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With the global rise in preterm birth rates, bronchopulmonary dysplasia (BPD)
continues to be a significant problem, affecting morbidity and mortality in
surviving preterm infants. Preterm infants are particularly susceptible to
oxidative stress induced by sudden increases in oxygen concentration, which
plays a crucial role in the pathogenesis of BPD. Herein, we addressed the
pathophysiologic mechanisms, clinical treatment, and predictive biomarkers of
BPD from an oxidative stress perspective. We first review the importance of
oxygen in preterm infants and point out that sustained exposure to hyperoxia
exacerbates the susceptibility of the immature lung to free radicals. The
antioxidant properties of clinical therapies for BPD in preterm infants are then
summarized. Subsequently, based on lipid, protein, and DNA damage
mechanisms, we obtained the most comprehensive, accurate, and
representative oxidative stress biomarkers. A total of 37 research papers on
oxidative stress in BPD were collected. We conclude that 8-OHdG is the most
promising biomarker for early prediction of BPD pathogenesis compared to
lipid and protein oxidative stress biomarkers.
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1 Introduction

Preterm birth, defined as birth before 37 weeks of gestation, is a significant global

health issue for infants (1). According to the World Health Organization’s report, an

estimated 15 million premature births occur annually worldwide, with preterm rates

varying from 5% to 18% across countries in 2022. In 2019, preterm mortality accounted

for approximately 47% of all under-5 deaths globally. The increasing incidence of

preterm births has attracted considerable attention, becoming a focal point in medical

research (1, 2). Several factors contribute to this trend, including changes in maternal

age, with both very young and older mothers being at risk, as well as multiple
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pregnancies and high cesarean rates due to medical interventions.

China, the second-most populous country in the world,

contributes the second-highest number of preterm births, with

more than 1 million births annually (3). Data from the Lancet

Global Health indicates that the increasing preterm birth rate in

China has accelerated since the adjustment of child policy. Two

primary factors contributing to this surge include the rising

maternal age at childbearing and the greater use of assisted

reproductive technology, both of which elevate the multiple

pregnancy rate and the proportion of late preterm births (4).

Furthermore, infections caused by pathogens, chronic health

conditions, inadequate prenatal care, socioeconomic disparities,

and lifestyle factors such as smoking and substance abuse all play

significant roles (5). Numerous clinical studies (6–8) and

systematic reviews (9–12) have demonstrated the role of COVID-

19 infection during pregnancy as a significant risk factor for

adverse maternal and fetal outcomes, particularly preterm birth

(5). These events indicate the urgent need for global attention to

address the rising rates of preterm birth (13).

Premature neonates often struggle to adapt to the extrauterine

environment due to their underdeveloped organs, making them

vulnerable to various diseases, with BPD being particularly

notable (14–16). It is noteworthy that approximately 80% of

preterm infants aged 22–24 weeks and around 20% of those aged

28 weeks are affected by BPD (17). Despite advancements in

perinatal medicine that have improved survival rates among

premature infants, the incidence of BPD remains steady or even

increases due to the rise in preterm births with underdeveloped

lungs (13, 18, 19). Additionally, BPD, being a systemic condition,

significantly impacts health and quality of life, leading to poor

pulmonary function outcomes, an increased risk of requiring

home oxygen therapy, and hospitalization for respiratory

infections (20). Patients with BPD often experience airflow

limitations, reduced gas transfer, and decreased lung density,

which heighten their susceptibility to long-term chronic

obstructive pulmonary disease (21, 22). Due to its high morbidity

rates, diverse phenotypic variations, and substantial medical and

economic burdens on healthcare systems, BPD has emerged as a

prevalent and complex concern in perinatal medicine (17, 23–26).

Oxidative stress has long been recognized as a significant

contributor to the development of numerous neonatal diseases,

including BPD. Factors contributing to developing BPD-related

oxidative stress include abrupt changes in postnatal oxygen

tension, additional exposure to high oxygen levels due to

respiratory insufficiency, deficient antioxidant mechanisms,

infection, and inflammation. These factors increase oxidative

burden, leading to lung injury and developmental abnormalities

(27–31). Multiple studies have demonstrated elevated levels of

oxidative stress biomarkers in newborns who develop BPD

compared to those unaffected by the condition (32–36).

Clinical interventions for BPD encompass protective ventilation,

pulmonary surfactants, steroids, caffeine, vitamin A, nitric oxide, and

nutritional optimization (28). However, the efficacy and safety of

some of these approaches remain controversial (31). Considering

the theoretical potential of antioxidant therapy in mitigating

oxidative stress and pulmonary injury in BPD (28, 31), this review
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aims to analyze these interventions from an antioxidant

perspective to enhance their clinical applicability. Furthermore,

research indicates an elevation in oxidative stress biomarkers even

in the early stages of BPD, suggesting exposure to the detrimental

effects of oxidative stress in immature lungs before developing

BPD (37–40). Thus, early oxidative stress levels are critical for

predicting BPD, aiding in disease severity assessment, and

providing personalized precision therapies for affected preterm

infants (27). Consequently, this review synthesizes the most

accurate and representative oxidative stress biomarkers based on

lipid, protein, and DNA damage mechanisms, discussing their

utility in predicting BPD development.
2 The pathogenesis of BPD: oxidative
stress in immature lungs

Reactive oxygen species (ROS) are highly reactive oxidative

molecules or ions primarily generated by endogenous oxidative

metabolism processes. Moderate ROS production is crucial in

cellular signaling transduction, apoptosis, proliferation, and

inflammation within biological processes. However, excessive ROS

levels or compromised antioxidant defense mechanisms can lead

to oxidative stress, resulting in cellular structural and functional

damage, consequently contributing to various diseases (41–43).

Postnatal risk factors such as high oxygen levels, hypoxia,

ventilation, infections, and inflammation dramatically increase

ROS production and contribute to BPD (28, 29, 41–43).

Mechanical ventilation leads to alveolar overinflation and damage

and triggers the activation of inflammatory signaling pathways

and pulmonary fibrosis, a critical factor in developing classical

BPD (27, 44). With the introduction of antenatal steroids,

exogenous surfactant therapy, and protective ventilation strategies

such as reduced tidal volumes and decreased invasive ventilation,

these clinical interventions have somewhat reduced the incidence

and mortality rates of oxidative stress and BPD (31, 45).

Advancements in healthcare have shifted the gestational age

criteria for BPD diagnosis from extremely premature infants

(gestational age less than 32 weeks) to very premature infants

(gestational age less than 28 weeks) (44), exposing the lungs to

high oxygen levels during the late canalicular or early saccular

stages (17, 46). Premature birth transitions the lungs from the

low-oxygen environment of the uterus to the high-oxygen

environment of indoor air, exposing them to relatively high

oxygen concentrations (30). Fetuses in utero only need to cope

with blood oxygen tensions of 25–30 mmHg and benefit from

maternal antioxidant protection, thereby avoiding oxidative stress

(47). In comparison, preterm infants must cope with oxygen

tensions of 60–100 mmHg for an extended period with immature

lungs. Furthermore, the alveolar gas exchange surface area at these

stages is incompletely developed, unable to provide sufficient

oxygen for metabolism (48, 49). Oxygen therapy has become a

necessary standard treatment to prevent newborns from dying due

to respiratory failure (13). These factors make infants prone to

oxidative stress due to exposure to high oxygen concentrations,

leading to the development of BPD. Notably, the endogenous
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antioxidant system within immature lungs fully matures shortly

before full-term delivery (41). Consequently, the excess ROS

cannot be effectively eliminated, leading to ROS accumulation and

oxidative stress. Excessive ROS induces apoptosis and dysfunction

of alveolar epithelial type II cells responsible for synthesizing and

secreting pulmonary surfactant (29), impairing lung vascular and

alveolar development (28), thus contributing to the emergence of

the new phenotype of BPD (50, 51).
3 Clinical treatment of BPD: an
antioxidant perspective

The treatment landscape for BPD continues to evolve, yet

achieving satisfactory outcomes remains elusive (17, 52, 53). Both

basic researchers and clinicians are challenged by the iatrogenic

injuries associated with improving the survival of preterm infants

(54). Given the central role of oxidative stress in BPD pathogenesis,

strategies targeting antioxidants hold promise for prevention and

treatment (42, 55). Numerous studies on antioxidant therapy and

reviews summarize the clinical treatment methods (56–60).

