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Pediatric high-grade glioma (pHGG) including pediatric glioblastoma (pGBM) are
highly aggressive pediatric central nervous system (CNS) malignancies. pGBM
comprises approximately 3% of all pediatric CNS malignancies and has a
5-year survival rate of approximately 20%. Surgical resection and
chemoradiation are often the standard of care for pGBM and pHGG, however,
even with these interventions, survival for children diagnosed with pGBM and
pHGG remains poor. Due to shortcomings associated with the standard of
care, many efforts have been made to create novel immunotherapeutic
approaches targeted to these malignancies. These efforts include the use of
vaccines, cell-based therapies, and immune-checkpoint inhibitors. However, it
is believed that in many pediatric glioma patients an immunosuppressive
tumor microenvironment (TME) possess barriers that limit the efficacy of
immune-based therapies. One of these barriers includes the presence of
immunosuppressive myeloid cells. In this review we will discuss the various
types of myeloid cells present in the glioma TME, including macrophages and
microglia, myeloid-derived suppressor cells, and dendritic cells, as well as the
specific mechanisms these cells can employ to enable immunosuppression.
Finally, we will highlight therapeutic strategies targeted to these cells that are
aimed at impeding myeloid-cell derived immunosuppression.
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Introduction

Brain and spinal cord tumors are the most common solid tumor and a leading cause of

cancer-related death in children. Currently, brain and spinal cord tumors account for

approximately 25% of childhood cancers (1). Of brain tumors that arise in children,

8%–10% of these tumors are high-grade gliomas (2). Pediatric high-grade gliomas

(pHGGs) have a poor prognosis with a median overall survival of less than 2 years
Abbreviations

pGBM, pediatric glioblastoma; TME, tumor microenvironment; MDSC, myeloid derived suppressor cell;
DC, dendritic cell; BMDM, bone marrow derived macrophage; VEGF, vascular endothelial growth factor;
IDH, isocitrate dehydrogenase gene; EGFR, epidermal growth factor receptor; DMG, diffuse midline
glioma; pHGG, pediatric high-grade glioma; TAM, tumor associated macrophage; DIPG, diffuse intrinsic
pontine glioma; PDGFB, platelet-derived growth factor subunit B; NK, natural killer cell.
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from initial diagnosis (2, 3). In adults, a majority of high-grade

gliomas occur in supratentorial regions, while in children they

occur at a higher frequency in infratentorial regions such as the

cerebellum, brainstem, and thalamus (4). pHGGs can be divided

into three main molecular subtypes those being histone H3

mutant, isocitrate dehydrogenase gene (IDH) mutant, and H3/

IDH wildtype (5). Other types include infant-type hemispheric

glioma, and epidermal growth factor receptor (EGFR) mutant or

ACVR mutant—diffuse midline glioma (DMG) (5, 6).

The discovery of histone H3 somatic mutations was pivotal for

the field of pediatric neuro-oncology as this finding provided

insights into the unique biology and underpinning of several

pHGGs (7–11). H3 somatic mutations result in amino acid

substitutions (12). While H3.3K27-mutant pHGG is a more

common H3 mutant pHGG, other variants include, H3.1K27-

mutant and H3.2K27-mutant pHGG, H3-wildtype with EZH

Inhibitory Protein (EZHIP) overexpression pHGG, EGFR-altered

pHGG, and H3 G34-mutant pHGG (13, 14). One pHGG that

resides outside the H3 mutant molecular subtype includes

pediatric glioblastoma (pGBM) (15). Glioblastoma is the most

common and lethal of all primary brain tumors, however, this is

predominately a disease that affects older adults (16–21). pGBM

is considered a rare tumor in children as this tumor accounts for

approximately 3% of all pediatric central nervous system (CNS)

malignancies (16). pGBM is a highly aggressive malignancy as

the median survival for children diagnosed with pGBM is 13–73

months (22). The 5-year survival rate for children diagnosed

with pGBM is approximately 20% (22).

