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A nomogram for predicting
neonatal apnea: a retrospective
analysis based on the MIMIC
database
Huisi Huang, Yanhong Shi*, Yinghui Hong, Lizhen Zhu,
Mengyao Li and Yue Zhang

Department of Paediatrics, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou,
Guangdong, China
Introduction: The objective of this study is to develop a model based on indicators
in the routine examination of neonates to effectively predict neonatal apnea.
Methods: We retrospectively analysed 8024 newborns from the MIMIC IV
database, building logistic regression models and decision tree models. The
performance of the model is examined by decision curves, calibration curves
and ROC curves. Variables were screened by stepwise logistic regression
analysis and LASSO regression.
Results: A total of 7 indicators were ultimately included in the model: gestational
age, birth weight, ethnicity, gender, monocytes, lymphocytes and
acetaminophen. The mean AUC (the area under the ROC curve) of the 5-fold
cross-validation of the logistic regression model in the training set and the
AUC in the validation set are 0.879 and 0.865, respectively. The mean AUC
(the area under the ROC curve) of the 5-fold cross-validation of the decision
tree model in the training set and the AUC in the validation set are 0.861 and
0.850, respectively. The calibration and decision curves in the two cohorts
also demonstrated satisfactory predictive performance of the model. However,
the logistic regression model performs relatively well.
Discussion: Our results proved that blood indicators were valuable and effective
predictors of neonatal apnea, which could provide effective predictive
information for medical staff.
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1 Introduction

Neonatal period is a critical stage for promoting the growth and development of children

and preventing future diseases. However, it is a complex process for adaptation from the

intrauterine to extrauterine environment, with up to 10% of the newborns requiring certain

clinical intervention at birth (1).Once the newborn is exposed to the external environment

and begins to breathe, oxygen level in the blood is higher than that in the uterus. Oxygen is

a potent dilator of the lungs. The decreased resistance of pulmonary vessels increases

pulmonary blood flow, subsequently promoting oxygen delivery throughout the body. With

oxygenation enhanced, calcium channels in the smooth muscle of the ductus arteriosus are

activated, thereby influencing the pump function of the heart (2). Apnea is the most

common manifestation of immature cardiorespiratory regulation in the neonates (3) and can

lead to neonatal hypoxemia and hypercapnia (4), which increases the risk of brain injury

and neurodevelopmental impairment in the infants (4–6). Although there is no significant
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data demonstrating the association between apnea and sudden

infant death syndrome (6), apnea was a precursor to neonatal

asphyxia and could lead to irreversible central nervous system

damage according to a previous animal research (7). Regardless of

the type and level of apnea, recurrence and long duration of apnea is

associated with neurological disease and mortality in neonates.

The breathing of high-risk neonates canbe continuouslymonitored

in Neonatal intensive care units (NICUs). However, medical staffs are

often distracted by large numbers of newborns and alarms from

other events. Early identification or prediction of the risk of neonatal

apnea can allocate medical resources in a more reasonable way, and

early intervention can be provided to the neonates with high risk of

apnea, which has significant clinical significance. There were

numerous studies on the monitoring of neonatal apnea and

bradycardia based on machine learning algorithms (8). However, few

studies focused on the early identification and prediction of neonatal

apnea. Two research studies established a predictor for neonatal

apnea based on sophisticated algorithms of machine learning (9, 10).

The “black box” effect cannot be avoided in these machine learning

algorithms, and thus it is challenging to interpret the operation

process and quantify the risk of each feature.

Therefore, in order to improve the interpretability and

simplicity of the model, a logistic regression algorithm was used

to establish a nomogram model according to indicators in the

blood test and medication information of the neonates to rapidly

predict the risk of neonatal apnea. In addition, we build a

decision tree model to compare with the nomogram model. ROC

curve, decision curve and calibration curve were plotted using

the predicted results and the results observed in clinical practice

to test the performance of the model. The findings showed that

the prediction performance of the model was satisfactory.
2 Methods

2.1 Data sources

The data in this study were obtained from the MIMIC IV

(https://physionet.org/content/mimiciv/1.0/) database for intensive

care medicine. MIMIC IV is a comprehensive dataset containing

the demographic information, laboratory results on admission and

during ICU stay, diagnosis, medication, survival status, scores of

each items, etc. for each participant. This present study included all

neonates registered in MIMIC IV who were admitted to the ICU.

