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Aim: The rise of wearable sensing technology shows promise for addressing the
challenges of measuring motor behavior in pediatric populations. The current
pediatric wearable sensing literature is highly variable with respect to the
number of sensors used, sensor placement, wearing time, and how data
extracted from the sensors are analyzed. Many studies derive conceptually
similar variables via different calculation methods, making it hard to compare
across studies and clinical populations. In hopes of moving the field forward,
this report provides referent upper limb wearable sensor data from
accelerometers on 25 variables in typically-developing children, ages 3–17 years.
Methods: This is a secondary analysis of data from three pediatric cohorts of
children 3–17 years of age. Participants (n= 222) in the cohorts wore bilateral
wrist accelerometers for 2–4 days for a total of 622 recording days.
Accelerometer data were reprocessed to compute 25 variables that quantified
upper limb movement duration, intensity, symmetry, and complexity. Analyses
examined the influence of hand dominance, age, gender, reliability, day-to-
day stability, and the relationships between variables.
Results: The majority of variables were similar on the dominant and non-
dominant sides, declined slightly with age, and were not different between
boys and girls. ICC values were moderate to excellent. Variation within
individuals across days generally ranged from 3% to 32%. A web-based R shiny
object is available for data viewing.
Interpretation: With the use of wearable movement sensors increasing rapidly,
these data provide key, referent information for researchers as they design
studies, and analyze and interpret data from neurodevelopmental and other
pediatric clinical populations. These data may be of particularly high value for
pediatric rare diseases.
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Introduction

Assessment of motor behavior in pediatrics is challenging.

Research and clinical care often depend on standardized motor

assessments administered by trained professionals (1).

Standardized assessments, however, are time-consuming and

assess behavior during a limited clinical or laboratory encounter.

Questionnaires completed by a caregivers or teachers provide

alternative assessment options that are quick and cheap, but may

be less accurate and more subject to bias (2). Use of either

standardized assessments or questionnaires to quantify enduring

aspects of motor behavior can also be complicated by the need

for a different version of an assessment or a completely new

assessment tool designed to evaluate advancing motor skills

during development. The rise of wearable sensing technology

shows promise for addressing these challenges in assessment of

motor behavior across the lifespan (3). Accelerometers in

wearable devices worn on the upper limbs can quantify real-life

motor behaviors, providing continuous monitoring over longer

periods of time. Devices are small and can be readily worn by

children of all ages. Extracted accelerometry data can then be

used to compute numerous variables capturing a range of

movement characteristics (3).

Beyond its use quantifying physical activity, accelerometry is

emerging as a tool to measure upper limb motor behavior in in

children with Cerebral Palsy (1, 4, 5), Autism Spectrum Disorder

(6), Duchenne Muscular Dystrophy (7, 8), and many other

conditions (9–14). Accelerometer measurements show potential in

infant populations as a tool to predict later acquisition of

neurodevelopmental and neuromuscular disorders (15–17). Across

the pediatric literature, studies are highly variable with respect to

the number of sensors used, sensor placement, wearing time, and

how data extracted from the sensors are analyzed. Many studies

derive conceptually similar variables (e.g., relative symmetry

between the limbs, magnitude of accelerations), but use different

calculation methods. The varied protocols and variable

calculations, in addition to small sample sizes, are barriers to the

comparison of data across papers and across populations.

Pediatric researchers need information about upper limb

accelerometry variables in typically-developing children. The

availability of normative or referent data would facilitate analyses

and interpretation of data from various diagnostic groups,

especially rare disease populations (10). Availability of such data

could also reduce the burden placed on research teams;

researchers will not need a “control” sample to interpret the data

from their target clinical population. Methodology used to

produce the referent data could potentially provide a

standardized way to collect and analyze accelerometry data, and

enhance comparisons across papers in the future.