Surgery and chemoradiation, when safe, are considered the

standard of care for pediatric gliomas, including pGBM (23).

However, despite these interventions, outcomes for children
TABLE 1 Myeloid cells present in the glioma microenvironment.

Cell type Major surface
markers

Primary cytokines
released

MDSCs • CD11b
• CD33
• CD80
• CD115
• CD124

• IL-10
• TGF-β
• CCL3
• CCL4
• CCL5

• Inhibiti
• Recruit
• Modula
• Angiog
• Tumor

Macrophages and Microglia • CD45
• CD68
• CD86
• CD163
• CD204
• CD206
• iNOS

• TNFα
• TGFβ
• Arg1
• IFNγ

• Can be
upon fa

• M1 Ma
○ Th1
○ Pha
○ Ant

• M2 Ma
○ Tiss
○ Hyp
○ Ang

Dendritic Cells • CD14
• CD45
• CD11c
• CD31
• CD34

• IL-1
• IL-6
• IL-10
• IL-12
• IL-23

• Cancer
• Antigen
• Naïve T
• Angiog

This table describes the various types of myeloid cells that have been observed in the gli

and primary cytokines released. Additionally, we describe some of the primary effects
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diagnosed with pGBM remains poor (23). There have been

numerous clinical trials aimed at using immunotherapy to combat

pediatric gliomas (24, 25). However, immunotherapy based clinical

trials for the treatment of pediatric gliomas have yet to

demonstrate robust therapeutic efficacy (26). There are several

barriers that are believed to impede immunotherapy efficacy in

patients with pediatric gliomas. A major barrier of successful

immunotherapy is the increased presence of infiltrating myeloid

cells in the glioma TME (27); Myeloid cells can be abundant in

the TME of adult and pediatric gliomas, are largely considered

immunosuppressive, and exhibit a wide spectrum of phenotypes

(26, 28–30). Myeloid cells originate from a common progenitor

cell developed from hematopoietic stem cells in the bone marrow

(31). Additionally, microglia, which are brain-resident

macrophages, are derived from yolk sac erythro-myeloid

progenitors during development (31, 32). Common myeloid

progenitor cells can give rise to megakaryocytes, erythrocytes, mast

cells, or myeloblasts (33, 34). Myeloblasts further differentiate into

basophils, eosinophils, neutrophils, and monocytes further can

mature into subsets of macrophages or dendritic cells (33, 34).

Although little is known about the function of myeloid cells in

pediatric glioma, emerging evidence suggests that these cells are

abundant in the TME of pediatric gliomas, including pGBM, and

may be associated with patient outcomes and response to

immunotherapy (27, 35, 36). In this review we will highlight the

different myeloid cell populations that are known to be present in

pediatric gliomas, as well as other myeloid cell types that we

hypothesize are in the pediatric glioma TME, due to their

established presence in adult gliomas. We will discuss the specific

mechanisms these cells employ to enable immune suppression

(Table 1). Due to the paucity of studies discussing the mechanisms
Effects in the tumor microenvironment

on of T cell proliferation
ment of regulatory T cells
tion of cytokine production from macrophages during the innate immune response
enesis promotion
cell invasion and metastasis

either pro (M1 macrophages) or anti-inflammatory (M2 macrophages) depending
ctors in the tumor microenvironment.
crophages:
response activation
gocytosis
igen presentation
crophages:
ue repairment
oxia induction
iogenesis promotion

immunosurveillance
presentation
cell stimulation

enesis promotion

oma microenvironment with a description of their respective major surface markers

these cells have in the tumor microenvironment.
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myeloid cells use to induce immune suppression specifically in

pGBM, many of the myeloid-related immunosuppressive

mechanisms that we will highlight in this manuscript have been

observed in adult gliomas as well as non-CNS tumors. We will also

discuss potential therapies that are being targeted to these cell

populations as this may help in reducing the immunosuppressive

nature of pGBM and improve immunotherapy efficacy.
Myeloid cells in pediatric glioma