However, the antioxidant aspects of the clinical treatment of BPD

remain essential. Therefore, this article reviews current clinical

approaches to BPD treatment from an antioxidant perspective.

We searched the PubMed database for published clinical

studies covering the neonatal (birth-1 month) up to 2023. The

search strategy included medical subject headings (MeSH

headings) and free text terms related to antioxidants, pulmonary

surfactants, vitamin A, vitamin E, vitamin D, caffeine, nutritional

interventions, and BPD.
3.1 Pulmonary surfactant

Since the certified importance of pulmonary surfactants in

enhancing the survival of preterm infants (61), the administration

of prenatal corticosteroids to boost endogenous surfactant

production before birth and the introduction of exogenous

surfactants after birth have been pivotal milestones in neonatal

medicine (62). These developments have altered the original

definition of BPD proposed by Northway in 1967 and launched

the post-surfactant era (20, 63).

Pulmonary surfactants coat the alveolar surface and are complex

mixtures of phospholipids and proteins (64, 65). The alveoli of

preterm infants are at the stage of the late canalicular or early

saccular periods during which type II alveolar cells have not fully

developed, leading to alterations in the quantity, quality, or

composition of surfactant secretion (66). Additionally, surfactant

proteins are influenced by hyperoxia, potentially prolonging the

need for ventilator support and increasing the risk of BPD

(67–69). Studies in preterm infants have demonstrated that natural

surfactant treatment reduces oxidative stress parameters in tracheal

aspirates from ventilated infants (25, 70–72). Firstly, exogenous

surfactant therapy can improve neonatal adverse outcomes by

reducing inhaled oxygen concentration and exogenous ROS

formation during oxygen therapy (68, 73). Secondly, surfactant
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proteins inhibit inflammatory processes and enhance microbial

clearance (66), which also play a vital role in reducing the

production of endogenous ROS to some extent (74). Thirdly,

natural surfactants contain polyunsaturated phospholipids along

with enzymatic antioxidants like SOD and CAT (75–77), thereby

shielding the cell membrane from the assault and damage caused

by ROS. These properties also underscore the susceptibility of

lungs with an insufficient antioxidant system to oxidative damage

under hyperoxia (78).

Since the beginning of the last century, natural surfactants have

been regarded as superior to synthetic surfactants in enhancing

respiration, reducing mortality, and lowering the incidence of BPD

(79, 80). Treatment with poractant alfa may offer more advantages

than calfactant and other animal-derived surfactants in preventing

BPD (81, 82), potentially due to its lower dipalmitoyl

phosphatidylcholine value and higher activity of antioxidant

components both in natural surfactants and poractants (83).

Additionally, the differentiation of epithelial type II alveolar cells

and the surfactant production rate may be regulated by endogenous

glucocorticoids and accelerated by exogenous glucocorticoids,

primarily through the regulation of gene expression associated with

increased surfactant protein synthesis, which has been extensively

reported in animal experiments (75, 84–87). Although antenatal

corticosteroids are commonly regarded as a routine approach to

promoting fetal lung maturation in preterm birth, there remains

controversy surrounding their postnatal use for preventing BPD,

including issues related to the timing of administration, choice of

agents, and routes of administration (88, 89).
3.2 Vitamin A

Vitamin A, the best-studied non-enzyme antioxidant in BPD,

plays a crucial role in regulating fetal lung development and

maturation, maintaining the integrity of respiratory epithelial

cells, influencing pulmonary vessel development, reducing the

need for supplemental oxygen in premature infants, and

ultimately decreasing premature infant mortality (25, 90). Many

investigations suggest that vitamin A deficiency is prevalent in

very-low-birth-weight infants from birth to term (91, 92). The

deficiency in preterm infants may be related to the maternal

vitamin A level or inefficient placental transmission, which leaves

them malnourished (93, 94). Vitamin A deficiency is also

associated with BPD, and there has been considerable evidence

that supplementation can reduce the mortality of BPD and infant

mortality (95–97).

In terms of sources, the two primary forms of vitamin A in our

bodies are animal-derived (including retinol and its derivatives) and

plant-derived carotenoids (such as α-carotene, β-carotene, and β-

cryptoxanthin) (25, 98). As retinol is the main active form of

vitamin A in the human body and has high absorption, the types

of vitamin A used in clinical practice are retinol and its derivatives

(98). Animal-derived vitamin A can act as a chain-breaking

antioxidant, preventing cell damage by inhibiting the interaction of

peroxyl radicals with lipids to produce hydroperoxides (99, 100).

Despite the lower absorption and conversion rates compared to
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retinol, it is still worth exploring whether carotenoids can reduce the

incidence of BPD, primarily owing to their direct antioxidant

activities in scavenging singlet oxygen and peroxide-free radicals

(101, 102), as well as increasing the production of enzymatic

antioxidants (103, 104).

Currently, research on the delivery route of vitamin A

primarily focuses on intramuscular and oral administration.

While intramuscular administration can effectively reduce BPD

and infant mortality rates, it is costly and associated with painful

side effects (105, 106). The efficacy of oral administration in

reducing BPD incidence remains debated. Additionally,

intratracheal administration shows promise due to its ability to

increase retinol concentration in tissues like serum, liver, and

lungs in animal models, indicating its feasibility and warranting

further investigation (107–109). Although the preventive effect of

vitamin A on BPD is still controversial, it has become more

widely used as a result of the increasing rate of very-low-birth-

weight infants (18, 110–112).
3.3 Vitamin E

Like vitamin A, vitamin E is also a crucial fat-soluble non-

enzymatic antioxidant with potent anti-inflammatory and

antioxidant properties, playing a significant role in embryonic lung

development (113, 114). Research demonstrates that the fetus

primarily obtains vitamin E from the mother through the placenta

(115). Fetal levels of vitamin E are closely correlated with maternal

levels during the same period and increase with gestational age

(116, 117). Given our inability to synthesize this nutrient,

premature and low birth weight infants commonly experience

vitamin E deficiency, increasing the risk of adverse outcomes such

as BPD (115, 118, 119). Moreover, premature infants have an

increased demand for non-enzymatic antioxidants compared to

full-term infants. Hence, additional vitamin supplementation may

lower the incidence of BPD (117, 120, 121). However, research on

the effectiveness of vitamin E is limited in duration, quantity, and

depth when compared to vitamin A. Most studies on oral and

intravenous administration of vitamin E have failed to

demonstrate a reduction in BPD incidence and have even led to

adverse outcomes such as infant death and necrotizing

enterocolitis (122–124). Consequently, vitamin E supplementation

was temporarily suspended in the late 1990s.

