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To improve care for extremely premature infants, the development of an
extrauterine environment for newborn development is being researched,
known as Artificial Placenta and Artificial Womb (APAW) technology. APAW
facilitates extended development in a liquid-filled incubator with oxygen and
nutrient supply through an oxygenator connected to the umbilical vessels.
This setup is intended to provide the optimal environment for further
development, allowing further lung maturation by delaying gas exposure to
oxygen. This innovative treatment necessitates interventions in obstetric
procedures to transfer an infant from the native to an artificial womb, while
preventing fetal-to-neonatal transition. In this narrative review we analyze
relevant fetal physiology literature, provide an overview of insights from APAW
studies, and identify considerations for the obstetric procedure from the native
uterus to an APAW system. Lastly, this review provides suggestions to improve
sterility, fetal and maternal well-being, and the prevention of neonatal transition.
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1 Introduction

Current care for extremely premature infants (<28 weeks of gestational age) involves

intensive care, including mechanical ventilation and gastrointestinal nutrition support.

Due to their fragile and immature organs coupled with the limits of mechanical

ventilation, these patients’ mortality and morbidity rates remain high (1, 2). The

development of extracorporeal life support to prolong infant organ maturation in a

womb-like environment, the artificial womb (AW), has been studied since the 1950s

(3, 4). This involves maintaining the infant in a fetal physiological state [i.e., as a

perinate (5)] with the lungs submerged in amniotic fluid and maintaining a fetal blood

circuit through the umbilical vessels via an artificial placenta (AP). Progress on the

development of a fluid environment, maintenance of fetal circulation, and physiological
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placental blood flow have all led to raised hopes that clinical

application has come within reach (3, 6–12). Now that human

trials are under consideration (12, 13), the methods used in

animal studies must be translated to suit human patients. To

date, most experimental research on the technology (except

Chamberlain (14) and Westin (15)) has been performed on

animal models, which are crucial for the translation of the

technology to human patients; however, translational success is

uncertain (16). The focus has been predominantly on the critical

requirements for continuing fetal homeostasis, meaning

sustaining fetal animals for an extended period on external life

support by developing and controlling key cardiovascular needs

in a liquid environment. Future treatment using such a system

also requires changes in the preterm birth care procedure, as the

infant would need to be cannulated to an oxygenator and placed

in an AW instead of a neonatal incubator. In animal studies,

transfer to the AW has been controlled using medication and

sedation. In case clinical trials demonstrate improvements in care

compared with conventional neonatal incubators, it could

significantly impact how obstetric and neonatal care is provided

to extremely premature infants.

In this review, we analyze the factors that must be considered

from an obstetric standpoint. We emphasize the need for studies

on the intervention of fetal-to-neonatal transition within an AW

context and provide an overview of the relevant transitional

physiology, as it applies to various obstetric approaches. We

mapped the key aspects of perinatal physiological changes and

reflected on how certain measures should be in place when

transferring a perinate to an AW. Second, we analyzed current

AW studies and patents, and provided an overview of the

transfer methods used. We conclude with considerations and

research directions for obstetric procedure development and

propose to supplement preclinical investigations with simulation

technologies to build further knowledge.
2 Data sources

Insights on the physiology of a fetus at birth were gathered

through a literature search that informed us about specific

milestones requiring intervention, and ideas on how these might

be prevented or suppressed. A PubMed search was performed to

identify relevant studies on the obstetric considerations. Finally, a

manual search of the most relevant literature was conducted. We

used a value-sensitive design approach, in which the involvement

of a range of stakeholders is emphasized throughout the research

(5, 17). This study held expert meetings with medical and

technical specialists from obstetrics, gynecology, neonatology,

anesthesiology, technical medicine, industrial design, medical

engineering, and patient advocates to receive recommendations

for the requirements and obtain insights for developing a step-

by-step transfer workflow.

Regarding the review of different transfer strategies, since there

are only a few published concepts, a manual method was chosen by

utilizing PubMed and Google Patents, with search terms written in

different combinations of either [artificial AND (placenta OR
Frontiers in Pediatrics 02
womb OR uterus OR amnion OR amniotic sac)], [(fetal OR fetus

OR preterm OR perinatal OR premature OR infant) AND

(extracorporeal OR extrauterine) AND (support OR life support

OR environment)]. English articles and patent records were

carefully examined to determine whether a procedure describing

the transfer of a fetus from a natural womb to an artificial womb

was mentioned. First, titles and abstracts were examined from

the literature and patent searches to select those that met the

selection criteria, followed by full-text screening for the final

selection. The reference lists of the included reports were also

examined for other relevant articles. For each study, we extracted

information on the type of system, animal model, mode of

delivery, fetal/maternal medication used during delivery, and a

description of the transfer stage. The selection of the studies and

patents is presented in Table 1. Not all the published approaches

are equal regarding success (e.g., duration of support), validation,

research stage (conceptual or experimental), model (e.g., sheep,

pig), gestational age, approach (LFL or LFC) and therefore may

not be directly comparable or translatable to human application.

However, it does provide an overview and demonstrates how

knowledge on perinatal physiology is applied in an APAW context.

Much of our understanding of physiological adaptation in the

neonatal transition is derived from animal research and is essential

for progress in the field. However, lambs at the same

developmental stage as extremely premature infants are

significantly larger, pigs are too mature, and non-human

primates are too small. Therefore, human trials would require

additional adjustments to the APAW setup. These studies’ results

and surgical approaches must be considered from the perspective

of anatomical, physiological, and developmental differences.

Different terminologies of this particular extracorporeal life

support for premature infants can be found in the literature:

artificial womb technology, Artificial Placenta and Artificial

Womb technology (APAW) or the system names EXTrauterine

Environment for Neonatal Development therapy (EXTEND)

(46), ex vivo uterine environment therapy (EVE) (28), biobag,

and Perinatal Life Support (PLS) (5). In this review, we refer to

APAW and cite published reports using either a liquid-filled

chamber or a liquid-filled lung setup.
3 Discussion

Normal lung development relies on the womb’s liquid

environment, adequate intrathoracic space, and regulated

intrabronchial pressures (47–49). When born at 24 weeks of

gestational age, the preterm lung is in the late canicular stage,

when alveolar and capillary development begins (50). Normal

alveolar development can be disrupted by preterm pulmonary

gas exchange, leading to respiratory failure. Using mechanical

ventilation, high volume, and pressure can lead to pulmonary

and cerebral injury (50–52). By eliminating the need for

pulmonary gas exchange using an AP, retaining liquid within the

airways serves a dual purpose: it may avoid fetal to neonatal

transition, prevent ventilation and oxygen induced injury, and

allow continued maturation of the respiratory system.
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TABLE 1 List of APAW studies and patents that describe a transfer stage.

