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A review of common influencing
factors and possible mechanisms
associated with allergic diseases
complicating tic disorders
in children
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Xuwu Xiao1,2*
1Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian,
Liaoning, China, 2Dalian Medical University, Dalian, Liaoning, China
Over the past few decades, the incidence of childhood allergic diseases has
increased globally, and their impact on the affected child extends beyond the
allergy itself. There is evidence of an association between childhood allergic
diseases and the development of neurological disorders. Several studies have
shown a correlation between allergic diseases and tic disorders (TD), and
allergic diseases may be an important risk factor for TD. Possible factors
influencing the development of these disorders include neurotransmitter
imbalance, maternal anxiety or depression, gut microbial disorders, sleep
disturbances, maternal allergic status, exposure to tobacco, and environmental
factors. Moreover, gut microbial disturbances, altered immunological profiles,
and DNA methylation in patients with allergic diseases may be potential
mechanisms contributing to the development of TD. An in-depth investigation
of the relationship between allergic diseases and TD in children will be
important for preventing and treating TD.
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1 Introduction

Allergic diseases in children include food allergy (FA), atopic dermatitis (AD), allergic

rhinitis (AR), allergic conjunctivitis (AC) and allergic asthma (AA), which are chronic

inflammatory disease with symptoms such as hives, swelling, vomiting, diarrhea, itchy

rashes on the skin, watery or itchy eyes, sneezing, congestion, tightness of chest

coughing and reversible airflow limitation (1, 2). Allergic diseases are systemic disorders

caused by an impaired immune system, and their pathogenesis is complex and involves

many factors, including genetics, epigenetics, environmental factors, and the body’s

immune status (3). IgE is a key factor in the pathogenesis of allergic diseases. Allergens

and IgE sequentially activate dendritic cells, and T and B cells to initiate allergic

immune responses (4). Simultaneously, they activate mast cells, basophils, and

eosinophils to release inflammatory mediators, resulting in allergic reactions (5). Not

only do allergic diseases lead to a rise in school absenteeism and a decrease in

children’s involvement in outdoor activities (6), but studies have also suggested a
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possible link between these conditions and the development of

neurological disorders (7), particularly Tic disorder (TD) (8).

TD is a group of chronic neurological disorders that begin in

childhood and adolescence, usually occurring for the first time at

the age of 5–6 years and is characterized by sudden, rapid,

repetitive, stereotypical, non-rhythmic, non-rhythmic single- or

multi-located muscular and/or vocal tics of an involuntary

nature (9). TD can be categorized into Provisional tic disorders

(PTD), Chronic motor or vocal tic disorders (CTD), and

Tourette’s syndrome (TS), depending on their characteristics

and the progression of the disease (10). TD is often

accompanied by other neurodevelopmental or emotional

behavior disorders, with the most common co-morbidities

encompassing attention deficit hyperactivity disorder (ADHD),

autism spectrum disorder (ASD) and obsessive-compulsive

disorder (OCD) (11, 12). Children with TS or other persistent

TD can experience co-occurring disorders, functional

impairments, discrimination, and bullying victimization or

perpetration (13, 14). However, the etiology and pathogenesis of

TD are currently unknown.

An increasing number of studies indicate that allergic diseases

could significantly impact TD. The presence of elevated serum IgE

levels and a positive skin prick test in children with TD implies

that the symptoms experienced by TD may bear resemblance

to allergies or be connected to allergic diseases (15, 16).

Furthermore, the primary indications of TD in children are

blinking of the eyes, shrugging of the nose, clearing of the

throat, coughing, and may experience discomfort in their eyes

and nasal passages (17). Consequently, TD can be erroneously

identified as AR, AC, or AA. Studies have indicated that certain

children with TD may experience an amelioration of their

symptoms following antiallergic therapy (18, 19). This suggests

that allergic diseases are closely related to TD in terms of

pathophysiology and immunity.

This review collected studies about the correlation between

allergic diseases and TD, analyzed the common factors affecting

the occurrence of both, and discussed the potential mechanisms

through which allergic diseases may impact TD.
2 Methods

In order to discuss the relationship between allergic diseases

and tic disorders in children, we undertook a systematized

literature search that included clinical studies and experimental

studies. Searchers were conducted using Pubmed, Google Scholar,

EBSCO, Scopus and Medline with the following key terms:

allergy OR allergic rhinitis OR allergic conjunctivitis OR asthma

OR atopic dermatitis OR food allergy AND tic disorders AND

children, allergy OR tic disorders AND immunology OR

neurotransmitter agents OR genetics OR gut microbiota OR

sleep OR environment, allergy OR tic disorders AND mechanism

OR immunological OR DNA methylation. Studies from all years

were included. Some review articles and their reference lists were

also searched to identify related articles.
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3 Epidemiology

Over the past 20 years, the prevalence of childhood allergic

diseases has been increasing globally (20, 21), already affecting

about 25% of children (22). In 2010, the occurrence of FA among

children in the US stood at 8.0% (23), while in 2019, the

prevalence of FA among children aged 2 years and below in

Wenzhou, China, escalated to 11.1% (24). Approximately 13% of

children in the US and 15%–38% of children under the age of 5

globally are affected by AD (25). In 2013, the occurrence of AR

among 12–15 years old in Europe ranged from 15.1% to 37.8%

(26). From 2015 to 2017, the prevalence of AR among children in

inland areas of China was 26.6%–28.5% (27, 28). A population-

based study indicated that AC alone has been estimated in 6%–

30% of the general population and up to 30% in children alone

or association with AR (29). The number of asthma cases in the

US rose from 7.3% in 2001 to 7.9% in 2017 (30), and the total

number of asthma cases among Chinese children under 14 years

old rose from 1.97% in 2000 to 3.02% in 2010 (31, 32). Allergic

diseases recurrence rate is high, which brings great pain to and

imposes a severe financial burden on patients.

At the same time, the prevalence of TD has been on the rise in

the last few years (33). According to a systematic review and meta-

analysis of 13 studies of children, the prevalence of TS is estimated

to be 0.77%, while the prevalence of PTD is estimated to be 2.99%

(34), and TD is more common in boys than girls, with a ratio

between 2 and 1 and 3.5 to 1 (35). A CDC study using parent-

reported data found that 1 out of every 333 (0.3%) children 3–17

years of age in the US have received a diagnosis of TS (36). The

combined prevalence of TS and other TD is estimated to be over

10 cases per 1,000 (1%, 1:100), suggesting that over ½ million

children have a TD in the US. And the overall rate of TD in

Chinese kids varies from 1.04% to 2.98% (37, 38). This variability

in rates across different regions and populations could indicate a

complex interplay of genetic, environmental, and possibly cultural

factors influencing the manifestation of these disorders.
4 Correlation between allergic and TD

In 1984, in an overview of the clinical experience of 300 TS

patients, Bruun noted that “although there is no evidence of

allergy as a cause of TS, my clinical experience suggests that

exacerbation of TS symptoms is usually associated with seasonal

allergic reactions or the ingestion of allergens in food” (39). In

1985, Finegold first reported elevated serum IgE and positive skin

prick test in four patients with TS who presented to an allergy

specialist. He noted that the symptoms of patients with TS can

resemble allergies or appear in combination with allergic diseases

(34). Mandell’s letter in response to Finegold’s report, said his

survey of 26 TS patients showed that 80% had allergies.