More recently, Ogihara and Mino discussed the research

findings on BPD conducted during the pre-surfactant era in the

1980s and early 1990s (115). They suggested that these findings

may not apply to modern neonatal care due to significant

differences in the definition of prematurity between the pre-

surfactant and post-surfactant eras (25, 55, 115). Since 2000,

studies have re-confirmed the relationship between vitamin E

deficiency and the severity of BPD (125, 126), although progress

remains slow and the outcomes are preliminary (127–129). Since

vitamin E is an essential component of pulmonary surfactant

and plays a crucial role in the post-surfactant era (119, 130, 131),

it is unsurprising that vitamin E possesses anti-inflammatory and

antioxidant properties that can mitigate the incidence of BPD. In
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addition, high levels of vitamin E have been detected in breast

milk, indicating its essentiality for newborns with specific

nutritional needs, especially in low birth weight infants (118, 132,

133). Although various isomers of vitamin E have similar

antioxidant functions in preventing lipid peroxidation (114, 134),

high doses of α-tocopherol were widely used due to its

availability in the human body during the pre-surfactant era

(117, 135). Data on the effectiveness of specific subtypes and

different routes of administration for vitamin E supplementation

trials on lung health are necessary to determine whether re-

challenging in modern neonatal intensive care units is

worthwhile (114, 115, 130), which may improve lung

development and can reduce the adverse outcomes caused by the

injection and oral administration.
3.4 Vitamin D

Since 2000, there has been an increase in studies examining the

relationship between vitamin D deficiency and BPD. Apart from its

various immunomodulatory and anti-inflammatory functions

(136), it possesses indirect antioxidant properties that may

alleviate conditions induced by oxidative stress, such as diabetic

retinopathy (137), endothelial dysfunction (138), skin aging

(139), and mood disorders (140). The potential mechanism for

reducing oxidative stress involves vitamin D enhancing the

expression of SOD2, glutathione, and nuclear factor NRF2, which

are responsible for antioxidant enzyme expression (137–139, 141).

The vitamin D level of early neonates is closely linked to that of

their mothers and gestational age, as the fetus obtains vitamin D

from the mother via the placenta (142). As a result of modern

lifestyles, vitamin D deficiency is prevalent in pregnant women

(143), impacting serum vitamin D levels in preterm infants and

subsequently impairing lung development (144). Several clinical

studies and reviews have established an association between

neonatal BPD and low vitamin D levels, with a higher incidence

observed in the vitamin D deficiency group (127, 144–146). A

low level of 25-hydroxyvitamin D in the bloodstream is a

valuable predictor for the prediction of BPD (147–149).

Although early vitamin D supplementation has shown promise

in significantly increasing serum levels of 25(OH)D3, reducing

inflammatory responses, and decreasing the incidence of BPD in

preterm infants, more extensive clinical trials with varying doses

are still necessary (150–154).

Recent research has demonstrated that vitamin D administration

improves alveolar structural simplification induced by hyperoxia and

elucidated underlying mechanisms from the perspective of reducing

inflammation (155–161). Vitamin D administration reduced the

expression of proinflammatory cytokines IL-6, IFN-γ, TNF-α and

IFN-γ (156–158), regulated the balance of M1 and M2

macrophages by decreasing the expression of IL-10 and Arg-1

(155), protected neonatal rats from hyperoxia-induced BPD by

regulating the vitamin D-VDR signaling pathway (158),

antagonized the activation of TLR4 (159), contributed to the

recovery of mitochondrial morphology (156), reduced cell

apoptosis (156, 159), and promoted the growth of vascular
frontiersin.org

https://doi.org/10.3389/fped.2024.1343870
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Li et al. 10.3389/fped.2024.1343870
structures (157). In addition, low doses of vitamin D improve the

formation of alveolar and pulmonary vascularization in BPD by

inhibiting neutrophil extracellular traps under hyperoxia, whereas

higher doses may lead to more severe outcomes (157). Moreover,

inhaled vitamin D is crucial for promoting surfactant phospholipid

synthesis, which is vital in reducing oxidative stress caused by

hyperoxia exposure (161). Overall, due to its potent antioxidant

properties and the potential benefits of inhalation over oral

administration in promoting neonatal lung development (137, 161),

further studies on vitamin D supplementation from an antioxidant

perspective are warranted to reduce the incidence of BPD.
3.5 Caffeine

Caffeine, a methylxanthine drug, has been widely used to treat

apnea of prematurity for decades and is one of the few

pharmacological interventions that has been shown to significantly

reduce the risk of BPD in preterm infants (162). Caffeine

treatment primarily enhances diaphragmatic contractility, increases

minute ventilation, and stimulates the central nervous system,

effectively improving respiratory function in preterm infants.

These mechanisms help reduce the need for mechanical

ventilation, improve lung function, and facilitate successful

extubation (163). Therefore, caffeine therapy plays a crucial role in

lowering the incidence of BPD. Multiple clinical trials have

supported the clinical benefits of caffeine in treating and

preventing BPD (163). As a result, current research on caffeine

therapy mainly focuses on the timing of treatment and dosage.

Although increasing evidence supports the early use of caffeine in

preterm neonates, formal guidelines specifying the exact timing to

start treatment have yet to be established. Clinical trials are needed

to determine the optimal timing for caffeine administration and to

identify the infant population that would benefit most from early

caffeine therapy. Further studies are also necessary to validate and

elucidate the precise impact of early caffeine treatment on

complications in preterm infants.

Yan et al. found that early administration of caffeine can reduce

the severity of BPD by approximately 60% (164). Similarly, Chen

et al. reported that caffeine administration within the first three

days of life shows promising results in preventing severe BPD

and mortality in extremely preterm infants (165). Other studies

have indicated that early preventive use of caffeine citrate not

only significantly reduces the incidence of BPD in preterm

infants but also decreases the occurrence of other complications.

Ye et al. found that early preventive administration of caffeine

citrate reduced the risk of later free radical disease in preterm

infants, including BPD (166). Jiang et al. found that early

preventive use of caffeine citrate is more effective than standard

caffeine treatment in reducing the incidence of BPD in preterm

infants (167). Szatkowski et al. reported that an increased

proportion of early preventive caffeine use is associated with a

reduced risk of BPD and brain injury in preterm infants (168).

By comparing early preventive use of caffeine citrate (within 72 h

after birth) and standard caffeine treatment, Elmowafi et al.

found that the former reduces the duration of oxygen therapy,
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ventilation needs, and the incidence of mild to moderate BPD in

preterm infants (169). Lamba et al. found that early high-dose

caffeine therapy (10 mg/kg/day) lowers the risk of moderate to

severe BPD without increasing the incidence of measured

complications (170). Rauf et al. observed that early initiation of

high-dose caffeine can prevent apnea and extubation failure in

preterm neonates (171). Additionally, some studies suggest that

early caffeine treatment may lead to complications and even

increase mortality rates. Taha et al. found that early preventive

use of caffeine citrate improves survival rates in preterm infants

without BPD. However, it also increases the risk of fatal

necrotizing enterocolitis (172). Similarly, research by Dobson

(173) and Yun (174) indicates that while early oral caffeine

treatment reduces the incidence of BPD, it is accompanied by an

increased mortality rate.

Evidence suggests that caffeine and its methylxanthine

metabolites may reduce oxidative stress by modulating

inflammation-related pathways. Caffeine inhibits oxidative stress

by suppressing the activation of IRE1 and PERK induced by

endoplasmic reticulum stress to prevent skin senescence (175) or

by activating A2AR/SIRT3/AMPK-mediated autophagy in the

leptin-induced phosphorylation of STAT3 (176). Caffeine

treatment has also been shown to reduce oxidative stress by

enhancing the activity of antioxidant defense enzymes, mitigating

DNA damage, and modulating transcription, indicating its

antioxidant function to some extent (23). Recent clinical evidence

indicates that caffeine’s protective effect on neonatal lung health

might involve reducing the expression of genes such as MMP9,

TNF-α and TLR4, thus alleviating pulmonary inflammation which

may be a mechanism behind the significant reduction in BPD

incidence observed in the caffeine treatment group (167).

Furthermore, although there is no statistically significant difference

in BPD incidence between preventive and treatment groups, the

preventive group showed significantly lower levels of IL-6 and IL-8

than the treatment group (177). This reduction in cytokine levels

may contribute to a lower incidence of BPD.

Although clinical studies have not yet clarified how caffeine

reduces the incidence of BPD through mediating redox pathways

(178), a series of cellular and animal experiments indicate that

caffeine has antioxidant properties. In a cellular model of BPD

induced by hyperoxia, caffeine may reduce apoptosis, promote

proliferation, and alleviate oxidative stress by inhibiting the A2AR/

cAMP/PKA/Src/ERK1/p38MAPK signaling pathway, thus

preventing lung damage (179). In the animal model of BPD,

caffeine treatment significantly mitigates cell death and changes in

apoptosis-related factors induced by hyperoxia (180) and protects

murine lungs from oxidative damage by inhibiting the NLRP3

inflammasome and NF-κB pathways, which reduces apoptosis in

type II alveolar epithelial cells (181). Additionally, caffeine

treatment may protect developing lungs from injury induced by

hyperoxia by alleviating endoplasmic reticulum stress (182).

