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dyskinesia in a Slovak family: a
case report
Zuzana Kolkova1, Peter Durdik2,3*, Veronika Holubekova1,
Anna Durdikova2,3, Milos Jesenak2,3,4,5 and Peter Banovcin2,3

1Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava,
Martin, Slovakia, 2Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius
University in Bratislava, Martin, Slovakia, 3Department of Pediatrics, University Hospital Martin, Martin,
Slovakia, 4Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin,
Comenius University in Bratislava, University Hospital in Martin, Martin, Slovakia, 5Department of Clinical
Immunology and Allergology, University Hospital in Martin, Martin, Slovakia
Background: The mutations in the RPGR (retinitis pigmentosa GTPase regulator)
gene are the most common cause of X-linked retinitis pigmentosa (XLRP), a rare
genetic disorder affecting the photoreceptor cells in the retina. Several reported
cases identified this gene as a genetic link between retinitis pigmentosa (RP) and
primary ciliary dyskinesia (PCD), characterised by impaired ciliary function
predominantly in the respiratory tract. Since different mutations in the same
gene can result in various clinical manifestations, it is important to describe a
correlation between the gene variant and the observed phenotype.
Methods: Two young brothers from a non-consanguineous Slovak family with
diagnosed retinal dystrophy and recurrent respiratory infections were
examined. Suspected PCD was diagnosed based on a PICADAR questionnaire,
nasal nitric oxide analysis, transmission electron microscopy, high-speed video
microscopy analysis, and genetic testing.
Results: We identified a novel frameshift RPGR mutation NM_001034853:
c.309_310insA, p.Glu104Argfs*12, resulting in a complex X-linked phenotype
combining PCD and RP. In our patients, this mutation was associated with
normal ultrastructure of respiratory cilia, reduced ciliary epithelium, more
aciliary respiratory epithelium, shorter cilia, and uncoordinated beating with a
frequency at a lower limit of normal beating, explaining the clinical
manifestation of PCD in our patients.
Conclusion: The identified novel pathogenic mutation in the RPGR gene
expands the spectrum of genetic variants associated with the X-linked PCD
phenotype overlapping with RP, highlighting the diversity of mutations
contributing to the disorder. The described genotype–phenotype correlation
can be useful in clinical practice to recognise a broader spectrum of PCD
phenotypes as well as for future research focused on the genetic basis of
PCD, gene interactions, the pathways implicated in PCD pathogenesis, and the
role of RPGR protein for the proper functioning of cilia in various tissues
throughout the body.
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1 Introduction

Primary ciliary dyskinesia (PCD) is a rare, clinically and

genetically heterogeneous multisystem disorder characterised by

recurrent respiratory infections, chronic inflammation,

bronchiectasis, sinusitis, and impaired fertility. The cause of the

respiratory conditions is ineffective mucociliary clearance resulting

from defects in the structure, assembly, and function of motile cilia

as a result of pathogenic mutations in more than 50 PCD relevant

genes described up to now (1). Since the structure of motile and

nodal cilia is similar, gene mutations negatively affect the motility

and function of nodal cilia during embryogenesis, leading to

laterality defects associated with PCD (2). PCD is typically inherited

in an autosomal recessive manner, but rare cases of X-linked

inheritance have also been described, especially in a syndromic

phenotype linked to retinitis pigmentosa (3).

Retinitis pigmentosa (RP) is a hereditary disease characterised

by progressive retinal degeneration caused by cell death of

photoreceptors. Patients suffer from slowly progressing night

blindness, loss of peripheral vision, and even loss of central vision.

RP can be inherited in an autosomal dominant, recessive, X-linked,

and even mitochondrial pattern (4). More than 70% of X-linked RP

(XLRP) and about 10%–15% of all RP cases are caused by mutations

in the RPGR gene that encodes the retinitis pigmentosa GTPase

regulator located within the connecting cilium between the inner

and outer segments of the human rod and cone cells (5, 6). The

function of the RPGR protein is not completely clear, but it is

proposed that, together with its interacting proteins, it plays an

important role in the regulation of protein transport across the

connecting cilium, and mutations causing its dysfunction can lead

to photoreceptor cell death (7, 8). In addition to the retina, RPGR

isoforms resulting from alternative transcription and post-

translational modifications were also detected in other tissues, such

as the lung, kidney, and brain (9–11). Based on the role of the RPGR

protein in intraflagellar transport, it can be assumed that mutations

negatively affect the assembly and viability of motile and immotile

cilia. Several cases of XLRP associated with recurrent respiratory

infections and impaired hearing have been observed (3, 12–18).

