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Background: Numerous studies have examined the association between obesity
and age at menarche (AAM), with most focusing on traditional obesity indicators
such as body mass index. However, there are limited studies that explored the
connection between body fat distribution and AAM, as well as a scarcity of
Mendelian randomization (MR) studies.
Methods: In this study, we conducted a two-sample MR study to evaluate the
causal effects of eight body fat distribution indicators on AAM. Inverse variance
weighted (IVW) method was used for primary analysis, while supplementary
approaches such as MR-Egger and weighted median were also utilized.
Considering that the eight exposures were highly correlated, we performed an
MR Bayesian model averaging (MR-BMA) analysis to prioritize the effect of
major exposure on AAM. A series of sensitivity analyses were also performed.
Results: From a range of 82–105 single nucleotide polymorphisms (SNPs) were
utilized as genetic instrumental variables for each of the exposure factors. After
Bonferroni correction, we found that whole body fat mass (β: −0.17; 95%
CI: −0.24, −0.11), left leg fat percentage (β: −0.14; 95% CI: −0.21, −0.07), left
leg fat mass (β: −0.20; 95% CI: −0.27, −0.12), left arm fat percentage
(β: −0.18; 95% CI: −0.26, −0.11) and left arm fat mass (β: −0.18; 95%CI: −0.26,
−0.10) were associated with decreased AAM using random effects IVW
method. And the beta coefficients for all MR evaluation methods exhibited
consistent trends. MR-BMA method validated that left arm fat percentage
plays a dominant role in AAM.
Conclusions: Our MR study suggested that body fat has broad impacts on AAM.
Obtaining more information on body measurements would greatly enhance our
comprehension of pubertal development.
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1 Introduction

Over the last several decades, the weight problems, overweight and

obesity, have been increasing constantly in Europe (1), with the obesity

prevalence rates of ∼20% (2). And childhood obesity also cannot be

ignored, with around 30% of children overweight or obese in Europe

(3). At the same time, the past century has seen a dramatic decline

in the age of menarche among European women (4).

Epidemiological studies have consistently demonstrated a link

between overweight or obesity and pubertal development (5, 6).

These studies have shown that children who are overweight or obese

tend to experience earlier onset of puberty, while those who are

underweight or have a low body mass index (BMI) often have

delayed pubertal timing, especially among girls (7). This correlation

may be due to a variety of factors, including hormonal imbalances,

genetics, lifestyles such as diet and physical activity, and others (8).

Additionally, the timing of puberty has important implications for

long-term health outcomes, with early puberty associated with

increased risk of certain health conditions such as breast cancer and

cardiovascular disease (9–11). Therefore, understanding the

relationship between body composition and puberty is important for

promoting health and preventing disease across the lifespan.

There are many phenotypes related to obesity, with the most

commonly used one being BMI. However, BMI alone does not

provide enough specific information and cannot reflect the

distribution of body fat. So, previous studies using BMI to indicate

obesity cannot effectively reflect the influence of body fat on

children’s pubertal development. Several observational

epidemiological studies have attempted to investigate the

relationship between body composition and breast development or

age of menarche in girls (12–16). The study revealed a correlation

between body fat percentage and fat mass with the onset of

thelarche or menarche in girls. However, these investigations

lacked the inclusion of fat distribution indicators in specific body

regions, such as the arm or leg fat percentage. Furthermore, it is

crucial to emphasize that conventional observational studies

frequently encounter inherent limitations, such as residual

confounding and reverse causality, which pose challenges in

identifying consistent factors influencing pubertal development.

The Mendelian randomization (MR) design, which is a recently

developed research approach, has been widely employed to examine

the causal relationship between a particular exposure and a specific

outcome (17). As an analytic approach, MR design provides a

distinct advantage in assessing causality compared with

observational studies by utilizing genetic variants as instrumental

variables. By using genetic variants, which are randomly allocated at

conception and are not influenced by any environmental or lifestyle

factors, the MR design can help overcome confounding and reverse

causality biases that may arise in traditional observational studies (18).

