
mediated by X-21733 levels. These findings could serve as novel biomarkers
and therapeutic targets for HD.
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1 Introduction

Hirschsprung disease (HD) is a congenital disorder of enteric nervous system characterized

by the absence of enteric ganglia in the distal part of the colon, leading to abnormal contractions

(1). Until now, the only efficient treatment forHD is surgery to remove the aganglionic segment

of the colon and reconstruct the healthy, innervated intestine to the anus (2). However,
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approximately one-third of HD patients still experience complications

after surgery, including fecal soiling, obstructive symptoms, and

Hirschsprung-associated enterocolitis (HAEC) (3). The cause of

these complications is not well understood. Various studies have

suggested possible mechanisms such as genetic mutation (4),

dysfunction of the immune system in the gut (5), and an imbalance

of the gut microbiome (6).

Gutmicrobiome (GM) is a distinctmicrobial ecosystemwithin the

digestive system that plays a critical role in regulating human health

and disease (7). The imbalance and dysfunction of microbial

composition in GM, resulting from a metabolic disorder, can lead to

several diseases (8). GM is deemed an extra “organ” with more

genes than the host and is influenced by genetics and the

environment (9). Several studies have shown that GM is associated

with a range of illnesses, such as diabetes (10), cardiovascular

disorders (11), neurological diseases (12), and immune diseases

(13). Genome-wide association studies (GWAS) have challenged the

view that the gut microbiota is solely an environmental factor (14).

However, the extent of its genetic influence remains a topic of debate.

In order to investigate the potential mediation effect that could

bridge the GM to the incidence of HD, metabolites are considered.

Metabolites refer to tiny molecules produced either as a result or at

the end of various metabolic reactions (15). Multiple factors, such

as genetics, lifestyle, disease, and GM, can impact metabolite levels

in the body (16, 17). The changes in metabolites can impact the

incidence of disease. The high heritability of metabolites makes

them convenient to study and potential therapeutic targets for

disease (18). Based on these findings, we hypothesize that

metabolites mediate the effect of GM on HD. However, it is

difficult to establish the causal relationship and avoid confounding

bias in an observational study. Therefore, an innovative

methodology should be adopted to investigate the causal relationship.

Mendelian randomization (MR) is an effective method that can

avoid the confounding bias and evaluate the effect of exposures on

outcomes (19). MR analysis assumes that during conception,

random assignment of alleles to offspring follows Mendel’s law

of inheritance, mirroring the concept of a randomized controlled

trial (20). Using single nucleotide polymorphisms (SNPs)

associated with specific IVs as proxies for exposures, MR analysis

can assess the causal effects between exposures and outcomes

(21). When the effect between exposures and outcomes is

confusing, a mediation MR analysis can help to understand the

cause better and identify intermediate variables that could be

potential targets for intervention (22).

Our study aimed to investigate the relationship between GM

and HD and explore the potential role of metabolites as

mediators by conducting a bidirectional two-step MR analysis.
2 Materials and methods

2.1 Study design

We used summary-level GWAS data to explore the genetic

relationship between GM and HD in an MR framework. The

effect of an exposure on an outcome consists of both direct and
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indirect effect (22). Our research involved a two-step MR

analysis to investigate the causal relationship between GM and

metabolites, followed by an assessment of the causal impact

of metabolites on HD. To calculate the mediation effects of

metabolites, we used the Product method, as previously described

in other literature (23). Three fundamental assumptions must be

met when selecting IVs, similar to a conventional MR study (24).

Firstly, SNPs should show a strong correlation with exposures

and meet the criterion for genome-wide significance threshold.

Secondly, the selected IVs should be independent of any

confounding factors affecting the study results. Lastly, the IVs

should only affect the outcome through exposures and ensure

that other lines or routes are not responsible for the effect on the

outcome. The design of our bidirectional two-step MR study was

illustrated in Figure 1.
2.2 Data sources

From the largest GWAS database on GM, the MiBioGen

consortium (https://mibiogen.gcc.rug.nl), we obtained the

summary-level data for GM, including 16S rRNA fecal microbiome

data from 18,340 individuals (25). In this cohort, genetic loci

impacting the covariate-adjusted abundance of bacterial taxa were

adjusted for age, sex, technical covariates, and genetic principal

components (25). Using these genetic markers, we can estimate the

causal relationship between GM and complex traits through MR

approaches (26).

Summary-level GWAS data for 1,400 metabolite traits (1,091

metabolites and 309 metabolite ratios) were extracted from the

Canadian Longitudinal Study on Aging (CLSA) cohort of 8,299

individuals (15). The study found associations between 690

metabolites at 248 sites and 143 metabolite ratios at 69 sites.