Unfortunately, Mandell’s report does not mention any details of

the materials and methods used, or the laboratory tests performed

on TS patients (40). In 1987, Comings et al. after comparing 247

patients with TS and 47 with the control group, concluded that
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there was no statistical difference between the two groups in terms

of comorbid allergic disease (41). In 1997, Kim suggested that some

foods may be involved in TS because they promote the production

of certain neurotransmitters (42). In 1999, a study published by Ho

showed that 41 of 72 TS patients (56.9%) had clinical allergies and

tested positive for allergens, which was much higher than the 44.3%

allergy rate in the local population. Therefore, this study concluded

that the incidence of allergy in TS patients was significantly higher

than that in the general population (43). Despite the conflicting

results of the aforementioned studies, there is an increasing focus

on the potential link between allergic conditions and the

emergence of TD.

In 2011, Chang included 845 TS patients aged 2–18 years and

3,378 controls matched to the case group in terms of age, sex, and

urbanization levels based on the Taiwan Health Database, to assess

the correlation between allergic diseases and TS. The results

showed a significant correlation between allergic diseases and TS,

with subjects with AR having a doubled risk of TS (corrected

OR = 2.18), and the corrected ORs for AA, AD, and AC were

1.82, 1.61, and 1.33, respectively, and the risk of TS rises with

the number of comorbid allergic conditions (44). In 2013, Chen

found a significantly increased risk of TD in patients with

ADHD combined with allergies, following a further expansion of

the study population, according to Taiwan Health Database (45).

In 2014, a preliminary study in Turkey showed a higher rate of

AR diagnosis in TD patients than in controls (40.6% vs. 17.1%,

p = 0.033), suggesting a significant correlation between allergic

diseases and TD (46). In 2019, Chen reported the association

between AC and TD through a case-control study and found

that children with TD had a significantly higher incidence of AC

(74.3% vs. 17.1%, p < 0.001), higher skin prick test positivity

than controls (80.0% vs. 20.0%), and a history of AR was

significantly associated with TD (47). It can be seen that as

research progresses, more and more studies show that children

with TD are more likely to be diagnosed with allergies than

healthy children.

In 2021, Liu showed that allergic diseases increased the severity

of TD childhood (48). In 2022, a meta-analysis provided strong

evidence for a relationship between allergic diseases and TD: TD

is positively associated with AA, AR, and AC (21). In 2022,

Zhang et al. showed some concordance with TD in the grading

and distribution of IgE and sIgE levels in children with allergic

diseases (49). In the same year, Chang et al. used a case-control

study found that allergic diseases were associated with the

development of TD in children, with AC having the highest

correlation with TD (OR = 4.95), followed by eczema (OR = 2.64),

AR (OR = 2.64), and FA (OR = 2.50), and this study also found

that more than 80% of the children’s allergic diseases preceded

the development of TD (50).

The above studies have shown that not only is there a

correlation between allergic diseases and TD, but that allergic

diseases may be an important risk factor for the occurrence and

severity of TD. Hence, it is crucial to analyze the factors that

may contribute to the simultaneous occurrence of both and delve

deeper into the mechanisms through which allergic diseases

impact TD, to effectively prevent and treat TD.
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5 Common risk factors for allergy
and TD

Research from various studies had highlighted common factors

such as neurotransmitter imbalance, maternal anxiety or

depression, gut microbial disorders, sleep disturbances, maternal

allergic status, exposure to tobacco and environmental factors in

both allergic diseases and TD. In the following segment, we provide

proof regarding the role of these elements in allergic diseases and TD.
5.1 Neurotransmitter imbalance

Allergy and TD, both are governed by neurotransmitters—

allergies by histamine and TD by serotonin and dopamine.

Allergies can affect the nervous system, leading to symptoms such

as red itchy eyes, sneezing, and altered gastrointestinal motility,

which are mediated by the release of mediators that interact with

sensory nerves and alter transmission in autonomic nerves (51).

Mediators linked to allergies can engage with sensory nerves,

modify the central nervous system’s (CNS) processing, and alter

transmission in autonomic and enteric nerves, leading to

neuronally-based symptoms of allergy. Synaptic interactions

between presynaptic and postsynaptic components within the

sympathetic, parasympathetic, and enteric ganglia are crucial for

the autonomic and enteric nervous systems. Presynaptic neurons

originating from the CNS are responsible for regulating efferent

neurons in the majority of organs. Stimulation of the

preganglionic nerve occurs in the CNS, where action potentials

travel along the preganglionic axon, eventually establishing

synapses with autonomic ganglia neurons. Rather than mere relay

stations, these ganglia serve as locations for filtering and

assimilating CNS inputs. In allergies, this could be significant as

mast cells are frequently linked with ganglia that are sympathetic,

parasympathetic, and enteric (51). Specifically within the intestinal

tract, there exists a self-governing efferent regulation that operates

independently from the CNS’s neural processing. Here, a sensory

nerve, upon sensing a local environmental stimulus, can relay this

data straight to adjacent efferent enteric neurons via local afferent-

efferent synapses. Known as a local “peripheral reflex”, these

enteric ganglion neurons engage in communication via

intraganglionic pathways. Other internal organs, like the airways

and gall bladder, may also exhibit peripheral reflexes, though not

as extensively as those in the gastrointestinal system (52).