In a study by Lieberman et al., tumor conditioned media was

collected from the cultures of patient-derived pGBM cell lines as

well as other tumor types (36). These medias were used to

culture DIPG cells as well as GBM cells. In co-cultures of GBM

cells and healthy donor monocytes, it was observed that

macrophages upregulated the anti-inflammatory markers CD163

and CD206, as well as PD-L1. In contrast, the authors noted that

H3.3K27M DIPG cultures had little effect on macrophage

phenotype. These findings are supported clinically as the team

found that in IHC analysis of pHGGs (excluding DIPG), there

was a significantly higher number of CD163+ macrophages in the

tumor microenvironment compared to control tissue (36).

However, for DIPG tissue samples, no significant increase in

CD163+ TAMs compared to control tissue was observed (36).

Furthermore, a significant increase in CD3+ and CD8+ cytotoxic

T-cells was reported in pHGG tissue samples when compared to

control, however, this was not observed in DIPG (36).

A study by Lin et al. observed a significant increase in the

number of CD11b+ macrophages in the leukocyte compartment

(CD45+) of DIPG as compared to CD3+ T-cells. These findings

were compared to adult GBM tissue samples. Additionally, the

authors note that DIPG-associated macrophages expressed fewer

inflammatory cytokines (compared to those in adult GBM) in

patient tissue samples, and that there is dramatically less

expression of cytokines and chemokines in patient-derived DIPG

cell cultures when compared to adult GBM cell cultures (35).

These studies as well as others highlight that some pHGGs,

such as DIPG (an H3 mutant tumor), have limited T cell

infiltration which should be considered for certain

immunotherapies. However, other pHGG entities, such as

pGBM, may be more immunologically active, indicating these

patients may be more likely to respond to immunotherapy if the

immunosuppressive milieu of the TME can be overcome, a

milieu that myeloid cells largely contribute to (37, 38).
Characterization and polarization of
tumor-associated macrophages
(TAMs)

In the human brain, macrophages and microglia represent a

large contingent of non-neuronal cells that are myeloid cells

originating from the bone marrow and yolk sac, respectively

(26, 39). It has been well established that many macrophages

have pro-tumorigenic effects in gliomas, and that the infiltration
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of these pro-tumorigenic macrophages, which are referred to as

tumor-associated macrophages (TAMs), is partially driven by

platelet-derived growth factor subunit B (PDGFB) signaling

(26, 40). It has been observed in adult gliomas that PDGFB is

highly overexpressed by macrophages and that its receptor

PDGFRB is highly expressed by malignant cells (41, 42).

Previous studies have highlighted CD45, CD68, and CD163

expressing cells as being frequently expressed in the pGBM TME

(26, 40). These markers are commonly expressed by TAMs and

microglia (43, 44). TAMs have been observed as a predominant cell

population within the TME of pGBM (26, 40). Lin and colleagues

note that once TAMs become activated, they undergo a series of

morphological and transcriptomic changes, such as an amoeboid

morphology with shorter processes and larger cell bodies (26, 35).

Macrophages, including TAMs, are highly plastic and can

undergo differentiation to alter their phenotype and function

based on their local environment and concentration of signaling

molecules present (45). This process, termed polarization, creates

general categories of macrophages: classically activated pro-

inflammatory M1-like macrophages (M1) and alternatively

activated anti-inflammatory M2-like macrophages (M2) (46).

Importantly, this distinction is not binary, but rather places

M1-like and M2-like macrophages at opposite ends of a

polarization axis in which a gradient of cell states exist with

mixed characteristics of M1-like and M2-like macrophages (47).