Currently, there is a paucity of research investigating the

association between body fat distribution and pubertal

development in the European population. Furthermore, the

absence of MR study hinders a comprehensive understanding of

the causal link between body fat distribution and the initiation of
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puberty in children. To bridge this gap, we undertook a

two-sample MR study utilizing data from the UK Biobank. This

study aims to elucidate the causal association between age at

menarche (AAM) and body fat distribution, while also

identifying most influential body fat distribution indicator

on AAM.
2 Methods

2.1 Study design

We conducted a standard two-sample MR study to explore

the causality between several anthropometric traits related to

body fat distribution and the AAM. Firstly, we used univariable

MR methods to explore the potential causal relationship

between the eight exposures related to body fat distribution and

AAM. Considering that the eight exposures are highly

correlated, MR Bayesian model averaging (MR-BMA) method

(19) was further used to prioritize the body fat distribution

traits in order to identify the predominant trait associated with

AAM. The study design is shown in Figure 1. Statistical

analysis was performed by the “TwoSampleMR” (Version 0.5.6)

and “mrbma” package of the R program (Version 4.2.0). Our

study primarily relied on summary-level statistics and thus did

not require ethical approval.
2.2 Data sources

Summary-level data of exposure were extracted from the

second round of Neale Lab’s GWAS (http://www.nealelab.is/uk-

biobank) in UK Biobank. Researchers measured body

composition via bioelectrical impedance analysis using a Tanita

BC418MA body composition analyzer, gaining many

anthropometric measures, such as whole-body fat mass, whole-

body fat-free mass, fat mass, and nonfat mass for each of trunk,

arm, and leg anthropometric traits. Among them, we included a

total of 8 variables related to fat distribution, including body fat

percentage, whole body fat mass, left leg fat percentage, left leg fat

mass, left arm fat percentage, left arm fat mass, trunk fat

percentage, and trunk fat mass. Furthermore, we solely utilized

data coming exclusively from women, which included

approximately 191,000 samples.

Genetic association estimates with the outcome were extracted

from the largest meta-genome-wide association studies (GWAS) of

AAM incorporating 252,514 women collected by the ReproGen

consortium (N = 179,117) and UK Biobank (N = 73,397) (20).
2.3 Selection of genetic instruments for
body fat distribution

As independent genetic instrumental variables (IVs), single

nucleotide polymorphisms (SNPs) were associated with the
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FIGURE 1

Overview of the study. SNP, single nucleotide polymorphism; MR-PRESSO, Mendelian randomization-pleiotropy residual sum and outlier; MR,
Mendelian randomization; IVW, inverse-variance weighted, MR-BMA, MR Bayesian model averaging; LD, linkage disequilibrium.
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appropriate exposure at the genome-wide significance threshold

P < 5 × 10−8. Additionally, we clumped and discarded SNPs at the

threshold of linkage disequilibrium (LD) with a threshold of

r2 > 0.001 within a 10,000-kilobase window, using the 1,000

Genomes European reference panel. We then performed SNPs

filtering according to a series of procedures: (a) removed the SNPs

associated with outcomes at genome-wide significance; (b)

harmonized the exposure-outcome datasets to exclude palindromic

and incompatible SNPs with intermediate allele frequencies;

(c) then implemented MR-pleiotropy residual sum and outlier

(MR-PRESSO) to identify and remove SNPs with potential

pleiotropy and outliers, with a threshold of P < 0.05. F-statistics were

finally calculated to quantify the strength of the selected SNPs. When

the correspondingF-statistic is >10, it is considered to be sufficient (21).
2.4 Univariable MR estimations

We used three MR approaches, namely the inverse-variance

weighted (IVW), weighted median, and MR-Egger, to determine MR

estimates of body fat distribution for AAM. The IVW method,

operating under the random-effects model, was used for primary MR

analysis, which provided the most precise estimates by assuming that

all SNPs are valid instruments (22). MR-Egger and weighted median

methods were used to complement IVW estimates as these

approaches could provide more robust results. The weighted median

model can offer a reliable estimation of causality when a minimum of

50% of IVs demonstrate effectiveness are effective (23). On the other

hand, the MR-Egger regression allows for all instrumental variants to

be invalid and provides a robust estimate, but it necessitates the

fulfillment of the Instrument Strength Independent of Direct Effects

(InSIDE) assumption by the variants (24). The consistency in the

direction of estimates across all MR methods enhances confidence in

the causal evidence. A statistically significant result was determined
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using a threshold of P < 0.006 (0.05 divided by 8 exposures). Nominal

significant results were identified at P < 0.05 threshold.
2.5 MR Bayesian model averaging (MR-BMA)

For the exposure which presented a statistic significance on

AAM after Bonferroni correction, we used the MR-BMA analysis

to discover the body fat distribution trait that play predominant

role in the causal associations with AAM. Compared with

conventional multivariable MR methods, the MR-BMA method

can detect true causal risk factors even when the candidate risk

factors are highly correlated (19). SNPs associated with all

selected exposures were pooled. Posterior probability (PP) was

calculated for all specific models (i.e., one trait or a combination

of multiple traits). The marginal inclusion probability (MIP) for

each exposure, which is the sum of the PP over all models where

the exposure is present, was used to rank the causal associations

of the body fat distribution indicators with AAM. We also

calculated model-averaged causal effects (MACE), which

demonstrates the direct causal effect of a body fat distribution

trait on AAM averaged across all related models. Notably, these

estimates can be used to compare exposures or to interpret effect

directions, but should not be interpreted absolutely.