By integrating metabolite-gene and gene expression data, the

study identified 94 effector genes for 109 metabolites and 48

metabolite ratios (15).

The GWAS Catalog consortium (https://www.ebi.ac.uk/gwas)

provided GWAS data for HD, including 170 HD patients

and 4,717 controls of European ancestry as the exposures (27).

The diagnosis of HD was made using the Tenth Revision of the

International Classification of Diseases (ICD-10) codes (28). In

this cohort, the SNP heritability of HD has been estimated to be

approximately 88% based on GWAS studies (27). Moreover, they

have used Lasso regression to develop a potential genetic

predictor for HD (27).

We conducted our study using publicly available GWAS

summary data that has been approved by relevant ethics and

institutional review boards. Therefore, we did not require ethical

approval for our study. Details of the GWASs data are shown

in Table 1.
2.3 Selection of instrument variables

Suitable SNPs for IVs are genetic variants that serve as proxies for

exposures to investigate causal relationships at the genetic level inMR
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FIGURE 1

Study design of the MR analysis.
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studies (29). The selection of IVs was based on several principles: First,

since only a small number of SNPs met the statistical significance

threshold of p < 5e-08 for GM, metabolites, and HD, different

threshold values were set for each measure (30). For GM and

metabolites, the genome-wide significance threshold was set at p <

1e-05, while for HD, it was set at p < 5e-06. Second, SNPs with an r2

greater than 0.001 within a 10,000 kb distance were excluded due to

linkage disequilibrium (LD) (31). Third, through the PhenoScanner

website (http://www.phenoscanner.medschl.cam.ac.uk/) and as well

as the IEU database (https://gwas.mrcieu.ac.uk/), we removed SNPs

associated with inflammatory bowel disease, malignant neoplasm of

colon, and irritable bowel syndrome in order to minimize the

impact of confounding factors. Fourth, any SNPs that had a

palindromic structure were excluded automatically from the

analysis. Lastly, we calculated the F-statistics to assess the genetic

liability of their genetic instruments using the following formula (32):

F ¼ (beta=se)2 (1)

(se: standard error). From traditional experience, when the F

statistic is less than 10, we usually consider the instrumental

variable used as a weak instrumental variable, which may

produce a certain bias to the result (33). To avoid weak

instrument bias, only SNPs with F statistics greater than ten were
TABLE 1 Details of GWAS data in this MR study.

Trait Consortium Ethnicity Sample size
GM MiBioGen European 18,340

Metabolites CLSA European 8,299

HD GWAS Catalog European 4,887

GWAS, genome-wide association study; GM, gut microbiome; HD, Hirschsprung disease;

CLSA, Canadian longitudinal study on aging cohort.
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chosen for the study. SNP characteristics are listed in

Supplementary Data Sheet 2.
2.4 Statistical analysis

To explore the causal relationship between GM and HD, a

bidirectional two-sample MR analysis was conducted. Then, a

two-step MR analysis was conducted to evaluate the potential

mediating effect via metabolites in this causal relationship. The

inverse-variance weighted (IVW) method was utilized as the

primary analysis, considering it the most reliable when there

were no signs of directional pleiotropy (34). In the absence of

horizontal pleiotropy, the IVW test was used as the primary

method for calculating the causal effect values to obtain unbiased

estimates. Additionally, weighted mode (34), MR-Egger (35),

weighted median (36), and simple mode (37) were used as

complementary approaches to assess the consistency of the results.

The Cochran’s Q method was utilized with a p-value lower than

0.05 indicating heterogeneity (38). Cochran’s Q is a kind of

heterogeneity statistic for the IVW model. If the Q statistic much

larger than its degrees of freedom, this provides evidence for

heterogeneity and invalid IVs. The MR-Egger regression analysis was

used for identification of potential horizontal pleiotropy (39), while

the MR pleiotropy residual sum and outlier (MR-PRESSO) analysis

(40) was conducted to minimize possible confounding factors. To

investigate the effect of a single SNP on causal associations, we

conducted leave-one-out sensitivity tests by removing each SNP one

at a time (41). Additionally, scatter plots and funnel plots were

generated to assess the robustness of the MR results.

The mediation proportion of potential mediators in the total

effect of genetically determined GM on HD risk was calculated
frontiersin.org
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using the Product method (22). The mediation proportions were

determined using the following formula (42):

P(%) ¼ (b1 � b2)=b0 (2)

P(%): the proportions of mediation; β0 stands for the total

effect obtained from the primary analysis, β1 stands for the effect

of GM on mediators, and β2 stands for the effect of mediators

on HD.