M1-like macrophages are thought to be a part of the anti-tumor

response by inducing an inflammatorymicroenvironment by factors

such as TNF-α, IFN-y, IL-6, and CSF-2. They are characterized

by markers such as HLA-DR, CD11c, CD86, iNOS, and pSTAT1,

and often demonstrate IFN-y and TLR4 (LPS-induced) signaling

(46, 48). M2-like macrophages are historically thought of as pro-

tumorigenic due to their involvement in promoting angiogenesis,

hypoxia induction, tissue repairment, anti-inflammatory TME,

through expression of IL-10, TGF-β, and PGE2 and VEGF. These

macrophages are classically characterized by markers such as

CD163, CD204, CD206, and cMAF, and often demonstrate

signaling pathways related to IL-4, IL-13, IL-10 (46, 48). M2-like

macrophages can further be subdivided along a gradient

depending on specific cellular markers and functionality, into

M2a, M2b, M2c, and M2d macrophages (49). M2a macrophages

are thought to be involved in allergic reactions, and tissue repair.

M2b and M2c macrophages have been implicated in anti-

inflammatory pathways and M2d macrophages have been shown

to be further involved in anti-inflammation and angiogenesis (49).

In pGBM and pHGG it is largely unknown whether TAMs in the

TME are more M1-like vs. more M2-like, highlighting an area in

need of further investigation.
Functions of TAMs in gliomas

Previous research has highlighted how M2-like macrophages

are both highly immunosuppressive, and aid in the growth of

gliomas (50). TAMs can be regulated by colony stimulating

factor-1 (CSF-1) for differentiation and survival. A study by

Pyonteck and colleagues identified that CSF1R inhibition
frontiersin.org

https://doi.org/10.3389/fped.2024.1346493
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Frederico et al. 10.3389/fped.2024.1346493
increased mouse survival and regressed established tumors in mice

bearing patient-derived glioma xenografts (51). Additionally, the

authors found that while the number of TAMs did not decrease,

the number of signature markers associated with M2 phenotypes

(specifically, ADM, ARG1, F13A1, SERPINB2, MRC1) did

decrease (51). This finding highlights how CSF1R inhibition

therapy impedes macrophage polarization into a pro-tumor M2

phenotype and may allow these cells to shift toward a more anti-

tumor M1 phenotype (51). Another study found that PTEN

deficiency in glioma enables glioma cells to secrete high levels of

Galectin-9 (52). Galectin-9 is a driver of macrophage M2

polarization due to the activation of the Tim-3 receptor (52).

The research team found that by blocking Galectin-9 and Tim-3

(immune-checkpoint molecules expressed on T cells and myeloid

cells in adult and pediatric glioma TMEs) signaling, led to a

reduction of M2 polarization and subsequent impairment in

tumor progression (52–54).

A separate study by Li and colleagues found that Beta2-

Microglobulin in glioma stem cells promoted an increased release

of TGF-β1 from glioma cells via activation of the PI3K/AKT/

MYC axis. This in turn resulted in a paracrine response of

SMAD and PI3K/AKT signaling in TAMs, resulting in the

polarization of TAMs toward an M2-like phenotype (55). This

finding highlights an additional mechanism that drives TAMs

towards an M2 phenotype, and it is crucial to explore whether

Beta-2 microglobulin or its downstream axis can be

therapeutically exploited in an attempt to reduce the

immunosuppressive nature of the glioma TME (55). While a

limited number of studies have attempted to therapeutically block

or reduce polarization of M2 macrophages, the aforementioned

studies highlight the diverse mechanisms that contribute to

polarization of TAMs towards an M2-like phenotype. This

finding highlights the need for further research that is aimed at

developing therapeutics that can blockade this polarization.

Microglia are considered CNS tissue-resident macrophages.

These cells make up nearly a quarter of the non-neuronal cell

population within a healthy brain and provide support and

protection of neuronal function (26, 39). Microglia are derived

from the embryonic yolk sac, unlike macrophages which arise in

the bone marrow, and maintain themselves locally in the

CNS (56). While it has been demonstrated that microglia play an

essential role in generating robust innate and adaptive immune

responses in CNS diseases outside of brain tumors, little is

known as to how microglia specifically impacts the TME in

pediatric gliomas and pGBM (57). In adult GBM, it has been

reported that glioma-associated microglia express anti-

inflammatory markers such as CD163 and that these cells release

factors that stimulate cellular migration (58, 59). Additionally, it

has been shown that microglia can promote the creation of

neuroblasts, allowing for the enhancement of not only

neurogenesis but also oligodendrogenesis, features associated with

GBM development (58, 59). Exploring the role of microglia in

pHGG and pGBM is an area critically in need of investigation as

microglia can have a large presence in the glioma TME, and

similar to bone marrow-derived macrophages are also capable of

M1/M2-like polarization (60).
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Myeloid-derived suppressor cells
(MDSCs)

Myeloid-derived suppressor cells (MDSCs) were first

described approximately 35 years ago as having a negative

impact on the immune response during tumorigenesis (61–63).