The purpose of this report was to provide referent

accelerometry data on 25 variables in typically-developing

children, ages 3-17 years. We utilized a harmonized data set

from three previous cohorts, which all collected data from both

wrists using similar protocols. Upper limb accelerometry data, as

an adjunct to established assessment methods, may be of high
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value for two key reasons. First, it can measure motor behavior

on ratio scales, which do not require different forms for different

ages. And second, compared to lower limb accelerometry, upper

limb methodologies can be used consistently throughout infancy

and into adulthood, both as walking is acquired and as

degenerative diseases progress and limit walking in later life.
Methods

This is a secondary analysis using harmonized data from

typically-developing children from three previous studies (6, 18, 19).

Each of these studies employed a similar protocol (20) to collect

bilateral wrist accelerometry from pediatric participants. Inclusion

criteria for this analysis were: (1) age between 3 and 17 yrs; (2)

data from caregiver-reported medical history, questionnaires, and

in-person assessments indicated the participant was typically-

developing; and (3) accelerometer recordings had >10 h of data

during waking hours. To confirm participants were typically-

developing, study team members triangulated available data from:

parent-reported medical history and questionnaires (all 3 cohorts),

medical record information (partially available in 2 cohorts; used

most often to confirm exclusion from this typically-developing

analysis by a neurodevelopmental diagnosis), and in-person

developmental assessments (2 cohorts) in motor, cognitive,

language, intellectual, and social-communication domains.

Standardized questionnaires and assessments for each cohort were

as follows. Konrad et al. 2022 (6) used the Developmental

Coordination Disorder Questionnaire [DCDQ (21), or the Little

DCDQ (22) for younger children], the Connor-3 Parents’ Rating

Scale [(23) or the Connors-Early Childhood Scale for younger

children (24)], and the Social Responsiveness Scale-2 [SRS-2

(25, 26), or the SRS-2 Preschool for younger children (27)].

Konrad et al. 2024 (19) used all of the above along with the

Movement Assessment Battery for Children-2 [MABC-2 (28)] and

the Kaufman Brief Intelligence Test [KBIT-2 (29)]. Hoyt et al.

2019 (18) used the Ages and Stages Questionnaire [(30) or the

MABC-2 or MABC-2 Checklist for older children] and the Child

Behavior Checklist (31). Caregivers provided written informed

consent and participants 6 yrs and up provided their verbal assent

for the originating studies, which permitted de-identified data to

be shared and used for subsequent analyses.

The wrist-worn devices used were either Actigraph GT3X-BT or

GT9X-Link Activity Monitors (Actigraph, Pensacola FL). These

devices have 3-axis, solid-state accelerometers with a dynamic

range of ±8 gravitational units. The devices were worn on both

upper limbs, just above the radial and ulnar styloid processes.

Bands to attach the devices varied based on caregiver-preference

and size of the wrists. Participants were asked to wear the devices

for two days (6, 19) during waking hours or four, non-

consecutive days (18) for 24 h. The wearing periods were decided

during the design of each contributing study. In general, the

decision was a compromise between obtaining sufficient data and

the willingness of the family and child to wear the sensors. For

two of the cohorts (6, 19), the decision to limit the wearing

period to two days was because a portion of the clinical
frontiersin.org
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population of interest were children with Autism Spectrum

Disorder (their data not included here), who often have sensory

sensitivities. The devices could be removed for water activities or

if the participant was experiencing skin irritation. Devices were

returned to the study team after the wearing period with shipping

materials provided to the caregiver, dropped off by caregiver or

family-member, or picked up at the participant’s home.
Accelerometry data processing and
variables extracted

Here we provide a brief overview of the data processing,

with more extensive details provided within each original study

(6, 18, 19). Data were downloaded from devices using ActiLife 5

or 6 software (Actigraph, Pensacola FL), plotted, and visually-

inspected to confirm wearing time. This secondary analysis used

the extracted 30 Hz data and down-sampled 1 Hz data. The

30 Hz data were bandpass filtered from 0.2–12 Hz to remove

constant linear acceleration components, such as gravity and

non-human accelerations (e.g., riding in a car or elevator).
TABLE 1 Variables extracted from the time series accelerometry data.