The demographic information, indicators of laboratory test, and

medication of the included neonates were collected: (1) Basic

patient information: race, sex, insurance status, gestational age

(GA), weight; (2) Indicators of laboratory tests: white blood cells

(WBC), basophils, eosinophils, lymphocytes, monocytes,

neutrophils, band cells, hematocrit value, hemoglobin, mean

corpuscular hemoglobin (MCH), mean hemoglobin concentration

(MCHC), mean corpuscular volume (MCV), platelets, red blood

cells (RBC), red blood cell distribution width (RDW), total bilirubin

(TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL); (3)

Medication: acetaminophen, vancomycin, other antibiotics; (4)

Blood culture: Staphylococcus aureus (+). The value measured for
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the first time after birth was used as the indicators of the laboratory

tests. The outcome variable was defined as the occurrence of apnea

during hospitalization. Neonatal apnea was defined as apnea≥ 20 s

or apnea≤ 20 s accompanied by bradycardia (<100 bpm), cyanosis,

pallor, and/or obvious hypotension (11). Neonatal apnea is defined

by the ninth and tenth versions of the International Classification

of Diseases (ICD-9 and ICD-10).
2.2 Statistical analysis

Before the analysis, the dataset was randomly divided into

training dataset and validation dataset at a ratio of 7:3. The

training dataset was used for model establishment, and the

validation dataset was for model validation. The demographic

and clinical features of the patients were assigned into training

and validation datasets for description. Categorical variables were

expressed as percentiles (%). Continuous variables with normal

distribution were expressed as mean and standard deviation

[Mean (±SD)], and those with abnormal distribution were

expressed as medians and quartiles [Median(IQR)].

Training dataset was used to feature selection, including

univariate and multivariate analysis. In univariate analysis, chi-

square test was applied to compare the differences between

categorical variables in the two groups, and the one-way

ANOVA or rank sum test was applied to compare the differences

between continuous variables in the two groups. The variables

with statistically significant difference in univariate analysis were

subjected to stepwise logistic regression for multivariate analysis.

The variables with statistically significant difference in

multivariate analysis were subjected to the LASSO regression. To

simplify the model, LASSO regression was used to screen the

features again, where variables with non-zero coefficients were

included in the final logistic regression model and decision tree

model. Subsequently, to avoid multicollinearity, we calculated the

variance inflation factor (VIF) of the variables in the logistic

regression model and excluded those with VIF higher than 5. In

the training cohort, 5-fold cross-validation was performed on the

model. The performance of the model was evaluated by plotting

ROC curve, calibration curve and decision curve. All statistical

analyses were performed using R 4.1.2 (The R foundation for

statistical computing, Vienna, Austria) (https://www.r-project.org/)

and SPSS 26.2. P < 0.05 was considered as statistically significant.
3 Results

3.1 Patient data

Data on 17,376 neonates were retrieved from the MIMIC IV

database. After excluding cases with missing data, a total of 8,024

neonates were included in the study, of which 3,069 had apnea. There

was no significant difference in each variable between the training

dataset (n = 5,618) and the validation dataset (n = 2,406). The

proportion of neonates with apnea was about 38.2% in both

datasets (Table 1).
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TABLE 1 Data description.

Characteristic Overall
N= 8,024

Training Set
N= 5,618

Verification Set
N= 2,406

p-value

Insurance 0.646

Medicare 12 (0.1%) 10 (0.2%) 2 (<0.1%)

Medicaid 983 (12%) 693 (12%) 290 (12%)

Other 7,029 (88%) 4,915 (87%) 2,114 (88%)

Ethnicity 0.547

White 3,721 (46%) 2,620 (47%) 1,101 (46%)

Asian 1,027 (13%) 715 (13%) 312 (13%)

Black 890 (11%) 635 (11%) 255 (11%)

Other 2,386 (30%) 1,648 (29%) 738 (31%)

Apnea 3,068 (38%) 2,148 (38%) 920 (38%) 0.998

GA

>36 weeks 3,753 (47%) 2,615 (47%) 1,138 (47%)

≤28 weeks 552 (6.9%) 378 (6.7%) 174 (7.2%)

28–32 weeks 1,212 (15%) 863 (15%) 349 (15%)

32–36 weeks 2,505 (31%) 1,761 (31%) 744 (31%)

Unknown 2 (<0.1%) 1 (<0.1%) 1 (<0.1%)

Weight 0.756

<1,500 g 1,089 (14%) 761 (14%) 328 (14%)

>2,500 g 4,683 (58%) 3,260 (58%) 1,423 (59%)

1,500–2,500 g 2,248 (28%) 1,594 (28%) 654 (27%)