Histamine is pivotal in the development of various allergic

conditions like AD, AR, and AA, through differential regulation

of T helper lymphocytes. Histamine is responsible for boosting

the release of Th2 cytokines like IL-5, IL-4, IL-10, and IL-13, and

suppressing the production of Th1 cytokines including IFN-γ,

IL-12, and IL-2. Consequently, histamine plays a role in

maintaining the equilibrium between Th1 and Th2 cells, aiding

in the transition towards Th2 cells (53). Primarily found in mast

cells and basophils, histamine plays a key role in allergic

conditions, facilitating asthma’s initial two primary symptoms

(bronchospasm and edema) via its H1 receptor and mucus
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secretion through its H2 receptor (54). Therefore, histamine plays a

crucial role in the pathophysiology of allergic diseases. Studies have

revealed a critical role of the Gamma-Aminobutyric Acid (GABA)

signaling pathway in the airway epithelium of AA through its

ability to stimulate mucus production (55). Additionally, GABA

can inhibit allergic reactions in the airways of guinea pigs by

stimulating GABA receptors (56). GABA can also suppress the

immune system, thereby easing the allergic responses (55). At the

same time, there is evidence to suggest a relationship between

serotonin, also known as 5-hydroxytryptamine (5-HT), and

allergies. Allergic sensitization can modify the pulmonary

expression of 5-HT receptors in guinea pigs (57).

Supplementation with 5-hydroxytryptophan (5-HTP), a precursor

to 5-HT, has been found to inhibit allergic lung inflammation

and airway responsiveness induced by allergens (58). It can be

seen that changes in various neurotransmitters are closely related

to the development of allergies.

Although the exact cellular and molecular base of TS is as yet

elusive, research in neuroanatomy and neurophysiology suggests

the participation of cortical-striatal-thalamocortical pathways,

connecting distinct areas of the frontal cortex with subcortical

formations (59). Within these circuits, the transmission of

messages is regulated through various neurotransmitters, including

dopamine, histamine, GABA, and 5-HT (60).

While dopamine is the most regularly detected neurotransmitter

alteration in TD, there’s a strong probability that patients exhibit

dysfunction in various neurotransmitter systems. Changes in the

brain’s histamine modulation system are recognized as a factor in

the emergence of tics and TS, with genetic studies showing that

histamine dysregulation can lead to TD. Histamine H3 receptor

activation in the dorsal striatum has been found to trigger

stereotypies in a mouse model of TD (61). Mice with a knockout

of the histidine decarboxylase gene, which is involved in histamine

production, demonstrate recurrent behavioral disorders,

imbalanced dopamine levels, and modified indicators of cell

function and internal signaling within the striatum (61). A study

also found that individuals with TS exhibit increased GABA in

brain areas linked to the planning and selection of movements

(62). Another study found that GABA is involved in the

pathophysiology of TD, and increased GABA levels may

contribute to enhanced control over motor excitability in TS (63).

In addition, 5-HT and 5-hydroxyindoleacetic acid levels may

play a role in the genesis of TD, but these findings have no

significant correlations with the severity of TD (64). In

summary, neurotransmitter imbalance has been implicated in the

development of TD, but the exact mechanisms involved are still

not fully understood.

The above analyses showed that alterations in neurotransmitters,

particularly histamine, GABA and 5-HT, all have an impact on

allergic disease and TD.
5.2 Maternal anxiety or depression

Epidemiological research indicates that the health of a mother,

both before conception and throughout pregnancy and after birth,
Frontiers in Pediatrics 04
play a significant influence in her child’s health. The correlation

between allergies and TD may manifest before birth. There is

growing evidence that the presence of stress, depression, or

anxiety in mothers before, during, and following pregnancy can

significantly impact their offspring, rendering them more

vulnerable to allergy (65–67) and/or TD (68).

A longitudinal study in Mexico, examining 601 pairs of mothers

and infants, in order to comprehend the correlation between

maternal depressive symptoms and childhood asthma. The study

found that maternal postpartum depression or recurrent

depression was highly associated with asthma in children at 48

months (66). A large data survey in Korea found that maternal

depression was significantly associated with childhood asthma

(OR = 2.03) and AD (OR = 1.76) (69). Schoolchildren in China

were found to have a higher likelihood of developing rhinitis if

their mothers had symptoms of depression during and after

pregnancy (70). A cohort study from Singapore showed that

elevated scores of maternal depression before conception and

during pregnancy were associated with a greater chance of the

offspring developing wheezing within the initial 18 months of life

(71). A meta-analysis also showed a positive association between

maternal depression or anxiety and asthma in offspring (72). In

yet another study—a meta-analysis comprising 30 research

investigations and a separate cross-sectional study involving 3,758

pairs of Italian mothers and children—it was found that prenatal

maternal distress was linked to a higher likelihood of the

offspring developing eczema, rhinitis and asthma (73, 74).

Maternal depression or anxiety can impact the immune system of

the offspring by influencing the hypothalamic-pituitary-adrenal

(HPA) axis. This axis is crucial in regulating the body’s immune

responses to stressors. When mothers experience depression or

anxiety, it can trigger increased production and release of cortisol.

This reduces the expression of 11β-hydroxysteroid dehydrogenase

2 in the placenta, leading to higher levels of cortisol exposure in

the fetus (75–77). An increase in cortisol levels in infants can lead

to an imbalance in the HPA axis, which can activate a T-helper 2

(Th2) immune response by blocking interleukin-12, a Th1

cytokine (78), and raising Th2 levels (79, 80), thus exacerbating

inflammation and causing IgE-mediated allergic reactions (67).

A British prospective cohort study investigated 14,541 pregnant

women and their children and found that increased odds of TS/

CTD in children at age 13 were significantly associated with

maternal chronic anxiety (OR = 2.17) and antenatal depression

(OR = 1.86) (81). In a separate study, it was found that a

maternal background of non-specific psychiatric disorders—

encompassing anxiety disorders and depressive disorders—was

associated with higher odds of children experiencing TS/CTD

during their childhood and adolescence (82). In addition, the

severity of TS is also significantly related to maternal stress

during pregnancy (83). Reduced placental monoamine oxidase A

levels in maternal with depression can lead to increased 5-HT

levels, which detrimental to fetal brain development (84). In

addition, some studies have confirmed that regional connections

in fetal brain function related to arousal and consciousness

increase as maternal anxiety levels increase (85), and this pattern

may be closely related to the occurrence of TD.
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5.3 Gut microbial disorders

Gut microbial disturbance is another common factor between

allergies and TD. In the past decade, many studies have been

conducted to determine that microbial disturbance has an

important impact on the occurrence of allergic diseases, and in

TD patients, the role of microbial ecology has also received

increasing attention.

A cross-sectional study of 1,440 children showed that altered

gut microbial diversity is associated with reduced AD risk (86).