Research
group

Publications (type) LFC/
LFL

Model VB/
CS

Max.
support
(hrs)

Fetal/maternal medication
given during delivery

Transfer stage description

Philadelphia,
USA

2019 (18), 2018 (19),
2017 (3)

LFC Sheep CS 672 Buprenorphine. General anesthesia
(ketamine, isoflurane, propofol)

Lower midline laparotomy, small
hysterotomy made to expose fetus. UC
cannulation transitioned to biobag via
open sealable side and transferred to the
mobile platform.

2020 (patent) (20) LFC – CS – N/A Maternal hysterotomy to expose fetus,
connection to oxygenator, fetus placed
on AP circuit. At full circuit flow, the
fetus is removed from the uterus and
immersed in the fluid-filled incubator.

Toronto, CA/
Adelaide, AU

2022 (7), 2021 (21) LFC Pig CS 177 General anesthesia (ketamine
hydrochloride, acepromazine,
isoflurane, atropine sulfate)

The fetus is delivered while minimizing
torsion, stretching, and vasospasm of
UC. Normothermia is maintained by
continuously bathing the fetus and UC
in warmed saline. Following
cannulation, fetal pigs were enclosed in a
biobag.

2021 (22) LFL Pig CS Isoflurane, ketamine and intubated The fetus was partially exteriorized for
surgical procedures; the “trachea piglet”
was occluded using surgical ligatures to
prevent lung inflation. Fetal piglet
exteriorized from the uterusa, placed in a
plastic bag for maintenance temperature,
and surrounded by warmed heat bags.
The UC protruded from the bag, and
care was taken to avoid compromise of
umbilical blood flow (stretching/
kinking). The fetus was immediately
placed on a custom-built heated cradle
after cannulation after UC clamping and
cutting to sustain normothermia.

Michigan, USA 2020 (8), 2019 (23), 2015
(24)

LFL Sheep CS 408 General anesthesia. Atropine,
buprenorphine, papaverine, lidocaine.

Laparotomy to expose the uterus.
Injection into the fetal lamb. Lamb
partially delivered, remains supported by
the native placenta. At sufficient AP
circuit flow, UC is cut, lamb delivered,
placed on full AP support with liquid-
filled ETT (or MV (1 h) prior to a liquid-
filled ETT (23)).

2013 (25) LFL Sheep CS 70 Buprenorphine, local lidocaine infusion.
General endotracheal anesthesia.

The fetus was cannulated and intubated
with cuffed ETT. After suctioning
airways, lambs were transitioned to gas
breathing. Upon respiratory failure, ETT
was filled with artificial amniotic fluid,
and total AP support was initiated.

2012 (26), 2009 (27) LFC Sheep CS 24 General anesthesia (sodium thiopental,
isoflurane), medication: atropine,
buprenorphine, local lidocaine infusion.

Small hysterotomy to expose the fetal
neck. A second, small hysterotomy to
expose UC at the entry point into the
fetus. The fetus is connected to AP.
Lambs were maintained on AP support
in the natural uterus for 4 h for stability
and then transferred to a warmed liquid
bath.

Perth/Sendai,
AU/JPN

2020 (6), 2019 (28), 2017
(4), 2017 (29), 2016 (30),
2015 (31), 2012 (32)

LFC Sheep CS 168 Anesthesia, intubation, ventilation, and
premedication: Buprenorphine,
phenobarbitone, acepromazine,
buprenorphine, midazolam, ketamine,
isoflurane, meropenem

Cannulation procedure performed prior
to delivery to prevent dehydration. The
lambs were covered with warmed saline-
soaked sterilized towel. Fetuses were
transferred to a liquid incubator, with
the bag being promptly filled with
artificial amniotic fluid.

Eixarch et al. 2023 (9) LFC Sheep CS 168 Intramuscular fetal anesthesia (fentanyl,
midazolam, rocuronium). General
anesthesia (acepromazine, ketamine,
midazolam, buprenorphine, isoflurane)

Incision to expose the uterus and
perform an ultrasound. Hysterotomy to
expose UC, before fetal manipulation,
fetal anesthesia was administered. After

(Continued)
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TABLE 1 Continued

Research
group

Publications (type) LFC/
LFL

Model VB/
CS

Max.
support
(hrs)

Fetal/maternal medication
given during delivery

Transfer stage description

cannulation, the fetus was transferred to
a reservoir.

Pak et al. 2002 (33) LFC Goat CS 34 Premedication, general anesthesia
(rompun, halothane)

A small hysterotomy to extract fetal hind
limbs and expose UC completely. UC
connected to AP. UC cut and fetus
transferred to a liquid chamber.

Tokyo, JPN 1993 (34), 1990 (35),
1989 (36), 1987 (37)

LFC Goat CS 542 Fetal movement suppressor. General
anesthesia (halothane)

Incision to extract hind limbs, fetal body
was exteriorized until UC appeared
completely. After cannulation, UC was
cut, and the fetus moved into a liquid
incubator.

Sakata et al. 1998 (38) LFC Goat CS 237 Papaverine. Premedication, anesthesia,
intubation (atropine sulfate, halothane,
nitrous oxide)

After cannulation, the fetus was isolated
from the placenta and transferred to a
liquid-filled incubator.

Zapol et al. 1969 (39) LFC Sheep CS 55 Spinal anesthesia After cannulation, the fetus was
transferred to a liquid-filled bath.

Alexander et al. 1968 (40), 1964 (41) LFC Sheep CS 24 Anesthesia (procaine, iv sodium
thiopentone)

Respiratory movements suppressed by
delivering the fetal head into a liquid
filled polythene bag.

Chamberlain 1968 (14) LFC Rabbit,
Human

CS 5 N/A Amniotic sac removed intact from the
uterus, or in case of membrane rupture,
fetus placed in a warmed saline at
operating table to prevent respiration.

Lawn et al. 1962 (42) LFC Pig CS 7 Anesthesia Fetuses were set up directly after being
taken from uterus. After cannulation the
container was filled with solution.

Westin et al. 1958 (15) LFC Human VB 12 N/A Spontaneous or induced abortion.
Cannulation of UC vessels, fetus was
placed on a perforated disc above
heating apparatus. The chamber was
filled with 25 °C liquid to decrease fetal
temperature and reduce oxygen
consumption. After establishment of
circuit, air was released from chamber
and closed.