The statistical analysis was conducted using R packages

“TwoSampleMR” and “MRPRESSO” in R software (version 3.4.2,

the R Foundation for Statistical Computing, Vienna, Austria).

The findings were presented in a combined format of odds ratio

(OR) and a 95% confidence interval (CI).
3 Results

3.1 Selection of instrument variables

After performing the clumping process for LD, 1,425 SNPs

were identified as IVs associated with GM traits (p < 1e-05).

We only considered the genus level data, which contains the

most relevant information about the GM and overlaps with

higher classification levels (43). For metabolites, we analyzed

33,571 SNPs, with each metabolite corresponding to an average

of 24 SNPs. We selected 18 SNPs as IVs for HD (p < 5e-06).

After harmonizing with the metabolites data, only nine

SNPs were left. The average F-statistics for GM, metabolites,

and HD were 21.73, 29.88, and 38.34, respectively. All F-statistics

exceeded 10, indicating avoidance of potential instrumental

bias. Finally, we removed the palindromic SNPs simultaneously.

The details of selected SNPs are shown in Supplementary

Data Sheet 2.
3.2 Bidirectional two-sample MR analyses of
the total effect between GM and HD

Seven genus bacteria were found to have a causal effect on an

increased incidence of HD. Our forward MR analyses revealed that

IVs associated with an elevated Peptococcus (OR = 0.366, 95%

CI = 0.185–0.727, p = 0.002), RuminococcaceaeNK4A214group (OR =

0.159, 95% CI = 0.038–0.658, p = 0.011), Ruminococcus2 (OR = 0.32,

95% CI = 0.112–0.912, p = 0.033), ErysipelotrichaceaeUCG003

(OR = 0.37, 95% CI = 0.143–0.957, p = 0.039), and Paraprevotella

(OR = 0.449, 95% CI = 0.206–0.977, p = 0.043) were responsible for

decreased susceptibility to HD. The participants of Eggerthella (OR

= 2.66, 95% CI = 1.234–5.737, p = 0.013) and Roseburia (OR = 5.387,

95% CI = 1.076–26.96, p = 0.04) brought a higher incidence of HD

(Figure 2). Supplementary Table S1 provides a clear illustration of

the causal effects of GM on HD.

On the other hand, the reverse MR analysis showed that there

was no impact of genetic predisposition to HD on pre-identified

GM traits. The results of IVW estimates are illustrated in

Figure 3 and Supplementary Table S2.
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3.3 Two-step MR analyses

Our study utilized a two-step MR analysis approach. In the

first step, we conducted a two-sample MR analysis to investigate the

causal relationships between metabolites and the incidence of HD.

This analysis revealed a significant link between 27 metabolite traits

and HD (Supplementary Table S3). In the second step, we used the

univariable MR method to investigate the relationship between the

seven types of GM and 27 metabolite traits. Our findings identified

three significant lines of evidence, including two types of bacteria

and three metabolites. After combining these significant results, we

obtained three significant GM-metabolites-HD lines (Figure 4).

3.3.1 Causal effects of GM on metabolites
According to our MR analysis, Peptococcus had a positive

correlation with stearoyl sphingomyelin (d18:1/18:0) levels (OR =

1.137, 95% CI = 1.051–1.274, p = 0.026) as well as lysine levels

(OR = 1.134, 95% CI = 1.009–1.275, p = 0.035). We found a

negative correlation between Roseburia and X-21733 levels

(OR = 0.803, 95% CI = 0.675–0.955, p = 0.013). Figure 5A displays

the causal effects of GM traits on metabolites using the IVW

method. Details are shown in Supplementary Table S3.

3.3.2 Causal effects of metabolites on HD
We observed that 27 metabolite traits were significantly

correlated with incidence of HD (Supplementary Table S4).

Three metabolite traits were identified to be the significant

mediators, including stearoyl sphingomyelin (d18:1/18:0) levels

(OR = 0.28, 95% CI = 0.088–0.887, p = 0.03), lysine levels (OR =

0.314, 95% CI = 0.117–0.844, p = 0.022), and X-21733 levels

(OR = 0.165, 95% CI = 0.047–0.578, p = 0.005). The significant

effect of metabolites on HD is illustrated in Figure 5B.

3.3.3 Mediating effects of metabolites on
GM-HD effect

In this two-step MR analysis, we identified the metabolites that

could potentially mediate the causal effect of GM on HD. In the

first step, we found that stearoyl sphingomyelin (d18:1/18:0)

levels, lysine levels, and X-21733 levels could be affected by GM.