MDSCs have been characterized as having myeloid origin and a

relatively immature phenotype (61–63). During normal growth

and development, common myeloid progenitor cells

differentiate into various types of myeloid cells (granulocytes,

macrophages, dendritic cells, etc.), in the bone marrow.

However, when disease states occur, there is a hindrance of

normal differentiation contributing to the presence of MDSCs

(61–63). MDSCs are a heterogenous population of immature

myeloid cells associated with many cancers which can inhibit

T-cell proliferation (64). There are ample studies that show

these cells are present in adult gliomas and several studies have

also shown their presence in some pHGG types, with limited

knowledge in pGBM (65–70).

MDSCs express certain cell surface receptors, including CD33 (a

common myeloid marker), but do not express markers of mature

myeloid cells (61, 62). In mice, MDSCs are often characterized by

the expression of the CD11b and Gr1 (ly6C/Ly6G) receptors

depending on the phenotype of the MDSC. Ly6C and Ly6G is also

often used to distinguish between myeloid type (M) and

polymorphonuclear or granulocytic (PMN/G)-MDSC, respectively

(64). In patients, MDSCs that are in the monocytic phenotype

commonly are described by their expression as

CD11b+CD14+HLA-DR−/loCD15−, while polymorphonuclear

(PMN) MDSCs are associated with CD11b+CD14−CD15+ or

CD11b+CD14−CD66b+ (63). MDSCs also express multiple other

surface proteins including CD80, CD115, and CD124 (61). As

tumorigenesis occurs, immature myeloid progenitors develop into

MDSCs with the above-mentioned characteristic cell markers and

significantly increase in number. The factors that help maintain

MDSCs include prostaglandins, stem-cell factors, macrophage

colony-stimulating factor (M-CSF), granulocyte/macrophage

colony-stimulating factor (GM-CSF), and VEGF. Through various

signaling mechanisms including JAK and STAT3, MDSCs are

differentiated and expand (61). A required ability of MDSCs is

their ability to inhibit T-cells (61).

During tumorigenesis, it has been postulated that MDSCs have

several functions: they suppress the T-cell response, modulate

cytokine production from macrophages, and can advance

angiogenesis, tumor cell invasion, and metastasis (61–63). As

these MDSCs increase in number, they travel to the site of the

tumor, likely by chemotaxis, as a result of the inflammatory

response (61). The increased presence of these cells in the TME

results in tumor upregulation of nitric oxide synthase activity,

leading to increased amounts of nitric oxide, reactive oxygen

species, and arginase 1, thus supporting an anti-inflammatory

TME (61, 62, 71, 72). For instance, arginase 1 contributes to

T-cell inactivation by depleting arginine, a necessary component

for T-cell receptor Zeta chain expression (73).

Recently, several groups have tried to target MDSCs, whether

that be by attempting to induce cellular differentiation, or block
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expansion, activation, and recruitment. Different research groups

used docetaxel (inhibits microtubules function) and paclitaxel

(chemotherapy agent) to interfere with the differentiation of

myeloid cells into MDSCs (63). They demonstrated that docetaxel

promoted MDSCs to differentiate toward an M1-like phenotype,

whereas it was shown that paclitaxel promotes tumor MDSCs to

differentiate toward a mature DC phenotype (63, 74, 75).

Although this has shown some effectiveness in breast cancer, there

are no studies evaluating this treatment in brain tumors (63).