As previously described (25), the prior probability was set to

0.1 and the prior variance was set to 0.25. A stochastic search

with 10,000 iterations was undertaken and empirical p values

with 10,000 permutations were calculated.
2.6 Pleiotropy assessment and sensitivity
analysis

In the univariable MR analyses, to assess whether IVs affect the

level of pleiotropic effects of outcomes through more than one
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biological pathway, we usedMR-Egger regression to test for evidence of

pleiotropy. A zero intercept from MR-Egger (P > 0.05) indicates no

potential horizontal pleiotropy (24). For potential heterogeneity

among causal effects of different variants, we used Cochran’s

Q statistic from IVW (together with the I2 statistic) to detect it (26).

Cochran’s Q test with P < 0.05 and I2 > 50% indicates the presence of

potential heterogeneity. However, it is important to note that the

presence of heterogeneity does not necessarily render the random-

effects IVW estimate invalid when the overall heterogeneity is

balanced (27). Leave-one-out analysis was also performed to test

whether a single SNP biased the MR estimate. Additionally, we also

employed the MR Steiger directionality test to examine whether the

directionality from body fat distribution to AAM is accurate.

In the MR-BMA’s analysis, we used the Q-statistic to quantify

the outlier and the Cook’s distance to quantify the influential

variants (19). Any outliers or influential points of genetic

variation was removed and reanalyzed.
2.7 Power calculation

In the univariable MR analyses, we calculated the statistic power

using the method described by Brion et al. (28). (https://shiny.

cnsgenomics.com/mRnd/). The equations use an approximate linear

model, which requires the proportion of variation in the exposure

variable explained by IVs (R2), the effect size of the exposure to the

outcome, sample size, and the variance (σ2) of the exposure and

outcome. A sufficient power of over 80% was recommended.
TABLE 1 Mendelian randomization estimates for the associations between bo

Exposure Estimates method SN
Body fat percentage IVW

MR Egger

Weighted median

Whole body fat mass IVW 1

MR Egger 1

Weighted median 1

Left leg fat percentage IVW

MR Egger

Weighted median

Left leg fat mass IVW

MR Egger

Weighted median

Left arm fat percentage IVW

MR Egger

Weighted median

Left arm fat mass IVW

MR Egger

Weighted median

Trunk fat percentage IVW

MR Egger

Weighted median

Trunk fat mass IVW 1

MR Egger 1

Weighted median 1

IVW, inverse variance weighted.

*P < 0.05, **P < 0.006 (0.05 divided by 8 exposures).
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3 Results

3.1 Study overview

The current study appraised the causal effect of 8 phenotypes

related to fat distribution on AAM. Following stringent

procedures for filtering SNPs, the number of SNPs finally

used for each of the phenotypes varied from 82 to 105.

The F-statistics ranged from 29.74 to 225.88, suggesting bias

owing to the employment of weak instruments unlikely.

Statistical power was presented in Supplementary Table S1.
3.2 Causal effect from body fat distribution
to AAM

The results of the MR analysis were presented in Table 1. In the

primary analysis, the causal relationships between all eight

exposures and the outcome were identified at a significance level

(P < 0.05). After Bonferroni correction (P < 0.006), statistically

significant negative correlations were observed between AAM

and whole body fat mass (β: −0.17; 95% CI: −0.24, −0.11), left
leg fat percentage (β: −0.14; 95% CI: −0.21, −0.07), left leg fat

mass (β: −0.20; 95% CI: −0.27, −0.12), left arm fat percentage

(β: −0.18; 95% CI: −0.26, −0.11), left arm fat mass (β: −0.18;
95% CI: −0.26, −0.10). And the beta coefficients for each of the

three MR evaluation methods exhibited consistent trends.
dy fat distribution and age at menarche.