Movement
Characteristic

Variable

Duration (hrs) Total movement time Total time that either limb is moving.a

Time Time the limb is moving.a

[D & ND]

Isolated time Time that one limb is moving and the

[D & ND]

Simultaneous time Time that both limbs are moving.a

Intensity (gsb) Magnitude The median acceleration magnitude w

[D & ND]

Bilateral Magnitude The sum of the median acceleration m
movement intensity.

Peak Magnitude The maximum acceleration magnitude

[D & ND]

Symmetry Use ratioc Ratio of the duration of non-dominan

Magnitude ratioc Ratio of the magnitude of non-domin

Variation ratioc Ratio of the variance of non-dominan

Jerk asymmetry index Ratio of the average jerk magnitude be
0 = similar smoothness in the moveme

Complexity Variance The standard deviation of the accelera
tends to be. Units = gs.[D & ND]

Entropy The time series variability of the accel
entropy. Higher values indicate a mor[D & ND]

Jerkd Average rate of change of acceleration
Quantifies the smoothness of the limb[D & ND]

Mean of Frequency
Spectrumd

The weighted mean of the component
at which the participant tends to mov

[D & ND]

Variance of Frequency
Spectrumd

The weighted standard deviation of th
which the frequency of the participant
movement patterns (16). Units = hz[D & ND]

D, dominant side; ND, non-dominant side.
aEach second of data is binned as movement vs. no movement based on the threshold

and then divided by 3,600 to convert to hours.
bConverted from device-specific activity counts to gravitational units (g =m/s2), (1) A

described in this paper.
cUse, magnitude, and variation ratios equal 1 when the limbs are active for the same
dCalculated from the 30 Hz time-series data.
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Likewise, the 1 Hz data were bandpass filtered between

0.25–2.5 Hz and converted to activity counts (1 activity count =

0.001664 g), using ActiLife’s proprietary process. The accelerometer

data from each axis were transformed into vector magnitudes by

taking the square root of (x2 + y2 + z2). Accelerometer variables

were then calculated from the time-series, vector magnitude values.

Data from all three cohorts were reprocessed to ensure all

variables were computed the same way across cohorts. Table 1

provides the variables and their conceptual definitions, while

Supplementary Table S1 provides the formulae in annotated R

code. Variables were calculated and categorized according to four

characteristics of human movement: duration, intensity,

symmetry, and complexity as previously described (6, 32, 33).

When multiple ways to compute a construct or variable were

available in the literature, we defaulted to the mathematically

simpler option, e.g., calculated use ratio as a measure of

symmetry vs. mono-arm use index (18). We also selected the

calculations where the values are not dependent on the length of

the recording period. For examples, average jerk is calculated

instead of cumulative jerk (7), and average acceleration

magnitude is calculated instead of cumulative or total magnitude
Definition

other limb is still.a

hen the limb was moving, quantifying how intense the limb movement tends to be.

agnitude from both limbs. An aggregate measure of overall upper limb

that occurred during the recording period.

t to dominant limb movement.

ant to dominant limb movement.

t to dominant limb movement.

tween the limbs as (jerknon−dom—jerkdom)/jerknon−dom + jerkdom). An index of
nt of the limbs. Values are bounded between −1 and +1.

tion magnitude when the limb was moving, quantifying how variable the movement

erations from the limb during the maximum hour of activity. Calculated as sample
e random signal.

in gravitational units across the recording period, when the limb was moving.
movements where lower values indicate smoother movement. Units = g/s.

frequencies from the acceleration time series. An aggregate measure of the frequency
e their upper limb, which may relate to disordered movement. Units = hz.