In the second step, we observed that these same metabolites had

a significant role in mediating the effect of GM on HD. We used

the Product method to calculate the mediation proportion. In the

Peptococcus-Stearoyl sphingomyelin (d18:1/18:0)-HD line, the

Stearoyl sphingomyelin (d18:1/18:0) levels showed a mediation

proportion of 14.5%, while in the Peptococcus-lysine-HD line, the

lysine levels had a mediation proportion of 12.9%. In the

Roseburia-X-21733-HD line, the X-21733 levels played a

mediation proportion of 23.5%.
3.4 Sensitivity analyses

We conducted Cochran’s Q analysis and found no significant

heterogeneity in the estimates. We also detected the p-value

associated with the MR-Egger intercept, and found no potential
frontiersin.org
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FIGURE 3

Reverse MR analysis of HD on GM.

FIGURE 2

Forward MR analysis of GM on HD. Elevated Peptococcus (OR = 0.366, 95% CI = 0.185–0.727, p= 0.002), RuminococcaceaeNK4A214group (OR =
0.159, 95% CI = 0.038–0.658, p= 0.011), Ruminococcus2 (OR = 0.32, 95% CI = 0.112–0.912, p= 0.033), ErysipelotrichaceaeUCG003 (OR = 0.37,
95% CI = 0.143–0.957, p= 0.039), and Paraprevotella (OR = 0.449, 95% CI = 0.206–0.977, p= 0.043) were linked with decreased susceptibility to HD.

Wang et al. 10.3389/fped.2024.1371933
pleiotropic effects. Moreover, we utilized multiple estimating

methods to evaluate the causal effects, and the scatter plots

involving these estimating methods were shown in
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Supplementary Figure S1. The consistency results of the

sensitivity analyses reinforced the causal reasoning of the primary

analyses. Additionally, forest plots, funnel plots, and leave-one-
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FIGURE 4

Three significant lines of the two-step MR analysis.

FIGURE 5

Forest map of two-step MR analysis of GM-metabolite-HD. (A) The causal effects of GM traits on metabolites using the IVW method.; (B) the causal
effects of metabolites on HD, including stearoyl sphingomyelin (d18:1/18:0) levels (OR = 0.28, 95% CI = 0.088–0.887, p= 0.03), lysine levels (OR =
0.314, 95% CI = 0.117–0.844, p= 0.022), and X-21733 levels (OR = 0.165, 95% CI = 0.047–0.578, p= 0.005).

Wang et al. 10.3389/fped.2024.1371933
out plots of each IV showed that the results of MR analysis were

consistent and robust (Supplementary Figures S2–4).
4 Discussion

This study explored the causal relationship between GM and HD,

and assessed the mediating effect of serum metabolite traits between

GM and HD in a comprehensive bidirectional two-step MR analysis.
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Our study revealed that genetically variants in Ruminococcus2,

ErysipelotrichaceaeUCG003, Roseburia, Paraprevotella, Peptococcus,

RuminococcaceaeNK4A214group, and Eggerthella were significantly

associated with the incidence of HD. The results did not indicate

bidirectional causal relationship. Our two-step MR analyses revealed

that Roseburia contributed to an increased risk of HD, which was

partially mediated by lower levels of X-21733. As the original paper

stated that X-21733 is an unknown molecule in serum (15), we have

excluded it from further discussion. On the other hand, Peptococcus
frontiersin.org
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was found to be associated with a reduced risk of developing HD,

partially mediated by levels of stearoyl sphingomyelin (d18:1/18:0)

and lysine.

Studies conducted on animals and humans have confirmed a

connection between the diversity of GM and HD. The human

gastrointestinal tract commonly acts as a natural ecosystem and

supplier of nutrients for microbiota. In return, microbiota aids in

gut development, strengthen the immunity, and improve the

defense mechanisms by generating different metabolites (44).

Cheng et al. found decreased fecal microbiota alpha diversity in

HD mice after microsurgical pull-through surgery on Ednrb

knock-out mice (45). A study on children with HD showed

reduced gut microbiota richness after surgery compared to

control group (46). HD may require different lengths of surgical

therapy depending on the degree of aganglionic involvement,

which in turn may affect gut microbiota homeostasis (47).

However, studies on the mechanism of GM underlying the

development of HD were limited. Through our MR analyses, we

found lines linking GM and HD by the mediation of metabolites.

The genus Roseburia belongs to the phylum Firmicutes, class

Clostridia, order Clostridiales, and family Lachnospiraceae (48).