Tchirikov 2017 (patent) (43) LFC – N/A – N/A The transfer of the infant takes place by
detachment of native placenta from UC
and immediatly embedding into a liquid
chamber.

Cooper 2004 (patent) (44) LFC – Both – N/A Fetal mouth is covered.

Greenberg 1954 (patent) (45) LFC – N/A – N/A N/A

LFC, liquid filled chamber; LFL, liquid filled lungs; VB, vaginal birth; CS, cesarean section; UC, umbilical cord; ETT, endotracheal tube; MV, mechanical ventilation; AP,

artificial placenta.

van Haren et al. 10.3389/fped.2024.1360111
The APAW system prevents the physiological transition from

fetal to neonatal physiology, normally following birth (53–55).

The transition from intra- to extra-uterine life is marked by a

series of large and abrupt physiological events. Predominantly

triggered by lung liquid clearance and aeration, these events lead

to a decrease in pulmonary vascular resistance and an increase in

pulmonary blood flow. This causes a shift from fetal circulation

with placental oxygenation to neonatal circulation with

oxygenation through the lungs (53–55). The decrease in

pulmonary vascular resistance and cord clamping initiates a

sequence of changes that dramatically reorganizes the infant’s

cardiovascular system (56–58).

Prostaglandins from the placenta, and adenosine from the liver

and placenta, may suppress fetal breathing movements. Adamson

et al. observed in experiments conducted in intubated and

oxygenated lambs that, when the umbilical cord is clamped, fetal
Frontiers in Pediatrics 04
sheep start continuous breathing movements and stop when the

occlusion is lifted (59). In newborns, breathing suppression can

be reversed by treatment with prostaglandin synthetase inhibitors

such as indomethacin (58).

The precise initiation of large inspiratory efforts at birth is not

fully understood. However, factors such as activation of

chemoreceptors, increased PaCO2 levels, prostaglandins and

prostaglandin synthetase inhibitors, loss of inhibitory factors on

respiratory center activity and physical stimuli (light, temperature

and handling) are thought to contribute (58, 60–67).

If the cord is clamped and fetal-placental circulation is ceased

before lung aeration, a sudden 30%–50% loss of venous return

from the placenta occurs, with an increase in systemic vascular

resistance, as demonstrated in fetal lambs (68).

This transition to neonatal physiology in extremely premature

infants occurs too early, as their organs are activated before
frontiersin.org
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reaching full maturity and are probably functionally and

structurally immature (69). Additionally, current treatments

involving mechanical ventilation, although necessary, negatively

affect normal growth and development (70). Preventing the

transition process and allowing the lungs to achieve full

development and maturity may be accomplished by maintaining

the liquid in the lungs, thereby preventing the aeration-induced

cardiovascular transition (54, 56, 71).

The lungs develop as a liquid-filled organ throughout fetal life,

with liquid formed by the epithelial cells of the distal airways. The

liquid produced in the airways is causing an intraluminal positive

pressure, which is a stimulant for lung development (47, 71).

Physiological processes during the last weeks of a full-term

pregnancy and the onset of spontaneous labor appear to occur

simultaneously with changes in fetal and maternal hormonal

balance, preparing the fetus for neonatal transition (72, 73).

Normally at birth, lung liquid is replaced by air during the first

breaths with the rapid movement of liquid through the

epithelium into the interstitial space. Studies in rabbits

demonstrated nearly complete clearance within 3–5 breaths

across the epithelium, followed by absorption by lymphatic and

vessels over 4–6 h (63, 74). During a preterm non-spontaneous

birth, such as an emergency preterm cesarean section (CS),

preparations through stress hormones (activating epithelial

sodium channels and reversing the flux of liquid) and

mechanical changes (liquid clearance through uterine

contractions) (75) would not have begun, disrupting neonatal

transition (76). This results in absent liquid clearance antenatally,

leading to more lung liquid volume at birth (77). This delay

could be advantageous in preventing lung aeration when

transferring to an APAW system.

Full immersion in amniotic fluid enables the fetus to maintain

balanced lung liquid (swallowing and absorption), supports gut

maturation, and shields against external hazards such as

temperature variations, sound, trauma, and pathogens. Whether

immediate immersion (with no exposure to air) was performed

in the included APAW studies and patents was not clearly

defined for each case. In experiments of the Philadelphia group,

gas was not allowed to enter the lung (78). Flake et al. developed

a biobag with a sealable opening, in which the fetus could be

placed after cannulation. At stable perfusion, the opening can be

sealed and the biobag can be placed in the support system (20).

Flake et al. mentioned that direct delivery from the natural

uterus to the liquid filled chamber (LFC) would be ideal;

however, more infants could qualify for the procedure if they

were supported for some time before moving into the LFC (20).

In an APAW study as early as 1968 (14), respiration prevention

was deemed crucial, and infants were kept submerged by an “en

caul” delivery. Experiments were performed to understand fetal

respiration movements when submerged in a tank and

demonstrated that once the cardiovascular circuit was halted,

respiratory efforts became more prominent (14). In the study by

Alexander, lambs were delivered with their heads in liquid-filled

polythene bags to suppress respiration (41).

Harned et al. (79) showed that introducing (amniotic) fluid in

the laryngeal region in delivered lambs can result in respiratory
Frontiers in Pediatrics 05
suppression, as a correlation between the frequency of swallowing

liquid and suppression of breathing was found. Lambs who were

still on placental support and had no air exposure demonstrated

a possible correlation. While 3-month-old lambs showed no signs

of respiratory suppression (79).

Instead of immersing the infant entirely in a liquid-filled

chamber, another approach is to occlude the trachea via

intubation to maintain the liquid-filled-lungs (LFL). Although

direct comparisons with LFC studies cannot be made; both

methods can provide insights into how perinatal physiology is

modulated in extracorporeal life support. The LFL approach has

been demonstrated in several animal studies via CS, after which

the fetus is injected with sedatives and the umbilical vessels are

cannulated. Once a stable circuit exists, the fetus is fully

exteriorized and an endotracheal tube is introduced (8, 24, 25).

In this approach, fluid with oral chlorhexidine is supplied to the

endotracheal tube (ETT) to reduce infection, which is

subsequently occluded. Daily ETT insertions of additional

amniotic fluid were performed to maintain a constant fluid level

without pressurization (24, 25). In another study,

perfluorocarbon was used instead and maintained at a set

pressure in a closed system (8). Obstruction of the fetal trachea

could cause overexpansion of the lung, making it necessary to

allow normal fluctuations in intrabronchial pressure and liquid

breathing movements to occur.