Unknown 4 (<0.1%) 3 (<0.1%) 1 (<0.1%)

Gender 0.565

Female 3,641 (45%) 2,561 (46%) 1,080 (45%)

Male 4,383 (55%) 3,057 (54%) 1,326 (55%)

WBC (10^9/L) 14 [10, 19] 13 [10, 19] 14 [10, 19] 0.07

Basophils (10^9/L) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.478

Eosinophils (10^9/L) 0 [0, 20] 0 [0, 20] 0 [0, 21] 0.249

Lymphocytes (10^9/L) 176 [5, 493] 179 [5, 486] 162 [5, 507] 0.195

Monocytes (10^9/L) 10 [1, 77] 10 [1, 77] 7 [1, 75] 0.839

Neutrophils (10^9/L) 56 [9, 449] 62 [9, 442] 51 [9, 457] 0.886

Basophils% (%) 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.438

Eosinophils% (%) 1.00 [0.00, 3.00] 1.00 [0.00, 3.00] 2.00 [0.00, 3.00] 0.43

Lymphocytes% (%) 38 [24, 56] 38 [24, 56] 38 [24, 57] 0.522

Monocytes% (%) 7.0 [5.0, 10.0] 7.0 [5.0, 10.0] 7.0 [5.0, 10.0] 0.354

Neutrophils% (%) 48 [31, 63] 48 [31, 63] 48 [31, 63] 0.433

Bands (%) 0.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.00 [0.00, 2.00] 0.512

Hematocrit (%) 49 [45, 53] 49 [45, 53] 49 [46, 53] 0.639

Hemoglobin (10 g/L) 16.70 [15.30, 18.10] 16.70 [15.30, 18.10] 16.70 [15.30, 18.10] 0.923

MCH (pg) 36.10 [34.90, 37.40] 36.10 [34.90, 37.40] 36.10 [35.00, 37.40] 0.838

MCHC (10 g/L) 33.90 [32.90, 34.80] 33.90 [33.00, 34.80] 33.90 [32.90, 34.80] 0.09

MCV (fL) 107 [102, 112] 106 [102, 112] 107 [102, 112] 0.191

Platelet (10^9/L) 262 [216, 311] 263 [216, 311] 261 [217, 311] 0.866

RBC (10^12/L) 4.63 [4.20, 5.04] 4.63 [4.20, 5.04] 4.62 [4.21, 5.05] 0.916

RDW (%) 16.70 [15.90, 17.60] 16.60 [15.90, 17.60] 16.70 [15.90, 17.60] 0.451

TBIL (mg/dl) 6.20 [4.80, 7.80] 6.20 [4.80, 7.80] 6.20 [4.80, 7.70] 0.776

DBIL (mg/dl) 0.30 [0.20, 0.30] 0.30 [0.20, 0.30] 0.30 [0.20, 0.30] 0.836

IBIL (mg/dl) 5.90 [4.50, 7.50] 5.90 [4.50, 7.50] 6.00 [4.50, 7.40] 0.769

Antibiotic 0.985

No 2,270 (28%) 1,589 (28%) 681 (28%)

Yes 5,754 (72%) 4,029 (72%) 1,725 (72%)

STAPH AUREUS COAG + 0.309

No 7,816 (97%) 5,479 (98%) 2,337 (97%)

Yes 208 (2.6%) 139 (2.5%) 69 (2.9%)

Acetaminophen 0.725

No 5,149 (64%) 3,612 (64%) 1,537 (64%)

Yes 2,875 (36%) 2,006 (36%) 869 (36%)

Vancomycin 0.391

No 7,613 (95%) 5,338 (95%) 2,275 (95%)

Yes 411 (5.1%) 280 (5.0%) 131 (5.4%)
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FIGURE 1

Nomogram and decision tree model for predicting neonatal apnea. (A) nomogram; (B) decision tree model.