A Japanese study shows that children with a higher abundance of

Bacteroidetes in their gut microbiota during infancy are more

likely to develop allergic diseases after the age of 2 years (87). A

cohort study in Ecuador showed that increased fecal abundance

of Streptococcus and Bacteroidetes and decreased abundance of

Bifidobacterium and Ruminococcus in children as young as 3

months old was associated with allergy and wheezing at age 5

years (88). Research by Zhang et al. showed that the diversity of

gut microbial in children with AR was reduced and the

abundance of Bacteroidetes was significantly increased, and

changes in the gut microbial were correlated with clinical

symptoms (89). The gut microbiota plays a crucial role in the

immune system by influencing the development of either

responsive or tolerant reactions to various antigens. It achieves

this by maintaining a balance between the activities of Th1 and

Th2 cells while also regulating Th17 and T regulatory (Treg)

cells specifically within the lamina propria (90). Alterations in

gut microbial levels or diversity (dysbiosis) can disrupt mucosal

immunological tolerance, leading to allergic diseases (91, 92).

The gut microbiota of children with untreated TD has higher

abundance of Bacteroides plebeius and Ruminococcus lactaris, and

lower abundance of Prevotella stercorea and Streptococcus

lutetiensis (93). Chang et al. collected the feces of 15 TD children

and 10 healthy children for 16S rRNA high-throughput

sequencing. They observed that compared with healthy children,

the relative abundance of Firmicutes, Agathobacter,

Subdoligranulum, Ruminococcus_1 and Roseburia in TD children

was decreased, while the relative abundance of Bacteroidetes and

Erysipelatoclostridium increased (88). After 1 and 2 courses of

acupuncture, the symptom of TD children was lower than those

before treatment and the relative abundance of Firmicutes was

decreased, while Bacteroidetes and Erysipelatoclostridium was

increased. The above two studies showed that the gut microbial

of TD children may be disordered, and the improvement of gut

microbial is related to the relief of tic symptoms.

The common feature of children with allergies and TD is

increased levels of Bacteroidetes. Increased levels of Bacteroidetes

can lead to changes in short-chain fatty acid levels. Changes in

SCFAs levels may be an important factor in the co-occurrence of

the two.
5.4 Sleep disorders

Getting proper sleep is incredibly important for growth,

development, and overall well-being. Healthy sleep involves
Frontiers in Pediatrics 05
getting the right amount of sleep suitable for one’s age, ensuring

high sleep quality, uninterrupted sleep, and the absence of sleep

disorders. Sufficient sleep significantly contributes to brain

development, learning, memory consolidation, emotional

regulation, executive function, and various other critical functions

(94). Sleep disorders encompass a broad spectrum of sleep-

related issues. These can range from not getting enough sleep,

experiencing trouble falling asleep, waking up too early, having

low-quality sleep, facing disruptions in circadian rhythms,

dealing with insomnia, to disorders related to breathing during

sleep (95). Sleep disturbances can significantly affect the body’s

immune system, emotional state, and cognitive abilities (96).

Increasingly, there is mounting evidence indicating a

correlation between sleep disorders and outcomes related to

allergies. Research suggests that individuals who had insufficient

sleep (≤6 h per night) had a 1.27 times higher probability of

developing allergic sensitization compared to those who had

adequate sleep (7–8 h per night) (97). The correlation between

sleep and allergic skin conditions is particularly noteworthy in a

clinical setting, as sleep disturbances can contribute to the

development of allergic skin diseases (98, 99) and is positively

correlated with the severity of AD (100). According to a recent

study involving over 5,000 patients from 10 European countries,

inadequate sleep duration (<6 h) was linked to respiratory and

nasal symptoms (101). Moreover, sleep problems have been

found to mediate the association between asthma and allergic

rhinitis with psychological distress in children (102). A higher

proportion of eosinophils in peripheral blood is associated with a

more serious sleep disorder (103). Explain that allergies can

also affect sleep, leading to issues such as insomnia, trouble

falling asleep, trouble staying asleep, increased snoring, increased

risk for sleep apnea, poor sleep efficiency, and short sleep

duration (104).

In addition, sleep disorders are not uncommon in TD patients.

Approximately 65% of children with TD have exhibited various

forms of sleep disturbances. These issues can encompass

challenges in initiating sleep and increased disruptions during

sleep, leading to decreased sleep efficiency (105). A large US

population-based survey showed that poor sleep quality is related

to the severity of tics (106), and that proper sleep management

can help reduce the intensity and effect of TD on life (107).

Sleep disturbances in children with TS include increased night

waking, parasomnias, and sleep onset delayed (108). The severity

of TS symptoms experienced during the day has shown a

significant positive correlation with the frequency of awakenings

and changes in sleep stages during the night. Conversely, it has

exhibited a negative correlation with sleep efficiency, indicating

that more severe TS symptoms during waking hours often relate

to increased disruptions in sleep and reduced overall sleep

quality (109). The behavioral and cognitive impairments present

in some TD patients may be related to sleep disturbances (110).

Additionally, it has been reported that motor tics, associated with

TS, can persist even during sleep (105). Research has indicated

that TD patients combined with AR are more likely to develop

sleep disorders (111). Therefore, sleep disorders may be an

important factor in the co-occurrence of allergic diseases and TD.
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5.5 Mother’s allergies

Family history of allergic diseases is directly related to the

occurrence and severity of allergies in offspring, especially in

mothers. If the mother has allergies, the risk of the child

developing allergies is approximately 45% (112). Maternal total

IgE levels correlated with elevated infant IgE levels and infant

eczema (113). A cohort study showed that the offspring of

mothers with a history of AA and AR during pregnancy were at

higher risk of developing AD and AR (20). Studies have shown

that the levels of IL-10, TGF-β and Helios-induced Tregs in the

cord blood of mothers with allergies all decrease, which means

that the immune tolerance of such babies at the systemic level is

weakened after birth, which may be caused by maternal allergies,

an important mechanism for increased allergy risk in children (114).

Similarly, maternal allergies may also affect the occurrence and

development of TD in children. A nationwide prospective cohort

study conducted in Denmark revealed that 110 out of 2,442

children with TS had mothers with AD prior to pregnancy,

indicating a correlation between maternal AD and an elevated

likelihood of TS in the offspring (115). Although there is

currently few studies related to maternal allergies and childhood

TD, population-based cohort studies have shown that maternal

asthma is significantly associated with the development of ASD

and ADHD in offspring (116–118). ASD and ADHD are the

most common comorbidities of TD in children, especially

ADHD, which has a similar etiology and pathogenesis to TD (119).
5.6 Exposure to tobacco

Exposure to tobacco is a prevalent environmental factor.

Extensive evidence indicates that tobacco exposure during early

life doesn’t just impact prenatal development but can also cause

structural and functional changes. These alterations heighten the

risks of immune, cardiovascular, and neuroendocrine disorders

in offspring (120).