Several APAW experiments have used medication to suppress

fetal (breathing) movements or general anesthesia to control

breathing (8, 24, 34–26). If medication to suppress respiration

were to be used in humans, it would be ethical to combine

breathing suppressants with adequate sedation. Selecting

appropriate sedatives and exposure duration is crucial to avoid

the risks of adverse neurodevelopmental effects, gastrointestinal

motility issues, and lowered arterial blood pressure (80, 81).

Other methods to suppress air-based respiration also need to

be considered. In addition, it might not always be possible to have

the APAW system and necessary neonatal intensive care staff

members present during delivery while in the operating room.

Moving the preterm infant to the neonatal ward should therefore

ideally be performed while the lungs are submerged in liquid.

Potentially harmful effects of preterm lung aeration, like

oxygen toxicity or termination of the fetal circulation while

connected to an artificial placenta, suggest that lung aeration

during the transfer procedure ought to be avoided. Normally,

during the first breathing, the air is inhaled into the (surfactant-

rich) mature lungs. Yet, the underdeveloped lungs of extremely

premature infants often struggle to effectively aerate the lungs,

necessitating some form of respiratory assistance (63). This

difficulty may be attributed to factors such as the structural

immaturity of the lungs, inadequate respiratory drive, impaired

lung liquid clearance, muscular weakness, rib flexibility, and

surfactant deficiency (82). This suggests that limited gas intake

has a small effect. As oxygenation of the perinate would be

ensured via the artificial placenta, the cardiovascular effects are

thought to remain unchanged. More research is necessary to

elucidate the underlying physiological mechanisms,

understanding the associated risks and the potential reversibility
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by introducing lung liquid, as demonstrated in animal experiments

by Gray et al. (25). The Michigan group showcased that lambs

could initially receive mechanical gas ventilation, but when

respiration failed (57 ± 22 min), they could successfully be

transferred to breathing liquid by filling the endotracheal tube

with artificial amniotic fluid (25). This raises questions about

short-term air intake effects on triggering inflammatory cascades

and causing lung injury, the effect on the cardiovascular circuit

(e.g., the ductus arteriosus), and whether a transition to neonatal

physiology has been initiated and/or whether this transition is

reversible. Postmortem analysis confirmed patent ductus

arteriosus, foramen ovale, and sinus venosus in all subjects (25).

The specific limits of gas breathing determining if small periods

of breathing gas during the canalicular phase, may cause lung

injury are yet to be determined (83). More (preclinical animal)

studies are needed to evaluate functional and structural lung

damage, both from lung aeration and efforts to prevent it. Thus,

based on theoretical considerations, preventing gas from entering

the lungs completely and preserving airway liquid in an APAW

context appears desirable. In current care, when at risk of

preterm delivery, the mother receives corticosteroids (i.e.,

betamethasone) to increase lung maturation, thereby improving

neonatal outcomes, such as reduction of germinal matrix and

intraventricular hemorrhage (84, 85). Further research is needed

to investigate and clarify the sequential cascade of effects of

antenatal corticosteroids. As the aim of APAW treatment is to

maintain fetal physiology, preventing pulmonary gas exchange,

further research is necessary to understand whether

administering corticosteroids should be standard when

transferring to APAW.

1. During the transfer procedure, exposure of the perinate’s

airways can initiate the breathing reflex. Based on the

theoretical insights, it appears logical to prevent this by

maintaining liquid in the lungs of infants.

The infant leaves the warm uterus environment and enters the

cold hospital room with an ambient temperature of 26°C to 27°C

(86). Within several seconds after birth, the infant’s temperature

decreases by approximately 2°C (87). Fetal temperature is on

average 0.3°C to 0.5°C higher than the maternal temperature

(86), with mean measurements ranging from 37.1°C at the

beginning of labor and increasing to 37.4°C after 22 h (88). A

fetal temperature exceeding 41.0°C should be avoided due to

risks of protein denaturation in the fetal brain (89).

Preventing hypothermia has become standard care during

preterm delivery (90). Because preterm infants have a high

surface-area-to-volume ratio and low subcutaneous fat content,

they quickly lose body heat (91).

In nearly all APAW studies included, the temperature of the

infant was kept in line with in-uterus values (ca. 39.0°C) (11).

However, one of the first studies performed decided to keep the

fetus at a colder temperature before cannulation to keep the

oxygen consumption low (15). After perfusion was established,

the infant was placed in warm liquid. Under these conditions, no

respiratory movement was observed (15).
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captured should be temperature-controlled to prevent the child

from developing hypo- or hyperthermia (89, 91).

A crucial task during transfer is cannulation of the

umbilical vessels, thus connecting the umbilical cord to the

artificial placenta (11).

Sobotka et al. investigated the degree of heart rate decline upon

umbilical cord occlusion in ex-utero and in-utero lambs (92). They

suggested that a newborn’s immediate environment substantially

impacts cardiovascular responses to prenatal hypoxia.

They theorized that this may be influenced by the “diving reflex”,

which is a vasovagal reaction brought on by contact with

water on the face (92, 93). Chamberlain showed that when a

fetus is placed in liquid, and the umbilical cord is occluded,

gasping movements increase, which is an effort to maintain

O2 levels (14).

Maintaining standard placental blood flow is essential for

adequate fetal oxygen delivery at normal saturation levels. A

single 10-min occlusion of the umbilical cord causes neuronal

loss in (predominantly) the hippocampus, as demonstrated in

fetal sheep (94–96). Within approximately 4 min of total cord

occlusion in fetal sheep, a loss of cerebral blood flow

autoregulation can be expected (97).

Although no exact duration of safe cord occlusion can be

determined in humans, compression or overstretching of the

umbilical cord regularly occurs during normal delivery, resulting

in temporary fetal bradycardia as a physiologic response to the

hypoxemic state.

Recent studies used sheep models to demonstrate rapid vessel

cannulation. Partridge et al. also observed unconstrained fluid

breathing, and swallowing movements while ensuring a rapid

cannulation setup to ensure timely oxygen delivery for brain

oxygenation (3). However, it is important to note that the sheep

umbilical cord anatomy, comprising two umbilical arteries and

two umbilical veins, enables the support of the native placenta

through the second set of vessels while shifting to AP support. In

humans, the single umbilical vein does not allow continued

native placental support, making studies in pig animal

models closer to human translation (22). More research is

needed to draw requirements for human patient umbilical vessel

cannulation (98).

Studies have performed vessel catheterization in animals in

utero or ex utero. In cases of exteriorization before cannulation,

the animal was generally placed in a bath, bag, or kept warm.