Here, we describe a case of two brothers with complex X-linked

clinical phenotypes combining PCD with RP, two rare genetic

disorders linked by a novel hemizygous frameshift mutation in the

RPGR gene. This case report contributes to the suggestion that

RPGR protein plays an essential role in ciliary function in the retina

and other tissues. Understanding the relationship between RPGR

mutations and PCD is important for improving diagnosis, treatment,

and genetic counselling for families affected by these conditions.
2 Case report

2.1 Case presentation

We examined two brothers, a 13-year-old (P1) and a 10-year-

old (P2), from a non-consanguineous Slovak family in the national

PCD centre. They were recruited to identify suspicious PCD due to

retinal dystrophy, recurrent mostly upper respiratory infections,
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almost recurrent rhinosinusitis, and bronchiectasis of unknown

origin on computed tomography (CT) examination in the case of

the older boy. The routine clinical examinations excluded the

usual causes of recurrent respiratory infections, including

developmental congenital defects, allergic diseases, primary

immunodeficiency, gastroesophageal reflux disease, and

otorhinolaryngological causes (polyps, adenoid vegetation). Cystic

fibrosis was excluded by negative newborn screening provided as

standard in our country (the determination of immunoreactive

trypsinogen in a dry drop of blood) and by demonstration of

normal sweat tests. The PCD diagnostic algorithm was based on

the ERS (European Respiratory Society) guidelines (19).

2.1.1 Clinical features
Both boys were term-birth babies with no neonatal respiratory

distress and no neonatal rhinitis. There were no congenital heart

defects, hydrocephalus, or laterality defects. A history of multi-

trigger persistent wheezing, recurrent respiratory tract infections,

persistent nasal congestion, and chronic rhinosinusitis was

presented mostly from 1 year of life and worsened after joining the

collective in both boys. The initial retinal degenerative symptoms

started in the older boy (P1) at the age of 5 years with decreased

night vision following the worsening of the mid-peripheral visual

field. The retinal degeneration with visual impairment, RP, was

diagnosed at the age of 8 years by a combination of visual field

tests, visual acuity tests, and fluorescein angiography.

Approximately 1 year later, the bronchiectasis localised in the right

middle lobe was confirmed by a high-resolution CT examination.

At the age of 10 years, the older boy was sent to the national PCD

centre. Neurological examination, hearing, and lung functions were

normal. In the younger brother (P2), deterioration of night vision

occurred at the age of 6 years and was confirmed in the same way

as in the older brother at 7 years. He was sent to the national PCD

centre 1 year later.
2.2 Diagnosis of PCD

2.2.1 PICADAR questionnaire
Patients were interviewed and scored for probable PCD using

the PICADAR questionnaire (20). The PICADAR level for both

patients was three points (two points for term-baby and one

point for chronic rhinosinusitis), which is not significant for

PCD patients.

2.2.2 Nasal nitric oxide analysis
For nasal nitric oxide (nNO), an electrochemical analyser

NIOX VERO (Circassia AB, Uppsala, Sweden) was used. The

measurement was performed under standard conditions in the

laboratory. The sampling rate was 0.3 nL/min, and the ambient

nitric oxide (NO) was 6 ppb. The results were also confirmed by

the breath-hold manoeuvre, and a difference of less than 10%

was considered normal. The examination was graded C

depending on the ERS technical standard (21). The nNO was

249 ppb (74.7 nL/min) on the left nostril and 261 ppb (78.3 nL/

min) on the right nostril in the older patient (P1) and 234 ppb
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(70.2 nL/min) on the left nostril and 252 ppb (75.6 nL/min) on the

right nostril in the younger patient (P2). The measured values were

at the limit of significance for PCD.

2.2.3 Collection of respiratory epithelial cells and
high-speed video microscopy analysis

After 3 weeks of no infection or no relapse of chronic

symptoms, ciliary cells were obtained by brushing the inferior

turbinate using a cytology brush (CytobrushCYTST Changzhou

Shunfeng Plastic Co., LM, China). The samples of ciliated

epithelium were suspended in RPMI 1640 Medium warmed up

to 35°C. The ciliary beat was measured using a digital high-speed

imaging workstation, designed by a team of researchers from

Jessenius Medical Faculty in Martin and the University of Žilina
(both in Slovakia), for the high-speed video microscopy analysis

(HSVMA). A detailed description of this method (Utility Model

Number 6811) (22) has been published in several papers (23–

25). The warmed-up samples were evaluated under an inverted

phase-contrast microscope (Zeiss, Oberkochen, Germany) at ×

400 magnification, and ciliary movement was recorded with a

digital high-speed video (Basler A504KC; Basler AG, Germany)

with a frame rate of 500 Hz. Each microscope slide was

examined within the first 10 min after its preparation, and more

than 10 sequences with the best ciliary kinematics were recorded.