Huang et al. 10.3389/fped.2024.1357972
3.2 Feature selection and model
establishment

To ensure the simplicity of the model, we included some

routine laboratory indicators that are readily available in the

ICU. Univariate analysis showed that there was significant

difference in 27 of the 32 variables between the neonates with

and without apnea. A forward stepwise logistic regression

analysis was performed on these significantly different

variables. The results showed that gestational age (GA), birth

weight, white blood cell count, monocyte count, percentage of

eosinophils, percentage of neutrophils, band cell count, mean

corpuscular volume, total bilirubin, direct bilirubin, race, sex,

antibiotics, acetaminophen, and vancomycin were potential

independent risk factors for neonatal apnea (Supplementary

Table S1). LASSO regression was used for further screening to
FIGURE 2

RCS curves. (A) RCS curve of the Monocytes; (B) RCS curve of the Lympho
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simplify the model, and variables with non-zero coefficients in

LASSO regression were included in the final logistic regression

model and decision tree model (Figure 1), The lambda in the

LASSO regression takes the value of lambda with the smallest

mean cross-validated error (0.001728152) (Supplementary

Figure S1). Seven predictors were finally included: GA, birth

weight, ethnicity, gender, monocytes, lymphocytes and

acetaminophen (Supplementary Table S2, Figure S1). The

variance inflation factors of the variables in the model were all

less than 5, indicating a low level of collinearity

(Supplementary Table S3). For numeric variables in the model,

we performed restricted cubic spline (RCS) analyses to explore

potential nonlinear relationships between numeric features and

outcomes. The results showed that monocytes (P < 0.0001),

and lymphocytes (P < 0.0001) had significant nonlinear

associations with the risk of apnea (Figure 2).
cytes.
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FIGURE 3

Results of ROC analyses. (A,B) ROC curves for the logistic regression model in the training and validation sets; (C,D) ROC curves for the decision tree
model in the training and validation sets.

Huang et al. 10.3389/fped.2024.1357972
3.3 Validation of the model

In the training cohort, we performed 5-fold cross-validation on

two models. The mean AUC of the 5-fold cross-validation of the

logistic regression model in the training set and the AUC in the

validation set were 0.879 and 0.865, respectively (Figures 3A,B).

The mean AUC of the 5-fold cross-validation of the decision tree

model in the training set and the AUC in the validation set were

0.861 and 0.850, respectively (Figures 3C,D). Within the ROC

curve, the largest Youden index was used as our optimal cutoff

value. In both training cohort and validation cohort, the

predicted and observed values were consistent as shown in the

calibration curve (Figure 4). Linear regression was fitted by

dividing the predicted and observed values of the logistic

regression model and the decision tree model into 50 sets. The

result of the logistic regression model showed that the intercept
Frontiers in Pediatrics 05
in the training set was 0.001 and the slope was 0.997. The

intercept in the validation set was 0.017 and the slope was 0.968.

The result of the decision tree model showed that the intercept

in the training set was -1.055e-16 and the slope was 1.000. The

intercept in the validation set was 0.009 and the slope was 0.976.

The intercept in both the training and validation sets was close

to 0 and the slope was close to 1, indicating that the model is

well calibrated. And considerable net benefit was demonstrated in

the decision curve (Figure 5). Combined with the results of the

ROC, the logistic regression model had a net benefit of 0.640 in

the training set when the optimal Youden index was 0.623,

sensitivity was 0.886, and specificity was 0.737, for a total of

2,815 children who were at high risk of apnea. The net benefit of

the model in the validation set was 0.640, sensitivity was 0.828,

and specificity was 0.772, for a total of 1,179 children who were

at high risk for apnea. The decision tree model had a net benefit
frontiersin.org
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FIGURE 4

Calibration curves. (A) calibration curves in the training set; (B) calibration curves in the validation set. DTM, decision tree model, LG, logistic regression.

FIGURE 5

Decision curves. (A,B) decision curve of the logistic regression model in the training and validation sets; (C,D) decision curve of the decision tree model
in the training and validation sets. DTM, decision tree model, LG, logistic regression.

Huang et al. 10.3389/fped.2024.1357972
of 0.756 in the training set when the optimal Youden index was

0.609, sensitivity was 0.911, and specificity was 0.698, for a total

of 3,003 children who were at high risk of apnea. The net benefit
Frontiers in Pediatrics 06
of the model in the validation set was 0.736, sensitivity was

0.777, and specificity was 0.812, for a total of 1,268 children who

were at high risk for apnea.
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4 Discussion

Certain predictors associated with neonatal apnea were

identified in this study. The results showed that gestational age,

birth weight, ethnicity, gender, monocytes, lymphocytes and

acetaminophen were potential predictors for neonatal apnea. A

nomogram model and a decision tree model were established

based on these factors to predict the occurrence of neonatal apnea.

These indicators included in the model are readily available in

clinical practice and can be obtained early as soon as new-borns

are born, making the clinical prediction of neonatal apnea simple.

Calibration curve, ROC analysis and DCA all presented that the

nomogram had satisfactory predictive performance. Overall, the

logistic regression model performed relatively well.