Due to the length of the umbilical cord at 24 weeks’ gestational

age, cannulation after delivery would need to occur in proximity

to the mother.

Knowledge on cannulation strategies can be gained from existing

ex utero intrapartum treatment (EXIT), such as those described for

EXIT-to-extracorporeal membrane oxygenation (ECMO)

procedures (99) and could aid in determining a safe sequence of

cannulation. Next to avoiding fetal airway exposure to air, factors

such as uterus involution, shear-stress within the utero-placental

unit and umbilical cord length, may also need to be considered to

determine the optimal position of the fetus during cannulation.
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3. Rapid establishment of the artificial placenta circuit is

required to maintain arterial pO2 and pCO2 (92).

The supply of oxygen-rich blood from the placenta to the fetus is

dependent on patency of the ductus arteriosus. This vascular shunt

connects the main pulmonary artery to the aorta (100, 101). This

shunt must remain open during pregnancy and birth to bypass

the amniotic-fluid-filled fetal lung. Fetal adaptation after delivery

necessitates the emergence of spontaneous breathing and increased

oxygen tension, which leads to ductus arteriosus closure (102,

103). Although the exact processes regulating ductal patency and

closure are unknown, placental prostaglandins (PG) are involved

(100, 101). PGE1 and PGE2 keep the ductus arteriosus open

(104). Normally, at birth, when the fetus separates from the

placenta, the amount of vasodilatory placental PGs in circulation

decreases (103). Neonates born with a patent ductus arteriosus can

therefore be administered PGSI’s (such as indomethacin) (105).

PGE1 was administered to lambs in a study by Partridge et al. (3),

presumably to maintain patent ductus arteriosus. PGE1 and

synthetic PGE1 (misoprostol) are routinely used in clinical practice

to induce labor and enhance circulation in neonates with ductal-

dependent cardiac lesions before surgery (104, 106). To maintain

the fetal cardiovascular circuit and prevent fetal-to-neonatal

transition, closure of fetal shunts (such as the ductus arteriosus)

needs to be prevented (54). To confirm persistence of the fetal

cardiac circulation, previous APAW studies in animals have taken

echocardiographs daily, to verify the opening of the ductus

arteriosus, ductus venosus, and foramen ovale (3, 4). To ensure

fetal cardiac circulation, hormones (such as PGE1) could be

administered within the APAW system to prevent shunt closures.

During fetal development, endogenous glucocorticoids

(cortisol and corticosterone) are crucial in organ maturation,

such as the brain, lungs, kidneys, liver, and thyroid (107). At

term, preparation for birth, transition to neonatal physiology,

and multiorgan adaptation involve increased catecholamines and

cortisol release (58). Administering exogenous glucocorticoids

(dexamethasone or betamethasone) to women at risk of preterm

labor accelerates fetal maturation—such as stimulation of

surfactant production, thereby improving newborn outcomes

(108, 109). However, excessive or premature exposure of the

fetus to glucocorticoids may disrupt developmental pathways,

resulting in disrupted growth, impaired gas exchange, and

potential harmful long-term changes in physiological function

(107, 108, 110). The fetal hypothalamic–pituitary–adrenal axis is

especially prone to glucocorticoid-induced changes with potential

long-lasting effects (107).

Small-for-gestational-age fetuses already have high

endogenous cortisol levels; therefore, exogenous antenatal

corticosteroids before preterm delivery may not provide

advantages (110). In growth-restricted fetuses, antenatal

exposure to high levels of endogenous glucocorticoids are

thought to affect the regulation of cardiovascular development.

These infants rely more on the sympathetic nervous system to

maintain blood pressure and redistribute cardiac output for vital

organ growth, which could be further impaired by exogenous

glucocorticoids (111, 112).
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Similarly, the use of antenatal dexamethasone to enhance fetal

maturation has been associated with reduced birth weight (108).

However, antenatal corticosteroids have decreased newborn

mortality without affecting morbidity in preterm small-for-

gestational-age infants (110).

The impairment in adaptation observed in extremely

premature infants and extending fetal physiology using APAW

require further investigation to determine whether the

suppression or acceleration of neonatal adaptation is appropriate.

Within the context of an APAW system and the maintenance

of fetal physiology, the promotion of lung maturation would not be

suitable. However, the decision to withhold or administer antenatal

corticosteroids is complex given the possibility of treatment

redirection to conventional care (rescue procedure) and the

uncertainty surrounding the optimal timing of delivery for a

preterm infant (113). If a transfer procedure reverts to standard

care, preterm care must align with conventional care standards

and outcomes, and therefore inform the decision on altering

antenatal administrations.

Certain antenatal administrations, such as magnesium sulfate,

have shown neuroprotective effects for preterm births, and it

would be a reasonable question of research, if this also applies to

patients in an APAW context, seen that extremely preterm

infants are at increased risk of neurologic injury (114, 115).

To sum up, the application of standard-of-care antenatal

pharmacological interventions should be further investigated in

cases of APAW treatment.

4. Medication may be necessary before and during transfer to

prevent specific physiological cascades related to neonatal

physiological transitions, for their (neuro)protective effects and

to support organ growth and maturation. Further

investigation is required to determine the suitability of

administering conventional medications, such as corticosteroids.

Another essential factor for the successful transfer of the perinate

is intact umbilical and placental circulation. When blood flow in

the umbilical cord is reduced the same holds for oxygen

consumption, as shown in fetal lambs (116), which could lead to

transfer failure and health risks to the perinate. Umbilical cord

obstruction can be caused by the pressure exerted by a physician

(leading to hematoma), vasospasm, and interaction with surgical

tools and actions. Additionally, the occlusion of the umbilical cord

stimulates breathing initiation regardless of blood gases and pH, as

demonstrated in fetal sheep (61). When occluded, the pulmonary

stretch receptor activity first increases and subsequently decreases

to zero at approximately the same time as the breathing reflex (117).

5. The transfer procedure should avoid obstruction or damage of

the umbilical cord that could lead to the occlusion of the

umbilical cord’s blood flow.