Given caffeine’s important role in the prevention and treatment

of BPD, there is still a lack of comprehensive understanding of its

molecular mechanisms, particularly regarding whether caffeine

treatment can reduce lung injury by alleviating oxidative stress.

Therefore, further research in this area is essential.
frontiersin.org

https://doi.org/10.3389/fped.2024.1343870
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Li et al. 10.3389/fped.2024.1343870
3.6 Nutritional interventions

Premature infants fail to regulate inflammatory immune

responses, resulting in sustained lung injury and chronic

pulmonary inflammation (183). However, specific functional

nutrients with antioxidant properties may play a role in reducing

pulmonary inflammation (184). The primary consideration here is

the potential mechanism of breast milk as an antioxidant therapy,

as single antioxidant therapy for BPD has not yielded the expected

clinical outcomes (28). Yang et al. indicated that breast milk is the

safest, most natural, and most comprehensive infant nutrition (28).

It provides all the necessary calories, proteins, and lipids for

newborn growth and development, along with various antioxidants

such as unsaturated fatty acids, vitamins, trace elements,

glutathione (GSH), SOD, glutathione peroxidase (GSH-Px),

melatonin, probiotics, short-chain fatty acids, and lactoferrin,

offering robust antioxidant capabilities to newborns (28, 185).

In clinical practice, breastfeeding has been shown to reduce the

incidence of BPD in premature infants significantly. Compared to

formula feeding, both exclusive breastfeeding and pasteurized

donor human milk feeding have resulted in a lower incidence of

BPD in premature infants (186, 187). A higher incidence of BPD

was also found in preterm infants who received pasteurized

or frozen breastfeeding compared to exclusive breastfeeding

(188, 189). The possible reasons are as follows. Although

carbohydrates remain relatively intact, many components in

breast milk change during freezing, pasteurization, and

subsequent reheating. Freezing breast milk increases the

formation of lipid peroxides, which can damage cell membranes,

increase oxidative stress, and potentially lead to cellular injury.

Furthermore, freezing decreases the concentration of bioactive

proteins, such as secretory immunoglobulin A, lactoperoxidase,

and lysozyme in breast milk, which is crucial in combating

oxidative stress and maintaining immune balance. Moreover, the

processes may reduce the content of antioxidants in breast milk

and lead to the loss of activity of immune cells and stem cells,

which are vital for protecting infants from oxidative damage and

promoting tissue repair (186–189).

The amount of breast milk intake in premature infants is

negatively correlated with the incidence of BPD (190). For

premature infants breastfed from birth to 36 weeks

postmenstrual age, each 10% increase in breastfeeding was

accompanied by a 9.5% reduction in the risk of developing BPD

(191). Based on these studies, breast milk seems beneficial in

preventing and treating BPD. Given the various antioxidants in

breast milk, we believe this is a primary mechanism by which

breast milk helps reduce BPD (28).

Currently, it remains uncertain whether individual components

of breast milk can function independently as antioxidants due to

inconsistent findings in this area (28). For instance, taking

Omega-3 polyunsaturated fatty acids as an example, the risk of

BPD increases with decreased DHA levels and increased LA

(192). The incidence of BPD was reduced in infants whose

mothers received a DHA diet compared to those who did not

(184). However, some studies have found that Omega-3

polyunsaturated fatty acid interventions do not affect the
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incidence of BPD (193, 194). Similar results are seen with trace

elements, vitamins, and lactoferrin (28, 185). Possible reasons for

this inconsistency include the limited efficacy of single-ingredient

antioxidants for treating BPD.
3.7 Other antioxidant treatments

Among all antioxidant enzyme replacement therapies for

preclinical strategies, recombinant human SOD has shown the

most promising outcomes (25). Though no positive effect on

mortality and morbidity was observed at 36 weeks postmenstrual

age in the treatment of intratracheal recombinant human SOD,

the number of infants with respiratory sequelae or requiring

pulmonary resuscitation decreased at 1-year corrected age (195).

A clinical trial has also investigated the role of recombinant

human SOD therapy in alleviating ROP, a form of oxygen

radical disease. The incidence of ROP was significantly reduced

in infants younger than 25 weeks (196). Despite these

advancements, progress in recombinant human SOD therapy has

been slow over the years. In animal trials, overexpression of SOD

at the transcriptional level (59, 60), oral supplementation of

coenzyme Q10 (57), caffeine (95), and chrysin treatment (197)

could alleviate lipid oxidative stress, decrease alveolar damage,

and improve lung function. Research has shown that

glucosinolate and quercetin can reduce lung inflammation by

regulating transcription factors or antioxidant-related proteins

(56, 58). Although antioxidant treatments have shown efficacy

through histopathological assessment of target organs in many

animal models, translating basic research findings into clinical

practice remains challenging (198, 199).
4 Oxidative stress-related biomarkers

The previous chapter described possible mechanisms for

reducing oxidative stress through treating BPD in the clinic.

Currently, there is a lack of studies linking oxidative damage to

outcomes. However, there is a strong need to identify validated

biomarkers of oxidative stress, which would provide a theoretical

basis for clinicians to develop preventive and immediate

adjustments to therapeutic strategies, improve the prognosis of

preterm infants, and reduce the burden of this condition on the

preterm infant. Although biomarkers of oxidative stress have

been identified in different tissues or body fluids, many of these

biomarkers do not correlate well with BPD, do not reflect the

state of oxidative stress, or lack specificity. Therefore, the focus

should be on understanding which markers can be practically

applied in the clinic to predict the occurrence of BPD.

Overall, oxidative stress can be categorized into four broad

categories: “antioxidant defenses”, “lipid peroxidation”, “nucleic

acid oxidative damage”, and “oxidative damage to proteins”. The

antioxidant defense system consists of enzymatic and non-

enzymatic categories. The former mainly include superoxide

dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx),

thioredoxin reductase (TRX), peroxiredoxin (PRX), and
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glutathione S-transferase (GST), while the latter mainly includes

metal-binding proteins (MBP), ascorbate (AA), Vitamin E,

Vitamin C, uric acid, and GSH (200).
4.1 Oxidative stress-induced lipid
peroxidation and corresponding biomarkers

Structural lipids, also known as membrane lipids, are essential

components of cells, such as the plasma membrane, Golgi

apparatus, and endoplasmic reticulum. They are composed of

more than 70% phospholipids and 10%–20% cholesterol (Ch).

Each phospholipid consists of two esterified fatty acyl chains, one

saturated (sn-1 chain) and the other unsaturated (sn-2 chain).

The unsaturated chain includes linoleic acid (LA, C18:2,

omega6), arachidonic acid (AA, C20:4, omega-6), conjugated

linoleic acid (CLA, C18:2, omega6), eicosapentaenoic acid (EPA,

C20:5, omega-3), docosahexaenoic acid (DHA, C22:6, omega-3),

and alpha-linolenic acid (ALA, C18:3, w-6). Among these, LA,

AA, DHA, and Ch are the most abundant unsaturated fatty acids

in mammalian cell membranes, and their double bonds are

susceptible to oxidation under oxidative stress, leading to lipid

peroxidation (201).

Lipid peroxidation, driven by a free radical chain reaction,

consists of three reaction phases: initiation, propagation, and

termination (202, 203). In the initial phase, hydrogen atoms in

the methylene groups of the unsaturated fatty acids side chains

are captured by pro-oxidants such as hydroxyl radicals (OH•) to

produce lipid radicals (L•). During the propagation phase, L•

reacts with O2 to form lipid peroxyl radicals (LOO•). LOO• can

further extract hydrogen atoms from neighboring PUFA residues

to generate new L• and lipid peroxyl radicals (LOOH), and the

resulting new L• drives lipid peroxidation similarly. In the

termination phase, the LOO• species reacts with hydrogen atoms

from the antioxidant to generate lipid hydroxide (LOH) or

combines with another LOO• to form non-radical product, as

shown in Figure 1.