The video sequences were played back frame by frame using the

software application Ciliary Analysis (National Instruments

LabVIEW development environment). The cilia beat frequency

(CBF) was determined by calculating the mean of all recorded

cilia beat cycles, and the cilia beating pattern (CBP) was

evaluated on slow-motion playbacks (up to 10 times slower) and

determined by two independent expert operators. The range of

mean ciliary beat frequency was 5.5–7.5 Hz in both patients,

which represented the lower limit of the normal ciliary

frequency. There was a higher percentage of aciliary respiratory

epithelium, and most of the cilia were shorter (Supplementary

Video S1). The ciliary beat pattern analysis revealed a strong

increase in ciliary bundles beating in an uncoordinated manner

(Supplementary Video S2).
FIGURE 1

(A) Cross section of respiratory cilia. No structural abnormalities were observ
of outer and inner arms are shown. (B) Reduced ciliary epithelium and shor
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2.2.4 Transmission electron microscopy
Respiratory epithelial cells from bronchoscopy or brushing

from the middle nasal turbinate were collected and fixed in 3%

glutaraldehyde. The transmission electron microscopy (TEM)

analysis was performed by certified laboratory CYTOPATHOS,

the centre for ciliary ultrastructure analysis. Our patients did not

reveal ciliary ultrastructure abnormalities, with no changes of

class 1 (Hallmark diagnostic defects) and class 2 defects for the

ultrastructural diagnosis (Figure 1A). Reduced ciliary epithelium,

more aciliary respiratory epithelium, and shorter cilia were

described (Figure 1B).
2.3 Mutational analysis

DNA was isolated from peripheral venous blood samples of

both patients and their parents. In the older boy (P1), genetic

analysis of coding and splicing-relevant regions of 35 genes

associated with PCD was performed by the targeted next

generation sequencing (NGS) method using hybridisation

solution Nextera Flex Pre-enrichment and TruSight One

expanded panel (Illumina, USA) on NextSeq 550 (Illumina,

USA). Illumina bcl2fastq v2.20 and SEQNEXT v5.2.0 (JSI

medical systems) software were used for bioinformatical analysis

with reference genome Homo sapiens GRCh37/hg19 and the

RefSeq database. NGS analysis detected one nucleotide insertion

in exon 4 of the RPGR gene in the hemizygous state,

NM_001034853: c.309_310insA, p.Glu104Argfs*12. Sanger

sequencing was used to verify the detected variant in the patient

and his younger brother, as well as for segregation analysis in the

family. The sequences of primers designed to intron regions were

as follows: forward 5′-GTCCTGGACTACTGTTCATTTT-3′,
reverse 5′-AAGCCACGTTACTGGAATGAG-3′. Sequencing

analysis was performed on the ABI3500 Genetic Analyzer

(Applied Biosystems, USA). The pathogenicity and functional

effect of the identified variant were assessed by the in silico

predictive software MutationTaster (26). The detected variant

was confirmed by Sanger sequencing in the older patient (P1) as
ed by TEM; normal 9 + 2 configuration of microtubules and the presence
ter cilia are described.
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FIGURE 2

Electropherograms showing detected mutation NM_001034853: c.309_310insA, p.Glu104Argfs*12 in the RPGR gene in (A, B) a hemizygous state in
our patients, (C) in a heterozygous state in their mother, and (D) the wild-type allele in their father.

Kolkova et al. 10.3389/fped.2024.1339664
well as in his younger brother (P2) (Figures 2A, B). The segregation

analysis confirmed the maternal origin of the mutation (Figure 2C).

As expected, the father has a wild-type genotype (Figure 2D). The

identified RPGR mutation NM_001034853: c.309_310insA,

p.Glu104Argfs*12 located at the end of exon 4 was not found in

databases ExAC, 1000G, or ClinVar and to the best of our

knowledge, no report with this variant has been published so far.

The consequence of the insertion of nucleotide A within the

coding sequence is a shift in the reading frame and the creation

of a premature stop codon. Based on the prediction in the

MutationTaster program, premature termination of translation
FIGURE 3

Pedigree diagram of the family showing disease segregation. The arrows ind
chart was created in the program QuickPed (28).
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leads to nonsense-mediated decay, and this variant is predicted

to be disease-causing. According to the ACMG (American

College of Medical Genetics and Genomics) guidelines, this

variant is classified as pathogenic (PVS1 and PM2 category) (27).
2.4 Family history

Due to X-linked inheritance, we also analysed other members

of the boys’ family for the presence of typical respiratory

symptoms or visual disturbances typical for RP. On the basis of
icate the patients (P1 and P2) described in this case report. The pedigree
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medical data, a slight visual impairment, myopia, was detected in

the boys’ mother and grandmother without respiratory

symptoms. Subsequently, we searched the complete Slovak PCD

database with a focus on the connection between RP and PCD

and identified five more boys who had an identical mutation in

the RPGR gene (c.309_310insA) and similar clinical features.