e component frequencies from the acceleration time series. Quantifies the degree to
’s upper limb movement fluctuates. Higher values may indicate more complex

of 2 activity counts. Seconds of movement over the recording period are summed

ctigraph activity count is approximately equal to 0.001664 gs when processed as

amount of time, magnitude, and variability, respectively.
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(6). Other variables were selected because preliminary data suggest

they may differentiate between and/or be predictive of future

neurodevelopmental diagnosis, e.g., variance of the frequency

spectrum (6, 16). Duration, intensity, symmetry, and some

complexity variables were computed from the 1 Hz time-series

data. Other complexity variables required higher time resolution

so the 30 Hz time series data was used (see Table 1). Variables

were computed from the entire recording period, except for

entropy of the dominant and non-dominant limb, which were

computed from the hour of maximum activity (6). Periods of

sleep were not removed due to their trivial effect on upper limb

accelerometry variables [Miller et al. 2024 (www.researchsquare.

com/article/rs-3838376/v1)]. For variables reflecting the intensity

and variance in activity counts, reported values were converted

back to gravitational units (gs), since this unit of measure is

device-independent. The factor that was used was 1 activity

count = 0.001664 gs, which is an approximation when used as a

reconversion factor [for more information see (34, 35)]. While

research into the psychometric properties and clinical utility of

these variables is at various stages of scientific development (36),

we report on 25 variables to provide a comprehensive set of

variables from which others may select the most appropriate for

their research and clinical efforts.
Statistical analyses

All statistical analyses were performed in the R environment

version 4.3.1. Descriptive statistics and distribution plots were

generated for each variable. Relationships between variables on

the dominant and non-dominant limbs and the influence of age

were determined using Pearson Product Moment correlations.

Sex differences for each variable were evaluated using t tests. We

next examined the stability of the variables 3 ways. The first way

examined the absolute agreement between measurements using

Intraclass Correlation Coefficients (ICCs) with an ICC[2,k]

model (37). The second way we examined the magnitude of the

day-to-day variation was with a mixed-effect model. Each sensor

variable was estimated by: yij ¼ Xbþ gi þ eij, where β included

fixed effects of Age (linear, quadratic, and cubic effects), Sex

(male v. female) and Day (linear effect) and a random intercept

for each subject. γi. The standard deviation of the residuals, seij ,

thus represents unexplained day to day variation, j’s, in a given

variable, after systematic sources of variance have been removed.

The third way expressed the relative magnitude of the day-to-day

variation, computing a coefficient of variation (SD/mean) for

each participant and then taking the mean of these values. Last,

we explored relationships between variables, also using Pearson

Product Moment correlations. For these correlations,

observations across days were averaged to obtain one observation

for each participant. Each of these analyses resulted in a large

number of statistical tests with substantial opportunity for

spurious findings. Thus, we restricted statistical significance

within each analysis by the number of variables analyzed using

Bonferroni corrections, resulting in an adjusted significance

threshold of p < 0.002 (0.05/25).
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Towards the goal of making these data useful to others in

pediatric research, we also built a web-based display of the data

and the resulting analyses via an R Shiny object (38). This

provided a web-based, graphical user interface for users to view

to suit their own needs. This interface uses the same source data

and shows many of the analyses presented here.
Results

The included data set consisted of 622 recording days from 222

typically-developing individuals collected between 2012 and 2022.

Data from multiple days were grouped by individual for the

analyses, but are displayed by recording day in figures.

Participant demographics are provided in the top of Table 2. Sex

was equally distributed, and the sample contained mostly white,

non-Hispanic, socioeconomically-advantaged participants [as

quantified by the Area Deprivation Index (39)]. The number of

participants and the number of recording days for each age are

provided in Supplementary Table S2. Descriptive statistics from

the 25 accelerometry variables are provided in the bottom of

Table 2. Figures 1, 2 show distributions, scatterplots with age,

and mean values by sex for 8 example variables. Most, but not

all variables were normally distributed, as can be seen in the left

columns of Figures 1, 2 and by the similarities between the mean

and 2nd quartile (median) values in Table 2.