Ideally, transfer to the APAW system could be performed via

vaginal and CS delivery. Planned CS is always performed before

vaginal delivery could occur, thereby increasing the risk of

preterm birth. Delaying delivery, by performing vaginal delivery
frontiersin.org

https://doi.org/10.3389/fped.2024.1360111
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


van Haren et al. 10.3389/fped.2024.1360111
in certain situations could impact survival in cases of extremely

premature birth (118). Additionally, preterm birth of an infant

cannot always be planned; therefore, the timing does not always

allow for CS. A vaginal procedure is preferred for the mother, as

additional CS delivery risks, such as incision and uterine

infection, pulmonary embolism, increased blood loss, placental

growth into the scar in subsequent pregnancies, and uterine

rupture, can be avoided (118, 119). Nevertheless, a transfer via

vaginal delivery following preterm premature rupture of

membranes may affect the feasibility of potential APAW

treatments. Potential beneficial effects may be found for patients

with lung hypoplasia after re-immersion into an adequate

amount of amniotic fluid (120). Nevertheless, research attention

should be given to maintaining the sterility of the environment,

especially since chorioamnionitis is responsible for triggering

roughly half of preterm births (121). An association has been

found between chorioamnionitis, or early onset bacterial

infection, and an increased risk for germinal matrix

intraventricular hemorrhage (122, 123), a risk that has already

shown to be increased in ECMO treatment in these infants (124).

To increase the success rate for a perinatal transfer, and because

nearly half of premature births are performed via CS, a CS transfer

procedure should also be available (125–128). From a fetal

perspective, CS transfer offers a more controllable environment

throughout the procedure. In contrast to vaginal birth, in a CS

the “labor less” placenta should function similarly as during

pregnancy, provided specific anesthesia protocols are followed.

Relevant surgery has been successfully applied to the human fetus

in this condition, i.e., ex utero intrapartum treatment, whilst

keeping the fetus on uteroplacental circulation (129).

In a broader context, the delivery mode can impact the

transition stage to neonatal physiology. Certain processes

involved in neonatal transition leading to spontaneous vaginal

labor would be omitted if elective CS is planned before labor

begins. Therefore, CS can lead to retained lung fluid and

(transient) poor respiratory adaptation (58, 128). However,

because the transition is impaired in extreme preterm births, a

difference in the stage of neonatal transition between CS and

vaginal delivery is less likely.

Previous APAW animal studies controlled umbilical vessel

cannulation directly after CS while the animal was still in utero

or ex utero, connected to the native placenta, before vasospasm

or cord desiccation could occur (Table 1).

Through the CS and a small hysterotomy, the fetus is exposed

and can be cannulated in the neck or umbilical cord. After

establishing the circuit, the fetus was transferred to a warmed

fluidic incubator. A similar approach was demonstrated by the

Philadelphia group, where a lamb was placed directly in a biobag

after delivery and cannulation, after which the biobag was sealed

and transported to a mobile support station (3). They proposed

the possibility of vaginal delivery by cannulating at the perineum

(12). In contrast to the broader applicability of AP studies in

terms of delivery modes, current EXTEND protocols continue to

focus on CS (78).

One of the first approaches described for human subjects was

to perform CS and keep the native amniotic sac intact, after
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which the fetus could be submerged in the artificial amniotic

fluid in a tank. Subsequently, cannulation was performed. In case

of membrane rupture, the fetus is placed in a warmed fluid on

the operating table (14). In 1958, a study performed in humans

reported transfers by vaginal, spontaneous, and legally induced

abortions. After delivery, the umbilical cord was clamped rapidly

and the infant was kept in a temperature of 25°C, as this is

believed to reduce the oxygen consumption until the circuit is

established. After umbilical vessel cannulation, the fetus was

placed in a closed liquid-filled chamber on a perforated disc

above the heating apparatus (15).

In a patent published in 2004, Cooper suggested two possible

transfer methods: CS and birth canal (44). As the only detailed

account describing a human obstetric procedure, we included it

despite a lack of feasibility studies. A CS can be performed

without rupturing the membranes, allowing for an “en caul”

delivery where the fetus remains protected within the amniotic

sac, subsequently placed in a net and submerged in warmed

artificial amniotic fluid (44). If membrane rupture occurs, the

medical staff should prevent the infant from breathing by

covering the infant’s mouth. This approach has also been

suggested for VB transfer, with the physician’s hand in the

infant’s mouth before placing it in a submerged net. In the case

of VB, the contamination risk is a concern, which can be

mitigated by cleaning the fetus through successive antibiotic and

antimicrobial baths.

Infants from a multiple pregnancy could particularly benefit

from improved preterm care, as they currently face a higher

likelihood of being born preterm (130) and have a higher risk of

adverse outcomes compared to singletons at similar gestational

age (131). Factors to address in future research on this topic may

include management of umbilical cord abnormalities and

cannulation strategies in twins.

6. Efforts should be made to allow the transfer procedure to be

available for both vaginal and CS delivery, and to allow for a

multiple birth.

Vaginal delivery is not sterile, exposing the fetus to the

mother’s vaginal flora during birth. In addition, the uterus is not

a sterile environment, as studies have shown that the acquisition

and colonization of the human digestive tract begins in utero

(132). In extremely preterm births, chorioamnionitis is the most

common cause of preterm labor (133).

Some studies have compared vaginally delivered neonates

exposed to maternal vaginal flora vs. CS-delivered neonates and

argued that exposure to vaginal flora may contribute to

developing the newborn immune system (134, 135). Therefore,

contact with the vaginal microbiota could be explored, for

example, during the birth from the APAW system (136).

However, no exposure to vaginal flora should occur throughout

the present process, because it is intended to maintain perinatal

physiological conditions in the fetus. Exposing the perinate to

vaginal flora during transfer may increase the risk of Early Onset

Sepsis, which is most often acquired from the mother’s genital

tract or, less frequently, vertically through the placenta (137).
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Infection with group B Streptococcus is the leading cause of

morbidity in Early Onset Sepsis (138). A vaginal swab and

potential antibiotic treatment must be given as per standard

practice in managing threatened preterm labor.

Although not all studies have demonstrated significant

outcomes (139, 140), intrapartum intravaginal lavage can be

regarded as a feasible precaution to limit the risk of newborn

contamination with pathogens from the maternal genital canal

(141). Specifically, chlorhexidine and povidone-iodine (PI)

treatments may be beneficial (142, 143). However, data on the

possible adverse effects of chlorhexidine exposure in the birth

canal of neonates, particularly preterm newborns, are limited.

Multiple examples of adverse skin responses to topical

chlorhexidine have been reported, with extremely low birth

weight neonates suffering the most serious reactions (i.e., burns)

(144, 145). This was most likely caused by compromised skin

integrity (146). Perinates may also swallow or inhale any residual

chlorhexidine present during delivery. However, there is currently

no literature on its impact on preterm newborns. A study on rats

showed acute pulmonary inflammation, capillary congestion,

edema, and interstitial fibrosis after gradual intratracheal

administration of 0.1% and 1% chlorhexidine solutions (147).