Unsaturated fatty acids with more than three double bonds

generate intracyclic peroxide intermediate isomers (LOOH), which
FIGURE 1

Schematic representation of the free radical-driven oxidative stress
process for lipid.
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are subsequently reduced to prostaglandin-like compounds (LOH)

and their isomers. This process involves the formation of F2-IsoPs

from AA, F3-IsoPs from EPA, and F4-neuroprostanes (NPs) from

DHA. These primary products are further metabolized by Hock

rearrangement or β-breakage reactions to form toxic reactive

carbonyl species (RCS), including malondialdehyde (MDA),

4-hydroxynonenal (4-HNE), formaldehyde (FA), acrolein,

methylglyoxal (MGO) (202–204). The RCS readily triggers

irreversible modification and cross-linking with proteins, nucleic

acids, and other biological macromolecules, resulting in physical

dysfunction, as shown in Figure 2.

In contrast, fatty acids containing fewer double bonds are

less susceptible to oxidation than substances containing

polyunsaturated fatty acids. Linoleates (containing two double

bonds), the body’s most abundant polyunsaturated fatty acids,

and Ch (monounsaturated lipids) generate oxidized products

only through free radical chain reactions. LA generates

hydroperoxyoctadecadienoic acid (HPODE) and its isomers,

and these hydroperoxides are subsequently reduced to

hydroxyoctadecadienoic acid (HODE) and its isomers (204, 205).

Ch generates 7α- and 7β-hydroperoxycholesterol (7α-OOHCh

and 7β-OOHCh) as well as 5α, 6α- and 5β, 6β-epoxycholesterol.

The first two are subsequently reduced to 7α- and

7β-hydroxycholesterol (7α-OHCh, 7β-OHCh), and the latter can

be produced as Cholestane-3β,5α,6β-Triol (C-Triol) in the

presence of hydrolases (206). However, 7α-OHCh can be

generated by enzymatic reactions, and thus, 7β-OHCh is

considered the primary product of Ch under free radical

mediation, as shown in Figure 2.

Lipid hydroxides may serve as more suitable biomarkers than

hydroperoxides, and trans-hydroxides are formed only due to

free radical-mediated peroxidation (200, 202). Considering the

abundance of unsaturated fatty acids, it is generally accepted that

F2-IsoPs, HODE, and 7β-OHCh are the primary oxidative stress

markers (highlighted in red), as shown in Figure 2. In addition,

with increasing oxygen tension, isofurans (IsoFs) and

neurofurans (NFs) can be formed by peroxidation of AA and

DHA, respectively (204). The formation mechanism of IsoFs and

NFs compounds is similar to that of F2-IsoPs, as shown in Figure 2.
4.2 Oxidative stress-induced protein
oxidation and corresponding biomarkers

Free radicals attack protein molecules and mainly affect amino

acid side chains, which causes them to undergo oxidative

modifications. These modifications include oxidation of sulfur-

containing amino acids, oxidation of aromatic amino acids,

carbonylation, sugar oxidation, and nitration formation (207).

Although all amino acids can be modified by ROS, sulfur-

containing amino acids (methionine, cysteine) are particularly

susceptible to oxidative reactions due to the higher sensitivity of

the sulfur group. Cysteine thiol undergoes two oxidation

pathways (207). One pathway involves the reversible formation of

a disulfide bond with another thiol, regulated by several

intracellular enzymes. The second pathway involves the gradual
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FIGURE 2

Schematic representation of the free radical-driven oxidative stress process for lipid. The processes in generating biomarkers for lipid peroxidation and
the abbreviations of representative biomarkers are highlighted in red.
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oxidation of thiol, resulting in the reversible formation of sulfenic

acid (-SOH) and sulfinic acid (-SO2H) or the irreversible formation

of sulfonic acid (-SO3H) (208). The selenol of selenocysteine can be

regarded as a specialized thiol as it catalyzes thiol/disulfide

exchange reactions (209). Like thiols, selenols can undergo

oxidation to diselenides, selenoxides, selenenic acids, seleninic

acids, and selenonic acids (210, 211). Selenium’s higher

nucleophilicity and electrophilicity enable it to efficiently cycle

between its reduced state (selenols) and oxidized state

(diselenides), making it an effective redox regulator (212).

Notably, five glutathione peroxidases (GPx), three thioredoxin

reductases (TrxR), and methionine sulfoxide reductase 2 (MsrB)

are selenium enzymes involved in redox reactions (213).

Methionine is highly susceptible to ROS oxidation, a reaction

prevalent in almost all living organisms (214). Under more

intense experimental conditions, such as higher concentrations of

N-bromosuccinimide, methionine sulfoxide can undergo

irreversible oxidation to methionine sulfone (215). However,

relatively few studies have investigated the physiological

conditions of methionine sulfone. In aging mice, methionine

sulfoxide and methionine sulfone have been identified as the

most abundant amino acid oxidation modifications. The levels of

methionine sulfone in histones and the cytoplasm of aging mice

are significantly higher than those in young mice (216). In

contrast to the well-known susceptibility of cysteine to oxidation,

methionine oxidation has been largely overlooked (217). This

oversight can be attributed to its hydrophobic and relatively weak

nucleophilicity in the thioether group of methionine (218).

Additionally, the reversible catalysis of methionine sulfoxide by

methionine sulfoxide reductases and its identification as

methionine in traditional Edman sequencing procedures further
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contributes to the neglect of methionine oxidation (219). The

levels of methionine sulfoxide indicate the overall cellular redox

status, making it a promising clinical biomarker (207, 215).

The oxidation of other amino acids requires more stringent

conditions than that of sulfur-containing amino acids, and

aromatic amino acids are secondarily susceptible to oxidation

because their molecular structure contains multiple conjugated

double bonds, and their high electron density properties make

them susceptible to oxidation, generating various stable oxidative

modification products (220). Tyrosine generates an intermediate

tyrosyl radical followed by dihydroxyphenylalanine or bis-

tyrosine. Tryptophan is oxidized to hydroxytryptophan by

hydroxyl radicals, followed by oxygen cleavage of

hydroxytryptophan to form N-formyl kynurenine. Hydroxyl

radicals oxidize phenylalanine and histidine to form ortho-

tyrosine and 2-oxohistidine, respectively (207).

The oxidative modification of amino acids formed by the

combined action of glycosylation and oxidation, known as

glycoxidation, is an irreversible process (221). Reducing sugars

first react non-enzymatically with free amino groups in amino

acids or proteins (usually lysine or arginine) to form compounds

with sugar groups called basal glycation products. The basal

glycation products are susceptible to oxidative stress, which

triggers oxidation and condensation reactions. These reactions

lead to further structural changes in the basal glycation products

to form more complex advanced glycation end products (AGEs).

The most abundant AGEs in the body are carboxymethyl lysine

and pentosidine, produced from lysine and formed by cross-

linking between lysine and arginine residues, respectively (207).

Nitrification modifications are also formed under conditions of

oxidative stress. Nitric oxide reacts with superoxide anion to form
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the reactive nitrogen species—peroxynitrite, which subsequently

undergoes nitration with phenolic groups in the tyrosine

molecule, irreversibly adding nitro substituents to the amino acid

side chain of tyrosine to form 3-nitrotyrosine (207, 222).

The process of introducing reactive carbonyl groups such as

aldehydes, ketones, and lactams into the amino acid side chains

of proteins is called “protein carbonylation” (223). Protein

carbonylation is usually defined as an irreversible post-

translational modification that causes conformational changes in

the polypeptide chain and results in loss of protein function.