Allergic disease in children has been linked to exposure to

environmental tobacco during pregnancy and early life (121). A

comprehensive analysis of 43 studies encompassing 29 distinct

birth cohorts revealed that smoking during pregnancy heightened

the likelihood of wheezing in children under the age of 6 by 36%

(OR, 1.36; 95% CI: 1.19–1.55), while also elevating the risk of

asthma in children aged 6 and above by 22% (OR, 1.22; 95% CI:

1.03–1.44) (122). The meta-analysis revealed that maternal

smoking during pregnancy may elevate the likelihood of

recurring wheezing in infancy (123). Consequently, it can be

inferred that exposure to environmental tobacco smoke elevates

the risk of wheezing or asthma in children by a minimum of

20% (124). Maternal smoking during pregnancy could potentially

lead to a 13% increase in the risk of AR in offspring, particularly

if the mother is a passive smoker (125). Smoking while pregnant

and exposure to tobacco smoke during childhood might

represent non-allergic factors linked to higher risk and increased

occurrence of persistent asthma or rhinitis (126). In Ferrini’s

study, findings indicated that prenatal exposure to tobacco makes
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offspring more prone to heightened allergic airway inflammation.

This condition was linked to a decrease in the functioning of

pulmonary NK cells (127). Exposure to tobacco can trigger an

increase in the expression of Toll-like receptors (TLRs) and alter

the responses mediated by lipopolysaccharides. This exposure

influences the activation of nuclear factor-kB, prompts the release

of IL-8 by innate lymphoid cell-2 through epithelial cytokine

production, and affects chemotactic activity toward neutrophils

(128). Maternal smoking during pregnancy leads to epigenetic

changes, including the increased expression of miRNA-233 and a

reduction in the number of Treg cells in the offspring’s cord

blood at birth. These changes can contribute to an inclination

towards atopic conditions and an increased risk that persists

during early infancy (121). Exposure to tobacco during

pregnancy is considered a potential factor contributing to the

development of childhood allergic diseases and this connection is

believed to occur through epigenetic mechanisms (125).

A study found that maternal smoking during pregnancy and a

heightened risk for TS and CTD in offspring (129). A prospective

study about the Danish National Birth Cohort, which analyzed

73,073 singleton pregnancies, concluded that heavy maternal

prenatal smoking was associated with an increased risk and the

severity of TS/CTD in offspring (130). Additionally, a meta-

analysis shows that maternal smoking during pregnancy may be

associated with a 35% increase in the risk of TS and CTD among

offspring (131). These findings indicate a potential association

between maternal smoking during pregnancy and the

development of TS and CTD in offspring. Certainly, prenatal

exposure to nicotine impacts various facets of fetal brain

development, influencing processes such as neuronal migration,

proliferation, and differentiation. These effects can have lasting

implications for the maturation and functioning of the

developing brain (132). Exposure of the fetal brain to nicotine

disrupts the development of various neurotransmitter systems,

notably affecting dopamine, which is consistently found to be

altered in studies related to TD (133, 134). Indeed, prenatal

exposure to smoking can induce subtle structural changes in the

brain, specifically affecting regions like the striatum, thalamus,

thalamocortical fibers, and cortex (135). Abnormalities within

these brain circuits have been strongly associated with the

underlying mechanisms of TD, as well as their frequently

occurring comorbidities such as OCD, ADHD, and ASD.

Dysfunction within these circuits often correlates with the

manifestation of these conditions and their interconnected nature

(130). Indeed, immune dysregulation has been associated with

the risk of TS/CT. Maternal smoking, known to influence

immune responses, might impact fetal brain development

through this mechanism, potentially contributing to the risk of

these neurodevelopmental conditions.
5.7 Environmental pollution

Particulate matter with an aerodynamic diameter of less than

2.5 μm (PM2.5) represents a criteria pollutant known for its

ability to harm the alveoli within the respiratory system. These
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tiny particles can penetrate blood vessels after affecting the

respiratory system (136). Epidemiological studies have revealed

that exposure to PM2.5 can lead to various adverse health effects

in humans. These effects include increased risks of allergies,

congenital heart defects, and the induction of negative impacts

on neurodevelopment (137). Infants and young children are

particularly vulnerable to the detrimental effects of air pollution.

This susceptibility is due to the relatively immature state of their

immune and respiratory systems, making them more prone to

experiencing severe health impacts from exposure to pollutants

like PM2.5 (138). Furthermore, children tend to spend more

time outdoors and breathe in about 50% more air per kilogram

of body weight compared to adults. This higher respiration rate

and outdoor activity expose them to relatively higher doses of

ambient pollutants, further increasing their vulnerability to the

adverse effects of air pollution (139).

PM2.5 has been found to have a strong correlation with allergies

and allergic respiratory diseases (140). Exposure to PM2.5 can

trigger allergic reactions and worsen existing allergic conditions

(141). Among them, short- and long-term exposure to ambient

PM2.5 could increase the risk of allergic nasal and eye symptoms,

worsening dyspnea caused by allergens, and an increase in overall

allergic symptoms (142). Elevated concentrations of PM2.5 can

disrupt the balance of T helper cells. High levels of PM2.5 tend

to increase the expression of TNF-α and cytokines associated

with Th2 responses, such as IL-4 and IL-10. Conversely, they

decrease the expression of the Th1-associated cytokine IFN-γ.

This imbalance alters the Th1/Th2 ratio, which plays a critical

role in immune responses (143). In a study conducted on rats

with AR, the researchers noted that the expression levels of

IFN-γ, IL-4, IL-5, IL-33, intercellular adhesion molecule 1

(ICAM1), and vascular cell adhesion molecule 1 (VCAM1)

increased in correlation with the concentration of PM2.5. This

suggested higher concentrations of PM2.5 led to increased

expression levels of these markers associated with AR (144).

Following exposure to PM2.5 can trigger a range of pathological

alterations in the lungs, especially notable in asthmatic mice.

These changes often include inflammatory cell infiltration,

thickening of bronchial smooth muscles, and injury to the

bronchial mucosa. These effects illustrate the impact of PM2.5 on

exacerbating asthma-related symptoms and lung pathology (145).

The above studies have shown that PM2.5 plays a role in

promoting the occurrence and development of allergic diseases.

Prenatal and postnatal exposure to PM2.5 is associated with an

increased risk of TD in infants delivered at term. A study

conducted in central Taiwan found that exposure to PM2.5

during pregnancy and infancy was positively associated with the

risk of TD, with a vulnerable time window for infants at 6–52

weeks after birth. The hazard ratio (HR) of TD was positively

associated with a 10 μg/m3 increase in PM2.5 during pregnancy

(HR 1.09, 95% CI 1.04, 1.15) and infancy (HR 1.12, 95% CI 1.06,

1.18). Indeed, the study found a non-linear relationship between

exposure to PM2.5 and the risk of TD. Specifically, exposure

levels between 16 and 64 μg/m3 of PM2.5 were associated with

an increased risk of TD, particularly notable within the TS

group. This non-linear association suggests a specific range of
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PM2.5 exposure that might significantly impact the risk of

developing TD (146).