Table 3 provides statistics from the side-to-side, age, and sex

relationships, ICCs, and day-to-day variance. Values from the

dominant and non-dominant limb were highly correlated with

each other. Figures 1D,G illustrate this for the dominant and

non-dominant magnitudes. The side-to-side similarities are also

mathematically apparent in the symmetry variables, with an

example of the use ratio shown in Figure 1J. Many of duration,

intensity, and complexity variables declined gently (e.g.,

Figures 1B,E,H, 2E,H), while the symmetry variables were stable

across the 3–17 yr. age range (e.g., Figure 1K). Sex differences

were found in only three variables: the dominant limb peak

magnitude and variance, and the variation ratio. ICC values

ranged from 0.66–0.94. The values of the sensors variables

fluctuated day-to-day. Typical day-to-day variance, as quantified

by the standard deviation of the mixed effect model residuals,

provides the fluctuations in units of each variable. The coefficient

of variation across days presents the day-to-day fluctuations as a

percentage, to allow readers to consider the relative stability of

each variable.

Figure 3 shows the correlation matrix between variables for the

non-dominant side. Correlation coefficient values were nearly

identical within the dominant side, so only one correlation matrix

is shown here. Correlations stronger than r = 0.20 (positive or

negative) were statistically significant at the corrected p value of

0.002. Duration and intensity variables were moderately to

strongly related to each other such that longer durations were

associated with more intense movements. The exception to this is

isolated time, such that longer durations of single limb only

movement where associated with less intense movement.

Duration and magnitude variables were also related to several
frontiersin.org
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TABLE 2 Demographic characteristics of the sample (top) and descriptive statistics for the accelerometry variables (bottom).

Descriptive statistics Missing data
Age (yrs) 9.4 ± 3.8 (3–17) 0

Hand dominance 94% Right, 6% Left 3%a

Sex 52% Male, 48% Female 0

Ethnicity 94% Non-Hispanic/Latinx, 6% Hispanic/Latinx 3%

Race 90% White, 4% Black or African American, 3% Asian, 3% More than one race 3%

Area Deprivation Indexb 36 ± 21 (5–93) 3%

Device wear time/day (hrs) 21.4 ± 4.8 (10–25) 0%

Mean SD SE Min 1st quartile 2nd quartile 3rd quartile Max

Duration variables (hrs)
Total movement time 10.55 1.65 0.07 5.76 9.56 10.80 11.76 15.84

D time 8.93 1.65 0.07 4.08 7.92 9.11 10.08 12.80

ND time 8.56 1.62 0.07 4.08 7.44 8.71 9.71 12.65

D isolated time 1.79 0.51 0.02 0 1.44 1.68 2.16 3.84

ND isolated time 1.44 0.43 0.02 0 1.20 1.44 1.68 3.6

Simultaneous time 7.05 1.74 0.07 2.16 6.00 7.2 8.24 12.24

Intensity variables (gs)
D magnitude 0.134 0.024 0.001 0.042 0.120 0.134 0.149 0.225

ND magnitude 0.135 0.023 0.001 0.043 0.122 0.135 0.149 0.225

Bilateral magnitude 0.270 0.046 0.002 0.084 0.242 0.270 0.298 0.450

D peak magnitude 1.952 0.359 0.014 0.833 1.727 1.982 2.189 3.082

ND peak magnitude 1.887 0.348 0.014 0.762 1.666 1.923 2.129 3.059

Symmetry variables
Use ratio 0.96 0.06 0.002 0.74 0.92 0.96 1.00 1.16

Magnitude ratio 1.01 0.09 0.004 0.72 0.96 1.00 1.05 1.36

Variation ratio 0.99 0.06 0.002 0.73 0.96 0.99 1.03 1.22

Jerk asymmetry index −0.018 0.048 0.002 −0.371 −0.046 −0.018 0.008 0.172

Complexity variables
D variance (gs) 0.187 0.036 0.001 0.098 0.162 0.182 0.209 0.318