Carbonylation is relatively challenging to induce compared to

other oxidative modifications and is considered a significant

marker of oxidative damage to proteins. The protein

carbonylation generation pathways in which ROS are directly

involved fall into two categories. ROS can directly attack lysine,

arginine, proline, and threonine side chains, introducing carbonyl

groups and generating α-aminoadipic acid semialdehydes (AAS)

derived from lysine and γ-glutamic acid semialdehydes derived

from arginine and proline. In addition, the active carbonyls

formed by ROS-attacking lipids can also be added to

nucleophilic amino acids (i.e., cysteine, histidine, and lysine) by

Michael addition or by generation of Schiff bases (207, 224).

These modifications also irreversibly cause proteins to produce

cross-links, altering the composition and folding of proteins and

affecting their function as receptors, enzymes, carriers, or

structural proteins (207). Advanced oxidized protein products

(AOPPs) are cross-linked protein-containing products containing

dityrosine and carbonyl groups formed by the reaction of plasma

proteins with oxidants and are also considered markers of

oxidant-mediated protein damage (225).
4.3 Oxidative stress-induced nucleic acid
oxidation and corresponding biomarkers

Due to the reactivity of nitrogen and oxygen atoms in nucleic

bases, nucleic acids are highly susceptible to damage induced by

oxidative stress. While all four bases are impacted by ROS,

guanine (G) exhibits the lowest redox potential relative to the

other bases (G: −3.0 V, A: −2.71 V, C: −2.56 V, and T: −2.32 V)
(226). As a result, guanine nucleotides and deoxyguanine

nucleotides are more prone to oxidation, resulting in the

formation of 8-oxoGuo and 8-oxo-dG, respectively. Furthermore,

8-oxoGuo and 8-oxodG can be released into the bloodstream

and excreted in urine, allowing their detection in human serum/

plasma and urine samples. They serve as well-established

biomarkers for oxidative damage to DNA and RNA (227, 228).

However, the oversight of RNA oxidative damage primarily

stems from the relatively short half-life of RNA, and the initial

research focused on DNA oxidation, leading previous studies to

concentrate predominantly on DNA. In fact, RNA molecules are

more susceptible to the influence of reactive oxygen species

(ROS) than DNA. This susceptibility is mainly due to

ribonucleotides being more abundant than deoxyribonucleotides,

and RNA lacks protective and repair mechanisms, making its

bases more prone to oxidation. Although previous research has
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linked 8-oxoGuo to various diseases, including Alzheimer’s

disease (229, 230), Parkinson’s disease (231), type 2 diabetes

(232), obesity (233), atherosclerosis (227), heart failure (234), and

tumors (235, 236), studies on RNA oxidative stress products

related to BPD, are yet to be reported. Hence, this section

primarily discusses DNA oxidation.

In the free nucleotide pool, guanine is oxidized to 8-oxo-dGTP

and involved in DNA; in the DNA molecule, guanine is oxidized to

8-oxo-7,8-dihydroguanine (8-oxoG). The 8-oxo-dGTP in the

nucleotide pool is first hydrolyzed to 8-oxodGMP by MutT

homolog 1 (MTH1), followed by 8-oxo-2′-deoxyguanosine
(8-oxodG or 8-OHdG) formation by 5′-Nucleotidase (237, 238).

The base excision repair (BER) system recognizes and eliminates

8-oxoG from DNA strands. When the BER system fails to

recognize larger or more complex damages, nucleotide excision

repair (NER) is initiated to excise 8-oxodG-containing DNA

fragments (237). In addition, cells with the most severe DNA

damage (necrosis or apoptosis) will also release 8-oxodG-

containing DNA fragments. The excision of 8-oxoG by the BER

system also generates apurinic (AP) sites, which are highly

reactive and susceptible to 3′ phosphate bond breaks, resulting

in single-strand breaks. In the presence of oxygen, 8-oxoG

readily produces a synconformation and pairs with adenine

(226). Although DNA repair enzymes continuously monitor and

repair chromosomes, 8-oxoG readily accumulates and induces

deleterious mutations through free radical overload, causing

guanine to thymine mutations and cytosine to adenine

transversions during DNA replication, as shown in Figure 3.

Thus, the major types of DNA damage following oxidation by

ROS are oxidative base modifications (8-oxoG), AP sites,

single-strand breaks, and mutations (G: C-T: A) (226). Whereas

8-oxoG, 8-oxodG, and 8-oxodG-containing DNA fragments are

released into the bloodstream and are taken up by the kidneys

and excreted into the urine, 8-oxoG and 8-oxodG are the most

critical types of DNA damage, which have been extensively

studied in tissues and body fluids (239).
5 Review of oxidative stress-related
biomarkers for early prediction of BPD

We thoroughly searched the PubMed database for published

clinical studies encompassing the neonatal (birth-1 month) up to

2023. Our search strategy incorporated medical subject headings

(MeSH headings) and free-text terms associated with “BPD”,

“lipid peroxidation”, “protein oxidative damage”, “nucleic acid

oxidative damage”, and representative biomarkers. Our analysis

was centered on identifying biomarkers applicable in clinical

settings to forecast the progression of BPD. In total, we reviewed

and summarized 37 clinical studies, which are detailed in

Supplementary Table S1.

The publication dates of the articles ranged from 1988 to 2023

and involved 15 countries. Predominantly, studies were conducted

in the USA (n = 11) and Finland (n = 4). The study subjects

included premature and full-term infants, with sample sizes

ranging from 19 to 253. The most common sample types used in
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FIGURE 3

Mechanisms of DNA oxidation and the formation of 8-oxodG and 8-oHdG.
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the research were urine-derived (30.77%), blood-derived (42.31%),

and respiratory-derived (26.92%) samples, including BALF,

exhaled breath condensate (EBC), tracheal aspirates (TA),

erythrocytes, cord, serum, blood, plasma, and urine. Among these,

urine (30.77%), plasma (17.31%), and TA (17.31%) were the most

frequently studied sample types, as shown in Figure 4A.

Our analysis reveals that biomarkers of lipid peroxidation were the

most investigated assays, followed by antioxidant systems, protein

oxidation, and nucleic acid oxidation. Notably, F2-isoPs (n= 9), MDA

(n= 7), and 8-OHdG (n = 7) emerged as the most studied biomarkers,

as illustrated in Figure 4B. We also elucidated the correlations between

the antioxidant system, lipid peroxidation, protein oxidative damage,

nucleic acid oxidative damage, and the development of BPD in

Supplementary Table S1. Additionally, the accuracy of biomarkers

associated with the antioxidant system, lipid peroxidation, and

oxidative damage to proteins is depicted in Figure 4B. However,

despite F2-isoPs and MDA being the two most extensively studied

biomarkers of oxidative stress in these articles, only 33.3% and 12.5%

of articles reported their predictive capability for BPD, respectively.

The darkest color blocks in Figure 4B indicate that the

biomarkers can predict the development of BPD; darker color

blocks indicate that the biomarkers show differences between

premature infants and control groups or between different

treatment groups but cannot predict the development of BPD;

the lightest color blocks indicate that the biomarkers cannot

predict the development of BPD.
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Among the nine studies investigating F2-isoPs levels and

their association with BPD, only two suggested that elevated

plasma F2-isoPs levels can predict adverse outcomes in

preterm infants (240, 241). One study indicated a correlation

between increased F2-isoPs levels and a more minor

gestational age (36). However, the remaining six reports

concluded that F2-isoPs levels cannot predict the development

of BPD in preterm infants (40, 242–246). Notably, two studies

also examined the levels of other lipid peroxidation products,

such as isofurans. They indicated that isofurans may exhibit

more robust predictive capabilities, potentially emerging as the

optimal biomarker for lipid peroxidation (40, 245).

Considering the mechanism of lipid peroxidation, IsoFs may

be more suitable than F2-isoPs as a lipid peroxidation

metabolite for predicting BPD due to their specificity as a

biomarker generated in the presence of increased oxygen

concentration. Nonetheless, a limited number of studies

investigating isofuran levels and their correlation with BPD

emphasize the need for further research in this area (40, 245).