There are five well-characterized Roseburia species: Roseburia

intestinalis, Roseburia hominis, Roseburia inulinivorans, Roseburia

faecis, and Roseburia cecicola (49). Roseburia intestinalis is known to

protect against several inflammatory diseases by minimizing

intestinal inflammatory reaction (48). The expression of colonic

mucosal melatonin is positively related to Roseburia hominis (50).

Roseburia inulinivorans, a newly discovered motile member of

the Firmicutes, helps form butyrate from different dietary

polysaccharide substrates present in the human large intestine (51).

Roseburia faecis, a Gram-positive anaerobic bacterium that produces

butyrate, has been tested for its usefulness in treating irritable bowel

syndrome induced by repeated water avoidance stress in rat models

(52). To date, no research has been carried out to explore the

presence of the genus Roseburia in individuals with HD. Our MR

analysis found that Roseburia may be involved in HD as a risk

factor due to the mediation effect of serum X-21733. However, the

information regarding serum X-21733 is unknown, and further

molecular experiments are required to elucidate this mystery.

There has been debate regarding the precise role of Peptococcus in

the human gut. Bourgault et al. conducted a study revealing

Peptococcus as the most frequently occurring species of anaerobic

Gram-positive cocci in significant infections (53). Moreover, it

appears to be particularly pathogenic in infections of bones and

joints or when present with foreign bodies (53). However, Gu et al.

conducted research that demonstrated the protective effect of

Peptococcus on inflammatory disorders of the breast (54).

According to their study, there is a strong positive correlation

between Peptococcus and the presence of valeric acid and butyrate,

which regulate the inflammatory response and participate in the

energy supply of tight junction proteins (54). Our MR analyses

supported the protective effect of Peptococcus on HD, which may

be mediated by the levels of stearoyl sphingomyelin (d18:1/18:0)

and lysine. In the future, success may come from therapeutics

targeting Roseburia or Peptococcus, including probiotics, fecal

microbiota transplantation, prebiotics, and synbiotics.
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Other bacteria were not associated with the development of HD.

Ruminococcus gnavus is a Gram-positive strict anaerobe bacterium

that forms chains. The bacteremia has been associated with an

acute flare of ulcerative colitis (55). Erysipelotrichaceae has effect on

the metabolism of lipid, warranting additional investigation into the

metabolic profiles of these organisms. Erysipelotrichaceae may be

correlated to inflammation and auto-immunogenic procedure (56).

Metabolomics is an advanced technology with great promise for

uncovering the underlying mechanisms linked to various disease

processes (57). Yang et al. identified 21 HD biomarkers in serum

samples using metabolomic analysis (58). Sphingomyelin (d18:1/

18:0) is a sphingolipid commonly found in cell membranes,

particularly in the membranous myelin sheath surrounding nerve

cell axons (59). Plekhova et al. discovered that lysine catabolism was

increased in HD patients. This has been associated with inadequate

bacterial butyrate production in the large bowel (60). Our study has

found that serum levels of sphingomyelin (d18:1/18:0), lysine, and

X-21733 were involved in mediating the GM-HD effect. However,

the structure and function of X-21733 is still unknown. Our MR

analyses have confirmed that metabolites are involved in the

mechanism of HD development. To fully understand the

underlying pathologies, further experiments are necessary.

This study has several advantages. Firstly, we used summary

data from the GWAS consortium in our MR analyses, which

increases statistical power since genetic variation is unaffected by

confounding factors. Secondly, we combined bidirectional and

two-step MR analyses to explore the potential mediation effects

of metabolites, producing more precise and reliable results. This

innovative approach provides a comprehensive understanding of

the causal relationship between GM and HD.

There are a few limitations to consider in this study. Firstly, even if

all three assumptions are fulfilled, it is impossible to avoid weak

instrumental bias. However, GWAS data with larger sample sizes can

help reduce this bias. Secondly, since the GWAS participants were

only of European descent, it may not be appropriate to generalize the

findings. Therefore, similar studies need to be conducted across

multi-ethnic groups. Thirdly, MR analysis typically reveals exposure

over a lifetime, and the presence of canalization may lead to an

overestimation of effect size. Therefore, it is recommended that

further randomized controlled trials be conducted to examine the effect.
5 Conclusions

In conclusion, our study indicated a causal relationship

between Peptococcus and the incidence of HD that is partially

mediated by serum levels of stearoyl sphingomyelin (d18:1/18:0)

and lysine. Levels of Peptococcus in feces and stearoyl

sphingomyelin (d18:1/18:0) and lysine levels in serum could

serve as novel biomarkers and therapeutic targets for HD.
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