Our discussion covered shared elements leading to allergies

and TD, encompassing neurotransmitter imbalance, maternal

anxiety or depression, gut microbial disorders, sleep disturbances,

maternal allergic status, exposure to tobacco, and environmental

factors (Figure 1). Nonetheless, direct proof is absent to establish

a link between these elements and both allergy and TD.

Consequently, extended longitudinal research is essential to

investigate the link between these factors and both conditions

within the same group, as well as to explore how these factors

mediate the relationship between allergies and TD.
6 Possible mechanisms linking allergy
and TD

Emerging evidence pointing to potential links between allergies

and TD underscores the importance to understanding the

underlying mechanisms. Exploring mechanisms like alterations in

gut microbial, changes in immunological and DNA methylation

can provide valuable insights. These insights might lead to the

identification of new treatment avenues and therapeutic targets

for addressing both allergy-related TD.
6.1 Gut microbial

The ecosystem of the human gastrointestinal tract starts from

the oral cavity, passes through the esophagus, stomach, small

intestine, colon, and finally reaches the rectum. Its huge surface

area of 150–200 m2 provides sufficient colonization space for

microorganisms. The number of bacteria per milliliter of intestinal

content is between 100,000 and 100 billion (147). Genome

sequencing found that the gut microbial contains approximately

22.2 million genes, which is more than 700 times the length of

the human genome (148). The gut microbial of a healthy human

body is mainly composed of four bacterial phyla, namely

Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria,

accounting for more than 98% of all human gut microecologies

(149). Gut microbial endows the host with multiple functions,

including producing vitamins, absorbing calcium ions, resisting

pathogens, enhancing immune function, etc. (150).

6.1.1 Gut-brain axis
The gut-brain axis, which refers to the bidirectional

communication between the gastrointestinal tract and the CNS,

has become one of the hotspots of research in the medical field.

Research has shown that not only can the brain regulate

gastrointestinal function and homeostasis, but the gut can also

affect people’s mood, sleep, and even neurological development

and repair in a variety of ways, and this two-way communication

between the gut and brain is known as the gut-brain axis (151).

Gut-brain axis communication is based on neural, immune,

endocrine and metabolic pathways. Gut microbial can produce

neurotransmitters directly or indirectly through host biosynthetic
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FIGURE 1

The common risk factors for allergy and TD. (Pictured by Biorender).
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pathways, and dysbiosis can cause neurotransmitter disorders and

neurodevelopmental disorders. Beneficial bacteria such as

Lactobacillus, Bifidobacterium, and Bacillus have been found to

produce a variety of neurotransmitters, including dopamine,

norepinephrine, 5-HT, GABA, acetylcholine and histamine, etc.

(152). The above-mentioned neurotransmitters enter the CNS

through the enteric nervous system (ENS) and affect the

physiological functions of the brain. Available studies have

shown that Lactobacillus and Bifidobacterium affect the synthesis

of acetylcholine and GABA, while the synthesis of 5-HT,

dopamine and norepinephrine is affected by Streptococcus,

Enterococcus and Escherichia coli (153). Meanwhile, the effects of

gut microbial on the nervous system are partly mediated by

bacterial metabolites, the best-known of which are SCFAs, which

can affect the development of the nervous system, immune

signaling, and the integrity of the blood-brain barrier (154).

The two major barriers in the signal transduction process of the

gut-brain axis are the gut barrier and the blood-brain barrier, of

which the gut barrier is the first barrier between the human body

and the intestinal lumen, and its normal functioning affects the

exchange of substances between the body and the intestinal lumen
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and the invasion of pathogens (155). Gut microbial increase

intestinal permeability by degrading biofilms on mucosal surfaces,

which translocates lipopolysaccharide-containing Gram-negative

bacteria, causing overactivation of the immune system and

increased levels of pro-inflammatory cytokines. Excessive release

of such pro-inflammatory factors is more destructive to CNS

(156). The blood-brain barrier effectively regulates the exchange

between the cerebrospinal fluid and the circulatory system,

keeping the internal environment of the CNS relatively stable

(157). Gut microbial reduce blood-brain barrier permeability by

upregulating tight junction protein expression (158). At the same

time, the use of many antipsychotics, such as fluoxetine and

aripiprazole, can also alter the intestinal barrier (159), leading to

alterations in signaling between the brain and the gut.

6.1.2 Allergy and SCFAs
The impact of allergic diseases on TD may be mediated by

SCFAs, which mainly include acetic, propionic and butyric.

SCFAs can influence the immune response in remote parts of the

body and reduce airway inflammation caused by ovalbumin and

house dust mites (160, 161). Furthermore, oral administration of
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SCFAs during pregnancy and weaning reduces the severity of

allergic airway inflammation in offspring (162). Bacteroidetes and

Firmicutes are the most common microorganisms in the intestine

(163). Bacteroidetes are usually associated with the production of

more acetic acid and propionic acid, while Firmicutes are

associated with the production of more butyric acid (164).

Butyrate is the most important presence in maintaining colon

health. It can directly serve as an energy source for colon

epithelial cells, maintain intestinal barrier integrity by regulating

tight junction expression, and has systemic anti-inflammatory

properties (165). Children with higher fecal propionic and

butyric acid levels at 1 year of age are less likely to develop AA

at 3–6 years of age (162). SCFAs are not only related to the

integrity of the intestinal barrier, but also affect the ENS,

promote the normal development of microglia, and affect the

immune function and signaling of the CNS (166).

6.1.3 SCFAs and gut-brain axis
The ENS is also called the “Second Brain”. It is a neuron

network composed of sensory neurons, motor neurons,

interneurons and supporting cells embedded in the entire

gastrointestinal wall. It is connected to the CNS through the

vagus nerve, forming a gut-brain signal axis (167). Studies have

shown that antibiotics induce a reduction in the ENS neuron

network in mice (168). Gut function and enteric neurons

restored after administration of SCFAs to germ-free mice (169).

This shows that SCFAs deficiency can lead to the loss of

intestinal neurons, thereby weakening ENS function. Damage to

the ENS can produce pro-inflammatory factors that damage tight

junction proteins and change the integrity of the blood-brain

barrier, thereby affecting the maturation of microglia (170, 171).