Seven studies have assessed MDA levels as a secondary product

of lipid peroxidation. Among them, three reported that MDA levels

could not predict BPD (135, 247, 248) and the other three showed

that higher MDA concentrations are associated with gestational age

(33, 35) or lower body weights (32). Only Weinberger et al.

reported a correlation between elevated urinary MDA

measurements and the risk for oxidative respiratory distress (249).
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FIGURE 4

Summary of the source of samples (A) and the correlation of oxidative stress-related biomarkers with BPD (B).

Li et al. 10.3389/fped.2024.1343870
In contrast, elevated levels of 8-OHdG have been consistently

associated with the clinical outcome of BPD across studies,

suggesting that 8-OHdG could serve as a reliable biomarker for

predicting BPD (37–40, 245, 250–252). Joung et al.

demonstrated that the 8-OHdG values in “classic” BPD on the

third day were higher than those of “atypical” BPD.

Furthermore, 8-OHdG levels on the seventh day were an

independent risk factor for developing moderate/severe BPD
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(250). Hsiao et al. reported higher 8-OHdG levels in serum and

tracheal aspirates (TA) in the BPD group on the 1st day after

birth (p < 0.05) and persistently 8-OHdG levels increased in TA

fluid on the 28th day of life in the BPD group (p < 0.05)

compared to the non-BPD group (37). Moreover, Hsiao et al.

also suggested that urine 8-OHdG concentrations from days 14

to 28 may be practical non-invasive predictors of BPD

development in preterm infants (39).
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In a prospective cohort study, Vento et al. found that extremely

preterm neonates receiving antenatal steroids had decreased

8-OHdG levels accompanied by increased antioxidant enzyme

activity, lower ortho-tyrosine levels, and a lower incidence of BPD

compared to those not receiving steroids (252). Tokuriki et al.

demonstrated that urinary levels of 8-OHdG during the early

postnatal period correlated with the subsequent development of

BPD. In contrast, urinary levels of advanced oxidative protein

products (AOPP) and Nϵ-(hexanoyl) lysine showed no such

correlation (251), suggesting that 8-OHdG may be preferable to

protein oxidation products as a predictor of oxidative stress

biomarkers for BPD.

DNA oxidative stress biomarkers may offer greater accuracy in

predicting the development of BPD for several reasons. (i) Location:

Lipids and proteins in the cytoplasm or cell membrane are usually

more susceptible to OS, significantly exacerbated by oxygen therapy

(83, 201). In contrast, DNA, located in the nucleus and protected by

the nuclear membrane, is less vulnerable to the effects of ROS. (ii)

Biochemical properties: Lipids and proteins contain a large number of

easily oxidizable groups, such as unsaturated fatty acids (201, 207,

253) and amino acids (207, 220), making them more prone to

oxidation under hyperoxia. (iii) Metabolic activity: Lipids and proteins

participate in metabolic processes that generate ROS and other

oxidative substances, leading to oxidative damage. In contrast, DNA

does not directly engage in metabolic reactions, reducing its exposure

to oxidation (201). (iv) Biological importance: DNA integrity is crucial

for proper cellular function and overall health, as it stores and

transmits genetic information. Cells have evolved defense

mechanisms, including enzymes and antioxidant systems, to repair

and protect DNA from oxidative damage, whereas lipids and proteins

lack comparable protective mechanisms (254). (v) Reflecting oxidative

damage directly: DNA molecules have a more straightforward

structure than lipids and proteins, making them more directly

reflective of oxidative damage (201). (vi) Wide range of applications:

8-OHdG emerges as a pivotal biomarker with promising applications

in disease research, clinical diagnostics, and environmental health

assessments (255–257). However, its lack of tissue and diagnostic

specificity poses challenges, necessitating consideration of other

relevant factors when interpreting experimental results to accurately

assess the extent of oxidative damage (243).

Based on our comprehensive review of clinical studies, it is evident

that the relationship between many reported biomarkers and the

outcome of BPD is ambiguous. Only 8-OHdG shows the most

promise as an oxidative damage biomarker for predicting BPD and

complications related to prematurity, and the relevant information is

described in Table 1. However, its integration into clinical practice

has been hindered by several factors, including the need for

standardized methods and reference ranges and the absence of

validation through prospective trials (258). Selecting sample sources

and assays is crucial in obtaining convenient and reliable biomarkers

for early BPD prognostic prediction in clinical settings. Five of the

seven studies on 8-OHdG utilized urine samples (39, 40, 250–252),

while the remaining two collected serum and tracheal aspirates (37,

38). The collection and processing of urine samples are relatively

straightforward, usually involving minimal pre-processing steps. In

contrast, collecting blood and BALF may compromise the integrity
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of the skin and mucosa, thereby raising the risk of pain and

infection in premature infants (39). Consequently, urine samples are

convenient for large-scale research and clinical monitoring purposes.

Urinary 8-OHdG is generally regarded as a reflection of systemic

oxidative stress, thereby serving as an indicator for assessing overall

oxidative stress status (256). Rigorous analytical methods and quality

control measures are imperative to ensure a reliable assessment of

8-OHdG levels, providing researchers and clinicians with a basis for

optimizing neonatal care. Five of the seven studies investigating

8-OHdG utilized ELISA assay kits for measurement (37–39,

250, 251), while the remaining two employed mass spectrometry (40,

252). Although ELISA assays have been calibrated for measurements

and proven helpful in assessing the impact on BPD development and

progression, there remains a necessity for more sensitive, specific, and

clinically validated laboratory detection methods. Techniques like

HPLC-MS and LC-MS/MS hold promise in obtaining urinary

8-OHdG biomarkers from urine samples, thereby enhancing the

accuracy and reliability of BPD prediction (256, 259).

Since the levels of oxidative stress-induced biomarkers can

reflect the severity of BPD, their levels can guide clinical

management decisions for premature infants, thereby reducing

oxidative stress-related diseases and providing valuable insights

into the treatment of oxidative stress-related neonatal diseases

(260). Currently, various strategies have been proposed for treating

neonatal BPD, including protective ventilation, surfactant therapy,

corticosteroids, caffeine, vitamin A, nitric oxide, and nutritional

interventions (261). Therefore, assessing the relationship between

these strategies and oxidative stress levels or BPD incidence is

critical. Ten studies have described the changes in oxidative stress

biomarkers following drug administration (252, 262), inhaled

nitric oxide therapy (34, 263), exposure to different oxygen

concentrations (40, 245, 246), and nutritional interventions (243,

248, 264), and their relationship with the outcome of BPD.

Reports suggest that using corticosteroids improves the

oxidative-reductive balance, resulting in increased antioxidant

enzyme activity, decreased 8-OHdG levels, lower ortho-tyrosine,

and a reduced incidence of BPD (252). Although no significant

differences in clinical outcomes were observed between control

and beclomethasone-treated infants, bronchoalveolar lining fluid

analysis revealed evidence of phospholipid peroxidation in

control infants compared to beclomethasone-treated infants on

day 2 of life (262).

There were no significant differences in concentrations of 3-

nitrotyrosine and carbonylation between control and inhaled

nitric oxide-treated infants (34, 263).

A study conducted in Spain in 2009 showed that urinary

markers of oxidative stress were significantly elevated in infants

receiving 90% oxygen compared to those receiving 30% oxygen in

the first week after birth. Additionally, GSSG levels on day three

and urinary isofuran, o-tyrosine, and 8-oxodG levels on day seven

significantly correlated with chronic lung disease development.

However, the groups had no differences in urinary F2-isoPs levels

(40). Furthermore, another study from Spain in 2015 reported no

differences in oxidative stress biomarkers, mortality, or major

perinatal morbidities between infants receiving 30% oxygen and

those receiving 60%–65% oxygen. Nonetheless, isofurans detected
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TABLE 1 Summary of studies reporting on 8-oHdG in BPD.