These histological changes are comparable to those that can be

seen in patients who suffer from acute respiratory distress

syndrome (148–150). The researchers concluded that there is a

reasonable chance that inhalation of chlorhexidine at

concentrations of 0.1% or greater could result in this syndrome;

thus, using chlorhexidine would ideally be avoided.

PI has also been used to disinfect birth canals prior to cesarean

section and vaginal delivery and showed reduced infection rates

(141, 151). According to one study, infection rates following

standard vaginal saline solution disinfection were comparable to

those following PI disinfection (152). The same was true for

vaginal cleaning using a diluted baby shampoo (153).

Additionally, prolonged exposure to PI (1%–2%) during

pregnancy or birth may trigger temporary thyroid dysfunction in

infants and mothers (154). According to some studies, this

condition may be tolerated if the newborn is well monitored

after exposure. However, it may be preferable to use only non-

iodine antiseptics.

Alternatively, rather than chemical protection, the use of a

physical barrier, such as a retractor between the perinate

and birth canal, could be investigated to prevent exposure to

vaginal flora.

Multiple techniques have been proposed to reduce the perinatal

contamination in liquid-filled incubators. Sakata et al. added

antibiotics to lactated Ringer’s solution (38). When the perinate

is transferred via the birth canal, more attention should be paid

so that the vaginal microflora are not taken into the incubator.

Cooper suggested performing subsequent rinses in baths

containing antibiotics and antimicrobial fluids (44). Antibiotic

treatments (meropenem, fluconazole, and cefazolin) have also

been regularly administered intravenously to lambs in liquid-

filled incubators to prevent infections (4, 6, 29).

APAW studies in animals have shown that some lambs die of

pulmonary inflammation (3, 6). Partridge et al. compared multiple
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a sealable biobag instead of open or semi-open structures

eliminated many problems related to fluid contamination and

associated infections (3). Owing to their system’s fluid-filtering

capacity, the Philadelphia group suggests that any contamination

could be removed after placing the infant in the system (12).

Adding antimicrobial coatings to an incubator can also aid in

reducing bacterial growth on the film (20, 44).

7. Ideally, exposure to vaginal flora should be prevented during

the perinate transfer. We argue that a physical barrier between

the fetus and birth canal will likely prevent or greatly lower fetal

exposure to vaginal flora and possible lavage residues.

For the safety of the perinate, it must be possible to cease

transfer to the APAW system at any time during the procedure

and proceed with conventional neonatal care. Establishing

specific criteria (and parameter thresholds) is essential for

determining whether and when a rescue procedure is necessary.

The critical phase of vital parameter monitoring is the time

between the abdominal incision and attachment of the inserted

cannulas to the extracorporeal circuit. This could be regarded as

the transition time from fetal heart rate monitoring (CTG) to

more comprehensive monitoring of the infant, since data on

blood pressure, heart rate, and oxygen saturation are immediately

available once a circuit is established. However, if the cannulation

procedure fails or is prolonged, monitoring relies solely on

inobtrusive methods (e.g., CTG) or monitoring would have to be

extended to attach sensors to the fetus in utero.

A protocol that specifies the maximum duration of

cannulation, identifies the key clinical parameters that indicate

deterioration, and emphasizes the importance of promptly

discontinuing the procedure before the onset of irreversible

damage, such as decreased cerebral oxygenation, should be

established. Future preclinical studies should identify all the

relevant parameters and their threshold values, which could be

aided by the development of a clinical decision support system

(155). It is essential that these criteria are unambiguous, and that

the parties responsible for making the decision to cease the

transfer are clearly delineated. These may include parents,

obstetricians, neonatologists, and/or technicians.

8. The primary objective of monitoring during the transfer is to

indicate that everything is proceeding as expected or to indicate

promptly that the rescue procedure must be started before

irreversible harm occurs.

The effectiveness of prospective APAW treatment should be

evaluated based on its improvement over the standard of care for

an extremely premature infant in the neonatal incubator on a

ventilator, not by comparison with the native womb (156).

However, knowledge of the intrauterine conditions should

inform APAW treatment to improve preterm care outcomes.

General benefits can be gained from further research on the

environmental influences that affect development (157). Birth is

associated with massive tactile, visual, auditory, and vestibular
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sensory sensations, when the fetus leaves the warm uterus for a new

but cold physical environment. Although no clear conclusions can

be drawn from the available research that short-term exposure to

the external environment affects perinatal development,

attenuation of environmental triggers from the harsh hospital

room during delivery would allow a smooth transfer from the

protective environment of the native womb to the protective

environment of the liquid-filled chamber (LFC). Submerging the

fetus in a liquid has the benefit of protecting it from sound,

balance disturbances, tactile stimuli, and trauma. Additional

efforts could include protection from intense light while allowing

visual examination by medical staff. For instance, Charest-Pekeski

et al. covered biobags to prevent light transmission to the fetus

and mimic uterine conditions more accurately (7). While

detailing these requirements is beyond the scope of this review,

we believe that the obstetric procedure should be in line with the

attenuation of triggers offered in an LFC and therefore avoid

exposure to temperature shifts, noise, and harsh directed lights.

9. Despite the transfer taking only a limited duration, it would

be optimal to attenuate environmental triggers, as is aimed for

in an LFC, yet allow for adequate visual examination of the

perinate to make an informed decision to (dis)continue

treatment.

Contributions towards health and well-being that account for

the emotional impact on mothers and partners should not be

overlooked. Maternal comfort could be facilitated by epidural or

spinal analgesia as general anesthesia could carry more risk of

maternal and neonatal complications (158–160).

In previous studies on APAW with lambs, ewes were

premedicated, anesthetized, intubated, and ventilated by

administering drugs including buprenorphine or propofol (3, 28).

Buprenorphine, an opioid, depresses ventilation, which is

beneficial for suppressing the breathing reflex of the fetus (161,

162). Another opioid that is used in clinics for maternal pain

relief is pethidine, a morphinomimetic (163). This opioid also

suppresses the breathing reflex in the neonate (164). In vaginal

births, epidural is the preferred pain relief option, or remifentanil

is used as an alternative, which crosses the placenta but is

thought to be quickly metabolized. In cesarean sections, spinal

anesthesia is preferred. Although fetal surgery can be performed

under fetal-direct anesthesia, it is primarily reserved for pain

management in critically ill patients and represents a decision

between two unfavorable options. If a transfer could be

performed without the use of fetal anesthetics (but with maternal

anesthetics), it would be more desirable if it did not result in an

unreasonable pain experience (165, 166).