ND variance (gs) 0.185 0.035 0.001 0.103 0.161 0.181 0.204 0.347

D entropy 0.82 0.34 0.01 0.10 0.56 0.80 1.03 2.04

ND entropy 0.77 0.35 0.01 0.08 0.52 0.74 0.98 2.09

D jerk (g/s) 1.55 0.61 0.02 0.35 1.11 1.45 1.84 4.40

ND jerk (g/s) 1.48 0.61 0.02 0.34 1.07 1.37 1.75 4.64

D mean frequency (hz) 3.42 0.35 0.01 2.10 3.19 3.42 3.65 4.66

ND mean frequency (hz) 3.42 0.30 0.01 2.56 3.22 3.42 3.62 4.38

D frequency variance (hz) 2.68 0.16 0.006 1.90 2.59 2.68 2.798 3.21

ND frequency variance (hz) 2.65 0.16 0.006 1.92 2.56 2.66 2.76 3.01

D, dominant side; ND, non-dominant side.
aWhen hand dominance was missing, the participant was assumed to be right handed for data processing purposes.
bArea Deprivation Index national percentiles, based on US Census block group. Values range from 0 to 100, with higher values indicating greater socioeconomic

deprivation (39).

Lang et al. 10.3389/fped.2024.1361757
complexity variables, such that longer and more intense movement

was associated with more variable (ND variance), less uniform (ND

entropy), and less smooth (ND jerk) movement.

The analyses for each variable can be viewed with via the

R Shiny Object at https://langlab.shinyapps.io/harmonized_data/.

The left-side menu allows the user to select the sensor variable

category, and then the specific variables, age ranges, and sex of

interest. User selections determine which data populate the table

at the top and the related graphs. As one example, a user could

select the sensor variable category of “Intensity”, the sensor

variable of “ND_magnitude”, the age from 5 to 5.99, and the sex

to “Both” to view the values and graphs specific to 5 yrs olds. As

another example, one could set the age from 12 to 14 and select

only “Males” to see values for middle school–aged boys for this

same or other variables. Two notes for these data are: (1) as age
Frontiers in Pediatrics 05
ranges become more narrow and the sample sizes decrease, the

computed correlations vary widely; and (2) plots and statistics in

the visualization are based on all available observations, not

aggregated to one observation per subject. As data used for these

analyses become publically available, the links on the bottom of

the left-side menu will be updated.
Discussion

This report provides comprehensive information on 25

variables extracted from bilateral, wrist-worn accelerometers from

typically developing children, ages 3 to 17 years. The majority of

variables were similar on dominant and non-dominant sides,

moderately-associated with age, and not different between boys
frontiersin.org
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FIGURE 1

Example variables from the duration (A–C), intensity (D–I) and symmetry (J–L) categories. Left column: variable distributions; middle column:
scatterplots with age; right column: boxplots by sex.

Lang et al. 10.3389/fped.2024.1361757
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FIGURE 2

Example variables from the complexity category. Left column: variable distributions; middle column: scatterplots with age; right column: boxplots by sex.

Lang et al. 10.3389/fped.2024.1361757
and girls. ICC values were moderate to excellent. Variation within

individuals across days ranged from 3% to 32% in the 25

variables, excluding the jerk asymmetry index. These data provide
Frontiers in Pediatrics 07
a quantification of many of the constructs of interest found in the

literature [e.g., relative symmetry between the two limbs (4, 11,

18, 40) quantified by four variables here], and generate the
frontiersin.org
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TABLE 3 Statistics from analyses on side-to-side relationships, age, sex, and day-to-day stability.