Other studies have tried to prevent expansion of MDSCs,

specifically by targeting CSF and VEGF. Inhibition of CSF

signaling have limited MDSC expansion and tumor angiogenesis

(61), whereas, using anti-VEGF has been shown to significantly

decrease circulating MDSC numbers (76). More so, by using amp-

activated protein kinase (AMPK), to target the signaling pathways

that are used by MDSCs, there was an effective decrease in the

expansion and activation of MDSCs (63). Drugs which target

PDGF and VEGF receptors, such as Sunitinib, have been effective

in limiting the expansion and activation of MDSCs, in renal cell

carcinoma (63). Metformin, (generally used for diabetes) has also

shown effectiveness in decreasing the expansion and activation of

MDSCs due to the drug decreasing immunosuppressive effects via

the activation of AMPK (63). In mouse studies, coupling ROS

inhibitors with NSAID drugs decreased the activity of MDSCs and

increased antitumor activity of T-cells (61). Together, these

findings suggest that therapeutic exploitation of pHGG and pGBM

may be possible via the targeting of MDSCs.
Dendritic cells

Dendritic cells (DCs) play a major role in cancer

immunosurveillance as they are potent professional antigen

presenting cells (APCs) which can initiate anti-tumor immune

responses (77). Data shows that infiltration of DCs into primary

tumor lesions is usually associated with prolonged patient survival

and a reduced incidence of metastatic disease in patients with oral

cancers, head and neck tumors, nasopharyngeal tumors, lung,

bladder, esophageal, and gastric carcinomas (78). In their immature

state, these cells can be found in a variety of non-lymphoid tissues

and organs, but their activation initiates their migration to lymphoid

tissues to interact with T cells and induce immune responses.

DCs have also been observed in the pGBM tumor

microenvironment, however, their impact on patient prognosis as

well as their exact functions within pediatric gliomas are poorly

understood (79). Along this line, activation and polarization of

DCs depend on the local microenvironment and can be blocked

or polarized by specific factors. Therefore, the TME can result in

the formation of distinct DC subsets with tolerogenic and/or

immunosuppressive phenotypes (80), which could be the case in

pediatric gliomas. Thus, studies of DCs in gliomas are further

needed to reveal specific mechanisms these cells can employ to

enable immune suppression or immune activation within adult

and pediatric gliomas.

Studies in non-CNS cancers such as melanoma and ovarian

carcinoma have examined the immunosuppressive role of DCs
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and these studies as well as others will be highlighted throughout

the remainder of this section to feature potential functions of

DCs in the pediatric glioma TME. One of the major immune

evasion mechanisms exhibited by tumors is the expression of

tumor cell-intrinsic factors. Spranger and colleagues found that

in both humans and mice, melanoma tumors with active β-

catenin reduce CC-chemokine ligand 4 (CCL4) expression which

resulted in lower conventional DC type 1 (cDC1) infiltration and

increased tumor growth (81). Conversely, other studies have

observed that tumor-infiltrating natural killer (NK) cells can

recruit cDC1s through production of CCL5 and XC-chemokine

ligand 1 (XCL1) (82) and promote their survival with FMS-

related tyrosine kinase 3 ligand (FLT3l) (83). Despite this, tumor

cells can reduce NK cell viability and pro-inflammatory

chemokine secretion by producing prostaglandin E2 (PGE2).

This in turn limits cDC1 density and favors tumor growth (82).

In addition to mitigating infiltration, the TME also curbs DC

maturation, polarization, and survival through the release of

vascular endothelial growth factor (VEGF), which can inhibit

FLT3l activity, an essential ligand needed for cDC development

and proliferation in situ (84). As cDC precursors are found in

the TME, tumor-derived factors can locally affect pre-DC

differentiation steps as well (85).

Evidence suggests DC maturation in the TME may lead to

efficient priming of T-cells and benefit anti-tumor immunity

in some settings (86–88). Despite this, there are molecular

mechanisms that are responsible for dysfunction of DCs.