10. With appropriate pain relief in place, attempts should be

made to avoid general anesthesia.

Although the enclosed environment of the LFC is designed to

protect the infant from external factors and sustain fetal

physiology, it also prevents direct contact, or potential bonding,

between parent and infant. Studies have shown a correlation
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between postnatal attachment and maternal and newborn

outcomes (167). High levels of bonding are related to greater

adjustment to the parental role from the mother, and are

positively correlated with social, cognitive, and physical

development in the newborn (167–170). Insufficient bonding in

extremely premature infants can negatively affect hormonal,

epigenetic, and neuronal development (170).

Upon delivery, the mother undergoes significant endocrine

changes triggered by the detachment of the placenta (171, 172).

These hormonal fluctuations, such as a rapid decline in the

concentrations of estradiol and progesterone after birth, could

contribute to depression, anxiety, or increased stress levels (172,

173). Preterm delivery can turn into a traumatic experience due

to fear, helplessness, pain, and loss of control (174, 175). Quality

of care, privacy, engagement in decision-making, and support

significantly impact a woman’s birth experience (176).

Unplanned CS and instrumental vaginal deliveries have been

associated with increased risk of negative birth experiences and

maternal health issues (177, 178). Early maternal-newborn

contact directly following delivery, such as seeing, holding, and

feeding, has been linked to positive birth experiences for new

mothers, especially those with CS (179). Situations may arise in

which patients prepared for, or on APAW support do not

survive, and parents may not have had the opportunity to hold

or witness their infant alive. Adequate parent support guidelines,

such as those that exist for stillbirth, should be in place.

Additional research should confirm the direct connection

between negative birth experiences and subsequent poor

maternal caregiving (180). In any case, adequate obstetric and

family centered care policies are imperative to enhance patient

well-being.

Regarding birth experience, the LFL approach would be more

similar to the current neonatal intensive care, and skin-to-skin

contact between parents and infants would still be possible (181).

Further (long-term) research will elucidate which configuration is

the safest and most preferable for patients.

11. Parent-infant bonding (either through direct contact or

technology-enhanced bonding) is advisable, as it could

enhance the birth experience and, thereby, parental and fetal

well-being.

Finally, integrating treatment using APAW into the current

healthcare system will likely demand increased human and

material resources. Personnel setups required for novel

treatments, such as transfer procedures, require specialized

training and may easily exceed staffing availability. For example,

the health workforce requirements in German perinatal centers

demand the presence of 2 gynecologists, one neonatologist

(present or on-call), one fellow pediatrician, one anesthesiologist,

one scrub nurse, one surgical technical assistant, and one

medical assistant (182). Within the context of a transfer

procedure, to cover delivery, cannulation, and placement in the

LFC, the majority of this team would likely be needed, thereby

preventing them from caring for other patients. This makes

treatment with this technology highly specialized, expensive, and
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inaccessible to many patients, as low- and middle-income countries

are already struggling with staffing shortages for newborn care

(183). Centralizing care may initially be necessary if this

specialized treatment is brought to the clinic, requiring the

accumulation of experience and expertise, along with the need to

rearrange the NICU ward and purchase of medical equipment.

12. Human and logistical resources should be considered to

integrate treatments using APAW within the existing

healthcare system.

Research suggests that medical simulation may improve

obstetric team performance and maternal and perinatal outcomes

(184). Medical simulation has also been proposed within an

APAW context to complement the development of procedures

tailored to human patients (5, 155, 185). Although in silico

studies should ultimately be followed by validation in vivo, the

emergence of novel simulation technologies could offer an

intermediary step that allows for a controlled and safe

environment for procedural development and training. A large

body of literature has been written about the ethical development

of APAW technology (5), underscoring the crucial role of

dialogue and stakeholder engagement during its development.

Figure 1 summarizes the considerations for a transfer

procedure, as it relates to standard obstetric care for extremely

premature infants, and lists points for future research that focus

on obstetric approaches in an APAW context. Future research on

the obstetric approaches for APAW treatment is here divided into

three stages surrounding preterm care: pre-, during and post-

delivery. Apart from obstetric care, prompt initiation of neonatal

intensive care monitoring and treatment at cannulation would be

crucial for continuous adjustment of gas exchange, nutrition,

medical treatment, stabilization of the circulation, countering

extracorporeal circulation side-effects, obtaining blood samples for

various tests, and initiating infection control if necessary.
4 Conclusion

This narrative review covers the transitional physiology in an

APAW context and how it relates to different obstetric

approaches and perinatal physiological needs. The majority of

APAW studies included in this review, conducted on animals,

have been essential in providing valuable insights; however, their

applicability in humans remains uncertain. The feasibility of

transitioning from placental to extracorporeal circuit support

with conventional obstetric care and the associated requirements,

such as safety thresholds, remain unclear.

This review aims to outline future research directions and lists

considerations for a safe obstetric procedure to mitigate potential

risks. This can be achieved by promoting continuous intrauterine

conditions through adaptation of conventional preterm delivery.

Considerations include preserving fluid in the airways,

maintaining sterility, normothermia, anesthetic management,

attenuating external stimuli (e.g., light and sound), and ensuring
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psychological aspects such as patient well-being. Certain

requirements may become superfluous as research advances.

Compared to the present preterm care, one challenge associated

with the potential clinical use of AW is the necessity of CS—as seen

in all successful AW models. Clinical translation may require an

EXIT procedure or a modified CS. Vasospasm and reduced

placental perfusion at the time of initial vessel cannulation could

favor CS delivery over VB, especially in cases of prolonged labor.

Still, allowing both vaginal and CS deliveries could benefit

maternal outcomes if measures to limit vasospasms, prevent

neonatal transition and the promotion of sterility are ensured.

Preclinical studies have shown successful maintenance of

APAW support and many learnings can be drawn from its

animal studies. As there are still missing links in APAW research

that need to be resolved before clinical use (192), animal models

can also aid in determining the physiological factors involved in

neonatal transition and how they are modulated during

extracorporeal life support.

Medical simulation can be complementary to reach this aim, as

these can seamlessly integrate a value-sensitive approach to identify

and implement patient-centered care and ethical considerations in

APAW development, ensuring optimal alignment with the needs

and values of stakeholders (5, 17).

In this review, we aimed to provide a comprehensive overview

of factors that might come into play in the obstetric care of future

treatment using APAW technology and provide suggestions for

how these factors might be addressed. Building a collective

understanding of essential transitional physiology and obstetric

practices informs technological development and can enhance

the readiness of a medical team in anticipation of potential

future clinical trials.
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