Corr. between D &
ND sides

Corr. with
age

Sex
differencesa

ICC[2,k] Typical day-to-day
variationb

Coefficient of variation
across daysc

Total movement
time

– −0.26 0.23 0.82 1.14 8.6%

D time 0.95 −0.38 0.28 0.82 1.14 10%

ND time −0.40 0.14 0.84 1.08 10%

D isolated time 0.48 0.34 0.10 0.76 0.37 17.1%

ND isolated time 0.35 −0.04 0.73 0.33 18%

Simultaneous time – −0.44 0.19 0.85 1.11 12.8%

D magnitude 0.89 −0.32 0.001 0.85 0.017 9.5%

ND magnitude −0.30 0.002 0.85 0.015 9.4%

Bilateral magnitude – −0.32 0.005 0.85 0.030 9.3%

D peak magnitude 0.72 −0.11 −0.187 0.79 0.256 10.3%

ND peak magnitude −0.14 −0.101 0.77 0.257 10.8%

Use ratio – −0.12 −0.01 0.76 0.04 3.7%

Magnitude ratio – 0.15 0.007 0.85 0.06 4.4%

Variation ratio – 0.06 0.026 0.74 0.05 3.8%

Jerk asymmetry
index

– −0.06 −0.007 0.86 0.032 138%d

D variance 0.94 −0.18 −0.013 0.82 0.025 10.2%

ND variance −0.20 −0.008 0.82 0.024 9.9%

D entropy 0.89 −0.39 −0.03 0.66 0.28 29.2%

ND entropy −0.39 −0.07 0.69 0.29 31.8%

D jerk 0.97 −0.39 −0.21 0.93 0.31 17.7%

ND jerk −0.38 −0.19 0.94 0.29 17.6%

D mean frequency 0.86 −0.26 0.10 0.82 0.24 5.5%

ND mean frequency −0.36 0.07 0.86 0.19 4.6%

D frequency
variance

0.85 −0.33 0.002 0.71 0.13 3.7%

ND frequency
variance

−0.41 −0.003 0.79 0.11 3.4%

Statistical significance (p < 0.002) marked by bold italics for correlations and comparisons.
aFor sex differences, negative values indicate higher values in males. Values are in units of the variable.
bTypical day-to-day variation in units of the variable, estimated from the residuals of the mixed effect model.
cCoefficient of variation shows the relative day-to-day variation (mean value of CoVi ¼ si=�xi for each participant, i, across the sample).
dJerk asymmetry index mean values approach zero, mathematically inflating the daily variation when expressed relative to the mean.
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calculations so that values are not dependent on the length of the

recording period [e.g., average jerk instead of cumulative jerk (7),

average acceleration magnitude instead of total (6)] or the device

used [values here in gravitational units and not device-specific

activity counts (1)]. Employing uniform calculations will facilitate

comparison of data across papers and populations. Where it is

possible to make direct comparisons with other literature, our

values indicate that upper limb movement is less symmetrical and

less intense in samples of children with cerebral palsy, perinatal

stroke, or brachial plexus injury (1, 11, 40, 41). Similarly,

estimated comparisons to children with Duchenne Muscular

Dystrophy suggest that increasing Brooks scale ratings would

correspond with intensity estimates that fall further and further

below the mean values presented here, with a rating of 1 (least

severe disease state) corresponding to −1 SD here, and a rating of

4 (most severe disease state) corresponding to >4 SDs below our

mean (8). With the use of wearable movement sensors rapidly

increasing, these data provide key, referent information for

researchers as they design studies, and analyze and interpret data

from neurodevelopmental and other pediatric clinical populations.

Variables recorded from the dominant and non-dominant

sides were strikingly similar and highly correlated with each
Frontiers in Pediatrics 08
other. These data mirror referent accelerometry data from adults

(42), despite the universal phenomenon of hand dominance (43).

While one might think of the dominant limb being more active

in daily life, these data confirm that most upper limb activity

involves the use of both sides, e.g., one hand being used to grasp

a container and the other hand being used to open the container.

Note that these data do not imply that the limbs are doing the

same movements at the same time; the accelerometry variables

cannot identify the specific movements that were made. Instead,

the data imply that characteristics of limb movements, as

quantified by these variables over many hours, are highly similar

between the dominant and non-dominant sides. Thus for future

studies, wearing one sensor on either limb may be sufficient

when a research team is studying pediatric conditions that affect

movement on both sides. Wearing sensors on both sides may

remain important for conditions that have an asymmetrical effect

on movement (4, 5, 40, 44).