Signal transducer and activator of transcription 3 (STAT3)

hyperactivation can disarm DCs and subvert the protective

immune surveillance of cancers (89). In addition to STAT3′s
native oncogenic abilities, one aspect of its suppressive

effects on DC function is related to the regulation of soluble

tumor-derived factors such as VEGF and IL-10 (90, 91), both

of which can be potent inhibitors of DC maturation in

the TME (91–93).

Future studies should aim to determine whether these cells are

immunostimulatory or dysfunctional, a potential therapeutic roll

for STAT3 inhibition, and the underlining mechanisms

regulating these cells in the context of pediatric glioma.
Discussion

In this review we highlighted the different types of myeloid

cells that comprise the pHGG and pGBM microenvironment, as

well as other myeloid cell types that we postulate to be relevant

to the pediatric glioma TME, due to their established presence in

adult gliomas. These include the presence of tumor-associated

macrophages and microglia, MDSCs, and dendritic cells (see

Figure 1) (79, 94–98). The role of TAMs, including macrophages

and microglia, in brain tumor progression is still an emerging

area of research in neuro-oncology and efforts aimed at blocking

macrophage polarization to an M2 phenotype have shown

promise in mouse studies. While blocking of Galectin-9/Tim-3

signaling has been shown to interfere with the polarization of

macrophages toward an M2 phenotype (99–101), blocking of
frontiersin.org
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FIGURE 1

Different types of immune cells that can be present in the pediatric glioma TME. Schematic illustration of immune cells, including different types of
myeloid cells, within the TME of gliomas.
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Galectin-9 in pediatric gliomas should be more closely evaluated.

For example, studies in non-CNS cancers have shown that high

expression of Galectin-9 was correlated with an improved

outcome for patients diagnosed with breast cancer, melanoma,

HCC, colon cancer, as well as bladder urothelial carcinoma

(99, 100, 102–106). These findings highlight the need for

additional studies to explore the potential effects of blocking

Galectin-9, and its potential implication on TAM polarization, in

patients with pHGG and pGBM (99).

MDSCs are classically recognized as being one of the major

drivers of the immunosuppressive TME that is observed in CNS

and non-CNS cancers. In recent years, research teams have

attempted to target MDSCs as these cells are recognized as a

major blockade to the success of immunotherapies. The use of

docetaxel and paclitaxel to prevent differentiation of myeloid

cells into MDSCs has shown promise in breast cancer, however,

this approach has not been explored in brain tumors, including

pediatric gliomas, and is an area in need of investigation. VEGF

has been shown to be a key promoter of MDSC proliferation

and expansion, and anti-VEGF has been shown to reduce the

number of MDSCs within the TME and in circulation in a

dose-dependent manner (76, 107). Bevacizumab (anti-VEGF

monoclonal antibody) is an FDA approved therapy for the

treatment of adults with recurrent GBM that have experienced

disease progression following prior therapy. While this

approach has demonstrated limited benefit for improving the

overall and progression-free survival of (adult) GBM patients,
Frontiers in Pediatrics 06
bevacizumab may reduce the number of MDSCs in the glioma

TME and this approach should be further explored (108).

Furthermore, as discussed, targeting VEGF with

immunotherapy could also directly inhibit glioma cells growth

and maintain DC integrity and immune-promoting functions.

Overall, these findings highlight why bevacizumab may be

beneficial to pair with immunotherapies aimed at combatting

pediatric gliomas.

Ultimately, several studies in CNS and non-CNS cancers have

highlighted the increased presence of myeloid cells in the TME

and how increased numbers of these cells often lead to a

worsened prognosis. Additionally, several research groups

have begun to therapeutically target these cell populations

in non-CNS cancers in hopes of creating a TME that is

less immunosuppressive, increasing the likelihood of

immunotherapy success. Further research is certainly needed in

these areas, as well as ways to monitor for patient response to

treatment as there are limited treatment options for pGBM and

pHGG. We posit that therapeutic success for these aggressive

gliomas may require interfering with the immunosuppressive

TME that engulfs this malignancy (109–111).
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