Microglia are resident macrophages in the brain’s innate immune

system and account for approximately 10% of nervous system

cells. They are critical for the clearance of pathogens, senescent

cells, and synaptic remodeling during development (172). Studies

have shown that germ-free mice and antibiotic-treated mice have

defects in microglial maturation, activation and differentiation,

and morphological changes (173). Excessive activation of

microglia function can trigger a cascade of neuroinflammation,

including increased levels of IL-6, IFN-γ, TNF-α, and reactive

oxygen species and reactive nitrogen species, leading to damage

to the blood-brain barrier and neuronal cell death and brain

damage (174). The addition of SCFAs (containing butyric acid,

acetic acid, and propionic acid) to germ-free mouse feed

improves microglia morphology and maturation defects (173).

Sodium butyrate mediates neuroprotection by downregulating

pro-inflammatory mediators TNF-α and NOS2 and upregulating

IL-10 expression in microglia (175). Butyrate can also exert anti-

inflammatory effects by limiting the formation of TGF-β1 and

IL-6, enhancing Tregs cell activity and host immunity (176).

SCFAs increase the expression of the transcription factor FOXP3

by inhibiting histone deacetylation, thereby expanding Tregs

(177). At the same time, SCFAs can regulate genes encoding

cAMP response element-binding proteins, regulate the synthesis

of catecholamine neurotransmitters (such as dopamine), and

affect gut-brain axis signal transmission (178).
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6.1.4 SCFAs and TD
The number of microglia in the striatum of TD patients is

increased, accompanied by enriched expression of inflammatory

genes (179). Using PET imaging found microglia activation in

the bilateral caudate nuclei of TD children and suggested that

activated microglia mediate neuroinflammation (180). In animal

models, it was also found that microglial activation in the

striatum of TD mice was enhanced, accompanied by increased

levels of pro-inflammatory cytokines IL-1β and TNF-α. The

above studies all point to the activation of microglia in TD (181).

Compared with healthy controls, the levels of pro-inflammatory

mediators such as TNF-α, IL-6, IL-1β, and IL-12 in the plasma

of TD children were significantly higher (182). Other studies

have shown that excessive activation of immune responses in

children with TD may be caused by decreased levels of

peripheral Tregs (183). A case-control study showed that the

concentration of tetrahydroisoquinoline in the urine of TD

children was significantly increased. Tetrahydroisoquinoline can

regulate dopaminergic neurotransmission and metabolism in the

CNS, indicating that dopaminergic overactivity exists in TD

children (184). Changes in SCFAs in patients with allergic

diseases, especially the decrease in butyrate levels, may damage

the ENS, activate microglia, and trigger a neuroinflammation

cascade, resulting in decreased Tregs levels and dopaminergic

overactivity, thereby inducing the occurrence of TD. The specific

mechanism is shown in Figure 2.
6.2 Changes in immunological

6.2.1 Allergy and immunity
The occurrence of allergic diseases is related to immune

imbalance mediated by T lymphocytes. When a child is exposed

to an allergen for the first time, dendritic cells (DC) process it

and present it to CD4+ T cells. CD4+ T cells are activated and

differentiate into Th2-type cells, producing IL-4 and IL-5. and

IL-13 (185). IL-4 and IL-13 induce the activation of B cells

and antibody class switching to produce sIgE (186). sIgE reaches

various parts of the body through the circulation system and

interacts with mast cells and basophils. The IgE high-affinity

receptor (FcϵRⅠ) on the cell surface binds, putting the body in

a sensitized state (187). When the child is exposed to the same

allergen again, the allergen binds to sIgE on the surface of mast

cells and basophils, sIgE cross-links with FcϵRⅠ, and mast cells

and basophils degranulate, leading to histamine, etc. (188–190).

IL-5 promotes the production and maturation of eosinophils,

and the major basic protein released by IL-13 stimulates

mast cells to release histamine and leukotrienes to trigger

allergic symptoms (191).

Recent studies have also shown that epithelial cells are also

involved in the development of allergies. Epithelial cells are the

first line of defense against environmental damage and can

produce a variety of cytokines after exposure to allergens, such as

IL-25, IL-33, and thymic stromal lymphopoietin. These cytokines

promote Th2 differentiation through DC and type 2 innate

lymphocytes (192). In addition, reduced levels of Tregs were also
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FIGURE 2

Possible mechanisms by which gut microbiota alterations occurring in patients with allergic diseases influence the development of TD. (Pictured
by Biorender).
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observed in the peripheral blood of patients with allergic diseases

(193). Animal studies have shown that infusion of Tregs from

normal mice into ovalbumin-induced allergic mice significantly

inhibited their airway hyperresponsiveness, while reducing

eosinophil infiltration and lowering IL-5 in bronchoalveolar

lavage fluid and IL-13 levels (194). Insufficient differentiation

and functional defects of Tregs are key factors in the

enhancement of Th2 responses and the occurrence of allergies,

which are mainly manifested in the fact that TGF-β and IL-10

secreted by Tregs can significantly inhibit airway inflammation

and hyperresponsiveness while blocking TGF-β or IL-10

aggravates airway inflammation and hyperresponsiveness (195).

Studies have shown that the levels of TNF-α, IL-6 and other

cytokines are increased in allergic diseases (196, 197). Although

TNF-α is thought to synergize with IL-17 to promote neutrophil

accumulation, TNF-α can also promote the production of Th2

cytokines, enhance airway smooth muscle contraction, and

contribute to the occurrence of airway hyperresponsiveness (191).

The above-mentioned studies have shown that patients with

allergic diseases have significant immune system imbalances.

6.2.2 Immunity and TD
Increasing evidence shows that imbalances in the immune

system also play an important role in the development of
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neurological diseases (198). Pro-inflammatory cytokines are

released by the activation of immune cells when the host

responds to pathogen invasion, tissue damage, and psychosocial

stress. During an immune attack, pro-inflammatory cytokines are

generally released for a short period and are regulated by anti-

inflammatory mechanisms. Therefore, the immune signal

released by the CNS in response to inflammation is an adaptive,

temporary, and controllable response. However, when the

immune attack becomes chronic and/or unregulated, the

behavioral effects of cytokines and the resulting inflammatory

response may promote the occurrence of TD (199, 200). Some

studies have shown that the occurrence or worsening of tic

symptoms in TD patients is related to abnormal immune

activation caused by infection, and some TD patients have

increased serum anti-streptolysin levels (201). Mycoplasma and

enterovirus infections are also associated with tic severity (202).

Therefore, when children with allergic diseases are repeatedly

exposed to allergens, the immune imbalance caused by them and

the continuous attack of pro-inflammatory cytokines may be

important mechanisms in inducing TD.