Three other results have important implications for the use of

wearable motion sensors in pediatric populations. First, most

variables decreased slightly with increasing age and had high

variability within each age (e.g., scatterplot panels in Figures 1,2).

These findings are consistent with the general decrease in
frontiersin.org

https://doi.org/10.3389/fped.2024.1361757
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 3

Correlation matrix showing relationships between variables on the non-dominant (ND) side. The correlation matrix for the dominant side (not shown)
is nearly identical. Correlation coefficients > ±0.20 were statistically significant, with values weaker than that represented by empty or nearly empty
squares in the matrix.
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physical activity in children as they move into adolescence (45).

Thus, researchers can select a wide range around their target

ages, when identifying referent control or comparison data for

their population of interest. Second, unlike with physical activity

measures (45), sex had small influences on only three of 25

variables. Indeed the between sex difference for each variable

(middle column of Table 3) was much smaller than the day-to-

day variability (adjacent, right column of Table 3) and minimal

compared to the sample standard deviation (2nd column of

Table 2). Researchers therefore can feel confident in using

referent data from both sexes for most variables. And third, the

estimates of day-to-day variance (right two columns in Table 3)

indicate that researchers may want to consider a trade-off

between stability of the variable of interest and participant

burden. These estimates are computed from 2 to 4 wearing days,

which is much shorter than the weeks to months data collection

used for determining physical activity (45). The moderate to

excellent ICC values indicate that averaging across the 2–4 days

produces stable values. For variables with lower day-to-day

variance (e.g., use ratio, D and ND frequency variables), sensor

wearing periods of 2 days may be sufficient to capture a precise

estimate. For variables with higher day-to-day variance (e.g., D

and ND jerk and entropy), longer sensor wearing periods may be
Frontiers in Pediatrics 09
needed to achieve greater precision. Many clinical studies often

require that assessments occur repeatedly over weeks or months.

In our experience, participants tend to be more compliant with

repeated wearing when the individual wearing periods are

shorter. The values in Tables 2, 3 can also assist the design of

longitudinal studies, providing data to estimate the amount of

change that may be detectable (or considered real change) over

time for each variable. The R Shiny object serves as an important

extension of this paper, giving anyone the opportunity to explore

these data for their own research or clinical questions.

Two main limitations of this data set are its demographic

make-up and its sample size. As with many existing data sets,

persons of color and under-resourced children were under-

represented. While the sample included 622 recording days, the

data came from 222 children. We intentionally labeled it

“referent” data, since the sample was not large enough to merit

the label of “normative” data across the age range of 3–17. An

additional limitation to ponder is that values were not always

calculated from the same duration of wearing time. We used

10 h of recording as the minimum included here, i.e., the

minimum to sufficiently sample movement activity for a day.

Average device wearing time was high at 21.4 h (Table 2), with a

median value of 24 h. Different recording durations could have
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the largest influence on the Duration variables, since variables in

other categories are primarily statistical features of the signal and

not sums. Most of the included recording days that were <24 h

were in the younger children, where parents helped the child don

the devices after waking up and then removed them at bedtime.

Despite the shorter recording time in some participants, we were

able to detect similar relationships between age and the Duration

variables as with age and the Intensity and Complexity variables.

These relationships suggest that the influence of different

recording lengths may be minimal.
Conclusions

We have provided comprehensive referent data on 25 variables

extracted from wrist-worn motion sensors in typically-developing

children between the ages of 3 and 17. These data can serve as

comparator values for ongoing and future studies in clinical

pediatric populations, and may be of particular high value for

rare or orphan diseases (10). Further data collection for children

from 6 months to 3 years of age is underway as part of NIH

R01MH723123 and data sets from 6 adult cohorts are being

reprocessed with the same methods. As new cohorts from our

group and others are studied using a similar protocol, the field

will benefit from adding these data, especially data from under-

represented communities, to this harmonized database.
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