A few studies have discussed the predictors for neonatal apnea.

Among them, Nicola et al. investigated the risk factors of neonatal

apnea after immunization in NICU. The study was based on a

cohort of 497 neonates, including birth weight, maternal age,

feeding status, use of caffeine drugs, and other related indicators

in perinatal period. However, the predictive performance of these

measures for apnea was not quantified and only indicators

related with perinatal period were included without exploring the

potential predictive value of other indicators in the study (12).

Additionally, other two research teams established predictive

models for neonatal apnea. Rudresh et al. established a deep

neural network model to predict neonatal apnea based on a

cohort of 367 neonates (9). The model included the

demographics, indicators related with perinatal period, and

physiological parameters. The authors also compared the model

with algorithms such as Support Vector Machines (SVM), K-

Nearest neighbor, decision tree, and random forest, and the

results showed that the deep neural network algorithm was

better. By using algorithms such as Gaussian model, another

research team established a predictive model for predicting the

severity of apnea in preterm infants based on the

cardiopulmonary signals and motion features of 10 premature

infants. The average AUC of this model was 0.77 and it could

predict 83% and 75% of the most severe onset in the training set

of 7 infants and the testing set of 3 infants, respectively (13).

However, the risk of each feature was not quantified by the

algorithms used in these studies, and the results were not visually

expressed. Moreover, none of these studies investigated the effect

of blood parameters on neonatal apnea. Hence, in order to

improve these two shortcomings, we included indicators such as

neonatal demographic information, blood parameters, and

medication. Logistic regression was used to quantify the risk of

each feature, and the corresponding nomogram was plotted. As a

common research method in medical research, nomogram can

directly demonstrate the risk score of each feature (14–17). The

blood indicators and medication were included in our model,

and the mean AUC of the 5-fold cross-validation of the model in

the training set and the AUC in the validation set were 0.879

and 0.865, respectively, suggesting that blood indicators and

medication could also predict neonatal apnea. Our research

presented that increased mononuclear cells in blood was

associated with an elevated risk of neonatal apnea. Monocyte, an
Frontiers in Pediatrics 07
important kind of circulating leukocytes in both innate and

adaptive immunity, mainly plays a role in immune defense,

inflammation and tissue remodeling (18). Hence, our model may

also have a certain warning effect on these events.

Although gestational age and birth weight are physiologically

strongly correlated and would normally be expected to exhibit

high levels of multicollinearity, in this study we observed

variance inflation factors (VIFs) below 5 for both variables,

suggesting that there were low levels of multicollinearity in our

model. This result may be influenced by several factors. First, our

dataset contains a large amount of individual variability, which

may have weakened the correlation between gestational age and

birth weight. For example, factors such as maternal health status

and placental function may have mitigated the multicollinearity

between these two variables to some extent (19). Second, we

included other covariates in the model, which may have

statistically adjusted the association between gestational age and

birth weight, thereby reducing multicollinearity (20). In addition,

it has been shown that the association between gestational age

and birth weight may not always be highly correlated in a given

study population, especially in the presence of multiple

confounders, which may result in lower than expected VIF values

(21). Therefore, we believe that the low level of covariance

between gestational age and birth weight in this study is

reasonably explainable and does not affect the robustness and

explanatory power of the model. However, future studies are still

needed to further explore the relationship between these variables

in different populations and larger samples to validate our findings.

Although we provided well-performing models for predicting

apnea, there are still some limitations of this study that need to be

mentioned. First, the study cohort used to establish this model

was from the same dataset. Adequate external validation of this

model is needed. Second, this study was established based on

retrospective data and requires prospective validation in a larger

sample. Also, since the database used is based on the US

population, the model may not be applicable in regions such as

Asia or Africa. Additionally, only two models have been developed

in our study, and the applicability of other novel machine learning

models in predicting apnea needs to be explored. Eventually, due

to the limitations of the public database, we cannot get the specific

time of the onset of apnea events, laboratory examinations, and

drug administration. Therefore, we will conduct a prospective

study to validate the results in the future. However, since these

infants live in NICUs, and some laboratory examinations are

usually performed on their plantar blood upon their birth, it can

be inferred that apnea occurs after the laboratory indicators are

obtained. As a result, we think the research is feasible.
5 Conclusion

This study proposed a model for predicting neonatal apnea

using blood indicators and medication. Our results proved that

blood indicators were valuable and effective predictors of

neonatal apnea, which could provide effective predictive

information for medical staff.
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