Country of
publication

Publication
date

Purpose of study Subjects Sample
type

Sample
collection
time

Test indicators 8-OHdG concentrations Cite

Korea 2011 Compare urinary inflammatory and
oxidative stress markers between BPD
groups

60 Preterm infants <30
weeks gestation or <1,250 g
(24 “atypical” BPD and 36
‘classic’ BPD)

Urine Days 1, 3 and 7 of
life

Enzyme-linked
immunosorbent assay
(JalCA, Fukuroi, Shizuoka,
Japan)

No/mild BPD group (1.6 ng/mg) vs. moderate/severe
group (2.8 ng/mg) on Day 7 after birth, p = 0.002.

(250)

Japan 2015 To evaluate carboxyhemoglobin (CO-
Hb) levels as a biomarker for
predicting BPD development and
severity

25 Preterm infants <33
weeks gestation and/or
<1,500 g (16 No-or-mild
BPD and 9 Moderate-to-
severe BPD)

Urine Postnatal days 5–8
and 26–29

Enzyme-linked
immunosorbent assay
(JalCA, Fukuroi, Shizuoka,
Japan)

The moderate-to-severe BPD group [18.8
(13.1–86.6) ng/mg] vs. the no-or-mild BPD group
[11.9 (3.6–26.6) ng/mg] on Day 5–8 after birth, p < 0.05.

(251)

China 2017 Compare changes between IL-6 and
oxidative stress marker with 8-OHdG
in VLBW preterm infants following
development of BPD.

80 VLBW preterm infants
(26 BPD and 54 Non-BPD)

Serum Day 1 and Day 28
after birth

Enzyme-linked
immunosorbent assay
(JalCA, Fukuroi, Shizuoka,
Japan)

The moderate-to-severe BPD group [19.6
(9.8–176.8) ng/ml] vs. the non-BPD group [18.8
(5.9–50.6) ng/ml] on Day 1 after birth, p < 0.05; the
moderate-to-severe BPD group [39.5 (11.3–115.4) ng/
ml] vs. the non-BPD group [17.3 (3.8–51.6) ng/ml] on
Day 28 after birth, p < 0.05.

(37)

China 2021 Examine Hsp-70 and 8-OHdG from
TA in VLBW preterm infants to
predict BPD

109 VLBW preterm infants
(32 BPD and 77 Non-BPD)

TA Day 1 and Day 28 Enzyme-linked
immunosorbent assay
(JalCA, Fukuroi, Shizuoka,
Japan)

The BPD group (20.9 ± 8.9 ng/mg) vs. the non-BPD
group (14.8 ± 10.4 ng/mg) on Day 1 after birth, p < 0.05;
the BPD group (42.0 ± 28.5 ng/mg) vs. the non-BPD
group (14.1 ± 10.6 ng/mg) on Day 28 after birth, p < 0.05.

(38)

China 2022 Predict BPD in preterm infants using
urinary 8-OHdG and NT-proBNP

165 Preterm infants <33
weeks gestation or <1,500 g
(70 BPD and 95 Non-BPD)

Urine Days 7, 14, 21 and
28 after birth

Enzyme-linked
immunosorbent assay
(Uscn Life Science Inc.,
Wuhan, P.R. China)

The BPD group (19.34 ± 2.24 ng/mg) vs. the non-BPD
group (17.63 ± 1.59 ng/mg) on Day 7 after birth, p < 0.05;
the BPD group (26.48 ± 4.92 ng/mg) vs. the non-BPD
group (20.24 ± 2.93 ng/mg) on Day 14 after birth,
p < 0.05; the BPD group (27.55 ± 3.66 ng/mg) vs. the
non-BPD group (20.86 ± 3.28 ng/mg) on Day 21 after
birth, p < 0.05; the BPD group (23.95 ± 4.06 ng/mg) vs.
the non-BPD group (17.21 ± 2.75 ng/mg) on Day 28
after birth, p < 0.05.

(39)

Spain 2009 To study the association between
antenatal steroids and antioxidant
activity, and their impact on postnatal
oxidative stress

57 Preterm infants <28
weeks gestation (37 receiving
antenatal steroids and 20 not
receiving antenatal steroids)

Urine At birth Mass spectrometry
(8OHdG/1dG ratio)

Group receiving antenatal steroids (6.73 ± 2.18) vs. group
not receiving antenatal steroids (9.53 ± 3.83) at birth,
p < 0.01

(252)

Spain 2009 Reduce adverse pulmonary outcomes,
oxidative stress, and inflammation in
infants of 24–28 weeks of gestation

78 Preterm infants of 24–28
weeks gestation (37 infants
receiving 30% oxygen and
41 infants receiving 90%
oxygen)

Urine Days 1 and 7 of
life

Mass spectrometry
(8OHdG/2dG ratio)

Group receiving 30% oxygen (about 12.5) vs. group
receiving 90% oxygen (about 19) on Day 1 after birth,
p < 0.01; group receiving 30% oxygen (about 24) vs.
group receiving 90% oxygen (about 32) on Day 7 after
birth, p < 0.01.

(40)
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in the first 4 days after birth were correlated with the later

development of BPD compared to F2-isoPs, F4-NPs, and

NeuroFurans (245). However, a recent study from India indicated

that in premature infants receiving room air vs. 100% oxygen

therapy within 4 h after birth, F2-isoPs levels showed no

significant difference in mortality or BPD (246).

Unfortunately, nutritional supplementation does not reduce

the incidence of BPD significantly. A study from Canada in 2010

suggested that while the LIP + MVP TPN modality may help

protect against the oxidant load associated with oxygen

supplementation, its effectiveness in reducing the incidence of

BPD remains unclear (243). Another study from Turkey in

2019 demonstrated that total antioxidant capacity was higher

in the SMOFlipid group compared with the ClinOleic group

on day 7. Although BPD was lower in the SMOFlipid group

than in the ClinOleic group, this finding was non-significant

(264). Similarly, another study from Turkey in 2019 indicated

that FMOS and OO/SO lipid emulsions had similar effects on

lipid peroxidation on the 28th day of life and short-term

morbidities such as BPD (248).
6 Conclusions

We have been grappling with BPD since Northway first

outlined it in 1967, spanning over 60 years. BPD stands out as

the most prevalent chronic lung disease affecting premature

infants, with a solid correlation to significant morbidity and

mortality. The pathogenesis of BPD is complex, primarily

characterized by increased exposure to oxidative stress and

immature antioxidant systems, ultimately resulting in

abnormal pulmonary and vascular growth. Oxidative stress

triggers oxidative damage to lipids, proteins, and nucleic acids.

Numerous studies have shown elevated levels of oxidative

stress markers in newborns who develop BPD. Thus,

monitoring these markers in premature infants helps predict

the severity of BPD and evaluate the effectiveness of

therapeutic interventions.

With advancements in medical care, various approaches,

including pulmonary surfactants, vitamin A, vitamin E,

vitamin D, caffeine, and nutritional interventions, have been

utilized in the clinical management of BPD. However, the

efficacy and safety of some of these methods remain

contentious and necessitate further evaluation. Considering the

pivotal role of oxidative stress in BPD pathogenesis,

interpreting clinical treatment strategies from an antioxidant

perspective is justifiable.

Furthermore, we analyzed 37 clinical studies on oxidative

stress markers to investigate the relationship between lipid

peroxidation, protein oxidation, oxidative DNA damage, and

the outcome of BPD in newborns. 8-OHdG is the most

informative among these biomarkers, elucidating the disease
Frontiers in Pediatrics 14
severity and enabling personalized precision treatment for

affected infants.

Overall, our review contributes to a deeper understanding of

BPD pathogenesis stemming from continuous hyperoxia

exposure during treatment. It sheds light on the mechanisms

underlying the antioxidant aspects of clinical BPD management.

As pathogenesis is not fully understood, it is promising to

explore new evidence related to oxidative stress and the

pathogenesis of BPD from the perspective of microbiomics,

metabolomics, and proteomics (265).
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