Ps, N β (95% CI) P value
89 −0.09 (−0.17, −0.01) 0.04*

89 −0.01 (−0.40, 0.38) 0.96

89 −0.04 (−0.12, 0.03) 0.26

05 −0.17 (−0.24, −0.11) 5.06 × 10−7**

05 −0.46 (−0.77, −0.14) 0.01*

05 −0.18 (−0.25, −0.11) 2.76 × 10−7**

92 −0.14 (−0.21, −0.07) 1.57 × 10−4**

92 −0.29 (−0.66, 0.09) 0.14

92 −0.12 (−0.20, −0.05) 1.34 × 10−3**

95 −0.20 (−0.27, −0.12) 3.32 × 10−7**

95 −0.28 (−0.57, 0.01) 0.07

95 −0.18 (−0.25, −0.11) 1.48 × 10−6**

90 −0.18 (−0.26, −0.11) 3.04 × 10−6**

90 −0.15 (−0.51, 0.22) 0.44

90 −0.19 (−0.27, −0.11) 3.08 × 10−6**

91 −0.18 (−0.26, −0.10) 6.29 × 10−6**

91 −0.18 (−0.49, 0.14) 0.27

91 −0.17 (−0.24, −0.09) 1.35 × 10−5**

82 0.09 (0.01, 0.16) 0.03*

82 0.18 (−0.12, 0.48) 0.25

82 0.01 (−0.07, 0.08) 0.91

03 −0.10 (−0.17, −0.02) 0.01*

03 0.10 (−0.17, 0.36) 0.47

03 −0.02 (−0.09, 0.05) 0.51
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TABLE 3 Ranking of five body fat distribution traits for the risk of age at
menarche using MR-BMA method.

Exposure Ranking by
MIP

MIP Average
effect

P
value

Left arm fat 1 0.317 −0.048 0.042

Xue et al. 10.3389/fped.2024.1349670
Among three nominal significant results, it was observed that

body fat percentage (β: −0.09; 95% CI: −0.17, −0.01) and trunk

fat mass (β: −0.10; 95% CI: −0.17, −0.02) exhibited an inverse

relationship with AAM, while trunk fat percentage (β: 0.09; 95%

CI: 0.01, 0.16) showed a positive association with AAM.

percentage

Left leg fat
percentage

2 0.305 −0.045 0.028

Left leg fat mass 3 0.183 −0.026 0.984

Whole body fat mass 4 0.175 −0.023 0.991

Left arm fat mass 5 0.088 −0.004 0.999

MIP, marginal inclusion probability.
3.3 Results for sensitivity analyses of
univariable MR analyses

In sensitivity analysis, we found that all eight causal relationships

exhibit heterogeneity with I2> 50% (Table 2). However, we addressed

this issue by applying the IVW method with the random-effect

model. The results of the MR Egger intercept test demonstrated

that there was no directional pleiotropy observed (Table 2).

Additionally, no single SNP strongly violated the results of all

causal estimates in the leave-one-out analysis (Supplementary

Figure S1). The analysis results of the scatter plots were shown in

Supplementary Figure S2. Furthermore, the results of the MR

Steiger directionality test confirmed that the direction of our

evaluated causal relationship was accurate (P < 0.001).
3.4 Results of MR Bayesian model averaging
(MR-BMA) analysis

We further performed a MR-BMA analysis with five body fat

distribution traits that were identified in the univariable MR

analyses on AAM. A total of 338 SNPs were found to be

associated with these traits after removing duplicate SNPs.

Subsequently, we excluded 144 SNPs that in LD (r2 > 0.001),

26 SNPs that were unavailable in the outcome dataset, and

10 SNPs that were outliers based on the Q-statistic for further

analysis. No influential genetic variants were identified in the

analysis based on Cook’s distance.

In the MR-BMA analysis, the top ten models with the highest

posterior probability were presented in Supplementary Table S2.
TABLE 2 Heterogeneity and pleiotropy assessment for inverse variance
weighted method in univariable MR analyses.

Exposure β (95% CI) Cochran’s
Q-derived
P value

I2 MR-egger
intercept
derived
P value

Body fat
percentage

−0.09 (−0.17, −0.01) 3.22 × 10−31 74.08% 0.68

Whole body
fat mass

−0.17 (−0.24, −0.11) 2.80 × 10−21 65.63% 0.08

Left leg fat
percentage

−0.14 (−0.21, −0.07) 9.71 × 10−15 61.34% 0.43

Left leg
fat mass

−0.20 (−0.27, −0.12) 1.84 × 10−27 71.23% 0.58

Left arm fat
percentage

−0.18 (−0.26, −0.11) 1.59 × 10−22 68.89% 0.83

Left arm fat
mass

−0.18 (−0.26, −0.10) 2.57 × 10−29 72.83% 0.96

Trunk fat
percentage

0.09 (0.01, 0.16) 5.58 × 10−16 64.54% 0.53

Trunk fat
mass

−0.10 (−0.17, −0.02) 2.11 × 10−34 73.48% 0.14
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After that, the MIPs of all five exposures were calculated and used