6.2.3 Immune relationship between allergy and TD
Allergic diseases will aggravate the imbalance of T lymphocyte

subsets and impairment of cellular immune function in TD
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children, mainly manifested by the decrease in the expression levels

of CD3+ T cells, CD4+ T cells, and CD4+/CD8+ (48). Leckman

found that the levels of pro-inflammatory cytokines such as

TNF-α and IL-12 were increased in the peripheral blood of

children with TD, and during the worsening of symptoms, the

levels of these two cytokines further increased, suggesting that

the occurrence of TD is related to innate immunity. Related to T

cell immune imbalance (203). Another study showed that levels

of pro-inflammatory cytokines such as IL-17A, IL-6, IL-12, and

TNF-α were elevated in TD children without obsessive-

compulsive disorder (202). Compared with healthy controls, TD

children who did not receive drug treatment had higher TNF-α

levels in the peripheral blood (204). Animal studies have shown

that IL-6 increases 5-HT and dopamine activity in the

hippocampus and frontal cortex of mice, showing more frequent

digging, rearing, and grooming (205). Injection of IL-6 into mice

during mid-pregnancy can lead to a lack of prepulse inhibition

in offspring, and TD patients often have abnormal performance

in this sensorimotor process (206). In addition, a study showed

that the number of Tregs cells decreased in patients with

moderate to severe TD, and further decreased during the

symptom exacerbation period (183). This phenomenon may be

related to the decrease in Tregs cells caused by the inflammatory

response caused by allergies and the reactive pathogenic

phenotype of Tregs (202). Histamine is an important mediator in

the pathogenesis of allergic diseases, and its receptor-mediated

signaling pathways are significantly enriched in TD patients,

further indicating that the occurrence of allergic diseases may be

an important risk factor for TD. In addition, some TD patients

do not respond well to antipsychotic drugs, but they do respond

well to adrenocorticotropic hormone or plasma exchange
FIGURE 3

Possible mechanisms by which immunological changes occurring in patie
by Biorender).
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(37, 38). The above results all suggest that immune imbalance in

allergic diseases and the resulting changes in related cytokine

levels may be important factors in inducing TD. The specific

mechanism is shown in Figure 3.
6.3 DNA methylation

The increasing prevalence of allergic diseases in children

indicates that environmental exposures such as microbial

imbalance, air pollution, and pet ownership have an important

impact (207). Environmental factors can have persistent effects on

gene expression by regulating epigenetic DNA methylation (208).

DNA methylation refers to the transfer of methyl groups to

cytosine-guanine (CpG) dinucleotides using S-adenosylmethionine

as the methyl donor under the action of DNA methyltransferase.

On the fifth carbon atom of cytosine. DNA methylation plays a

pivotal role in modulating gene expression by changes in

chromatin structure, DNA conformation, DNA stability, and the

interactions between DNA and proteins. These modifications

serve as a mechanism for controlling which genes are expressed

or silenced within a cell (209).

6.3.1 Allergy and DNA methylation
At present, many studies have shown that DNA methylation

testing in patients with allergic diseases may be helpful in the

differential diagnosis of the disease (20). A large-scale cross-

sectional study collected whole blood from 392 asthmatic children

aged 4–8 years old and 1,156 control children for a whole-

epigenome association study. This study discovered 14

differentially methylated CpG sites, which were subsequently
nts with allergic diseases influence the development of TD. (Pictured
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verified through a meta-analysis of six additional European cohort

studies (4–16 years old, 247 children with asthma and 2,949

controls). This study showed that all 14 differentially methylated

CpG sites were significantly associated with asthma. These CpG

sites are associated with whole blood transcriptional profiles,

which are associated with increased activation of eosinophils,

CD8+ T cells, NK cells, and reduced numbers of naive T cells

(210). Another study showed that the DNA methylation of CpG

sites in blood monocytes and airway epithelial cells of children

with allergic diseases changed (211). After sublingual

immunotherapy in patients with respiratory allergies, the CpG

methylation level of the FOXP3 site in Tregs cells was reduced

(95). In addition, studies have shown that DNA hypermethylation

can cause a decrease in IFN-γ levels in AR patients, and this

change may help distinguish allergic patients from healthy people

(212). At the same time, DNA methylation in allergic diseases

may also affect neurodevelopment, especially inducing the

occurrence and development of TD.

6.3.2 TD and DNA methylation
A German study showed that compared with healthy people,

the methylation level of the dopamine D2 receptor gene in TD

patients was significantly increased and was positively correlated

with the severity of tics. The dopamine transporter methylation

level is negatively correlated with tic severity (213). Another

epigenome-wide association study on TD investigated differences

in DNA methylation in Dutch twins with TD. Among the

top-ranked probes, an enrichment of differentially methylated

neural genes previously associated with neurological diseases

was detected (214).

6.3.3 DNA methylation link between allergy
and TD

Studies have shown that compared with controls, patients with

allergic diseases have differentially methylated CpG sites on

Cadherin-26 (CDH26) (215). As an important cell adhesion

molecule, CDH26 mediates cell-cell, cell-extracellular matrix

interactions (216–218), and can regulate leukocyte migration,

adhesion and activation, especially in the context of allergic

inflammation (219). Tsetsos et al. also found in a genome-wide

association study that CDH26 is related to TD and contains four

single nucleotide polymorphisms (SNPs) (220). SNPs are the

most common form of human genetic variation and represent

changes in a single base pair in an individual’s DNA sequence.

Many SNPs are known to be associated with various human

diseases, among which the genetic variations associated with TD

are mainly concentrated in dopamine receptors (221). Dopamine

receptors also play an important role in the occurrence of allergic

diseases in children. Their combination with dopamine promotes

Th2 cell differentiation and enhances Th2 inflammation in mice

(222). At present, there are few epigenetic related studies on TD.

Based on the analysis of existing research data, DNA methylation

in allergic diseases, especially the differentially methylated CpG

sites in CDH26, may be related to the occurrence of TD, but the
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relationship between DNA methylation between the two still

needs to be further explored.
7 Conclusion

In summary, this study believes that there is a clear relationship

between allergic diseases and TD, and allergic diseases may be an

important risk factor for the occurrence of TD. Therefore, early

and active treatment of allergic diseases may effectively prevent

the occurrence of TD. There are currently few studies on the

relationship between allergic diseases and TD, especially the lack

of large-scale prospective cohort studies to further verify the

causal relationship between the two. At the same time, it is of

great significance to conduct in-depth research on the related

mechanisms of allergic diseases affecting TD, aiming to provide

new ideas and new directions for the prevention and

treatment of TD.
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