to rank these exposures for their causal associations with AAM

(Table 3). Left arm fat percentage was identified as the highest-

ranked trait exhibiting a negative causal association with AAM

(MIP = 0.317, average effect =−0.048, P = 0.042), followed by left

leg fat percentage (MIP = 0.305, average effect =−0.045, P = 0.029).
4 Discussion

To our knowledge, this is the first MR study to investigate the

correlation of a series of indicators about body fat distribution and

AAM. In our two-sample MR study, we discovered that five

indicators (whole body fat mass, left leg fat percentage, left leg fat

mass, left arm fat percentage, and left arm fat mass) pertaining to

body fat distribution demonstrated a negative causal correction with

the AAM (P < 0.006). This suggests that as these indicators increase,

the age of girls experiencing their first menarche decreases. Among

the aforementioned variables, the most significant influence on

AAM was observed in the left arm fat percentage based on the

MR-BMA analysis. These findings underscore the significance of

incorporating body fat distribution indicators, in addition to the

conventional body mass index (BMI), when investigating the

association between obesity and pubertal development.

In previous observational studies conducted in Brazil, Chile

and the United States, researchers also discovered a correlation

between fat mass and the AAM (13, 14), and girls with higher

total body fat (TBF) achieved menarche earlier than girls with

lower TBF (15). This was consistent with our findings. However,

in the study conducted by Wang et al. (16) in the Chinese

population, they found that girls with precocious puberty had a

higher trunk fat percentage than the normal controls, which

contradicted the findings of our study. Our study, on the other

hand, revealed a positive association between trunk fat

percentage and AAM, although statistical significance was not

achieved following adjustments for multiple comparisons

(0.006 < P < 0.05). This could be due to the different race

populations and heterogeneous measurement of fat percentage.

And in the study by Wang et al., the diagnosis of precocious

puberty was not solely dependent on the AAM.

The mechanisms of body fat can influence the onset of menarche

mainly due to the impact of excessive adipose tissue on the body’s

endocrine system and levels of sex hormones. An increase in body

fat content can lead to elevated levels of estrogen in the body,
frontiersin.org
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disrupting the normal balance of sex hormones and potentially

triggering early menarche (29). In addition, individuals who are

overweight or obese often experience insulin resistance and high

levels of insulin. This can result in reduced concentrations of sex

hormone-binding globulin. Thus, the bioavailability of sex steroids

is potentially increased, which can alter the timing and progression

of puberty (30). Furthermore, an increase in body fat mass may

serve as a significant signal for triggering leptin secretion. Leptin

secretion stimulates the hypothalamus, leading to the excessive

release of gonadotropin-releasing hormone (GnRH), thereby

stimulating the hypothalamus-pituitary-gonad (PHG) axis, and

initiating pubertal development (31).

Our work has several important strengths. We employed an MR

framework to investigate the causal relationship between body fat

distribution and AAM, we also ranked the body fat distribution

indicators for their causal associations by MR-BMA analysis. By

utilizing genetic variants as instrumental variants, MR design allows

us to minimize the influence of potential confounding factors, such

as lifestyle factors like physical activity and dietary patterns, which

are often present in traditional observational studies. Furthermore, by

exclusively utilizing datasets that primarily consist of individuals of

European descent, the potential influence of population stratification

on the observed results was minimized. Finally, the exposed data we

utilized only included data from females, which corresponds to the

outcome variable. Several limitations should be considered in our

study. First, the AAM of the subjects was determined through self-

report and recall, which may introduce bias into the data. Second,

the outcome data were derived from a meta-GWAS, and each

included study may have different confounders for analysis, leading

to high heterogeneity and potential bias.

In conclusion, our research has revealed a causal relationship

between several indicators of body fat distribution and the AAM,

and identified that left arm fat percentage was the most influential

factor. These findings will be particularly useful for identifying girls

who might experience earlier menarche. Furthermore, these results

possess the potential to enhance the accuracy and robustness of

AAM prediction models, rendering them invaluable in practice. In

the future, obtaining more information on body measurements

during the prepubertal stage would greatly enhance the precision

of our comprehension in this domain.
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