Based on the family tree provided by the family, distant kinship

relationships between patients were clarified. The six-generation

pedigree chart is shown in Figure 3. In the diagram, the two

patients described above are marked as VII.1 (P1) and VII.2

(P2). The family members VI.2, VI.3, VI.4, VI.5, and VI.7 were

also examined in the Slovak PCD centre, owing to the presence

of RP and PCD symptoms, by the methods described above. The

complete clinical features and results of the structural and

functional analysis of the respiratory cilia of all affected boys are

summarised in Table 1. From the available medical records, it is

known that affected men in the family (III.4, IV.3, IV.4, IV.8,

IV.9, IV.10, IV.13, IV.10) suffered from night blindness, but the
TABLE 1 Characteristics and results of diagnostic test for PCD in all examine

No. Gender Age at
diagnosis
(years)

Clinical feature PICADAR

n

VII.1
(P1)

Male 10 No perinatal history, no laterality
defects, early onset of chronic
rhinosinusitis, wet cough,
bronchiectasis, retinitis
pigmentosa

3/14

VII.2
(P2)

Male 9 No perinatal history, no laterality
defects, early onset of chronic
rhinosinusitis, wet cough, retinitis
pigmentosa

3/14

VI.5 Male 14 No perinatal history, no laterality
defects, early onset of chronic
rhinosinusitis, recurrent otitis
media and ventilation tubes,
hearing impairment, wet cough,
retinitis pigmentosa

4/14

VI.7 Male 11 No perinatal history, no laterality
defects, early onset of recurrent
otitis media, chronic
rhinosinusitis, retinitis
pigmentosa

4/14

VI.2 Male 15 No perinatal history, no laterality
defects, early onset of recurrent
rhinitis and otitis media with
tubular tubes, hearing
impairment, retinitis pigmentosa

4/14

VI.3 Male 7 No perinatal history, no laterality
defects, early onset of recurrent
rhinitis and otitis media with
tubular tubes, hearing
impairment, lung atelectasis of
right S4, retinitis pigmentosa

6/14

VI.4 Male 5 No perinatal history, no laterality
defects, recurrent rhinitis and
otitis media, retinitis pigmentosa

3/14

nNO, nasal nitric oxide; HSVM, high-speed video microscopy; TEM, transmission elec
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presence of PCD signs is unknown. In female carriers, varying

degrees of myopia were present.
3 Discussion

Both RP and PCD are rare genetic diseases belonging to a very

heterogeneous group of inherited defects in ciliary function called

ciliopathies. RP, a progressive degenerative disorder of the retina, is

caused by the loss of viability and cell death of photoreceptors that

are modified primary cilia with sensory function. Conversely, PCD

is a multisystem disorder of motile cilia characterised by impaired

mucociliary clearance, leading to recurrent respiratory infections.

Since motile cilia are also present outside the airways, patients

often suffer from laterality abnormalities and subfertility. Since

primary and motile cilia share structural features as well as many

proteins necessary for their proper function, it is not surprising

that mutations in some genes influence the function of both
d patients.

nNO
(left/right
ostril in nL/

min)

HSVM—
ciliary

frequency
(Hz)

HSVM—ciliary
pattern

TEM

74.7/78.3 5.5–7.5 Uncoordinated
movement, higher
frequency of aciliary
epithelium and
microcilia

Normal
ultrastructure of
cilia, reduced ciliary
epithelium, shorter
cilia

70.2/75.6 5.5–7.5 Uncoordinated
movement, higher
frequency of aciliary
epithelium and
microcilia

Normal
ultrastructure of
cilia, reduced ciliary
epithelium, shorter
cilia

56.7/51.3 5.0–8.0 Uncoordinated
movement, higher
frequency of aciliary
epithelium and
microcilia

Normal
ultrastructure of
cilia, reduced ciliary
epithelium, shorter
cilia

60.3/58.2 5.0–7.5 Uncoordinated
movement, higher
frequency of aciliary
epithelium and
microcilia

Normal
ultrastructure of
cilia, reduced ciliary
epithelium, shorter
cilia

54.0/50.7 5.5–7.5 Uncoordinated
movement, higher
frequency of aciliary
epithelium

Normal
ultrastructure of
cilia, reduced ciliary
epithelium

26.7/21.9 3.5–6.0 Uncoordinated
movement, higher
frequency of aciliary
epithelium and
microcilia

Normal
ultrastructure of
cilia, reduced ciliary
epithelium, shorter
cilia

18.6/19.5 4.5–7.0 Uncoordinated
movement, higher
frequency of aciliary
epithelium and
microcilia

Normal
ultrastructure of
cilia, reduced ciliary
epithelium, shorter
cilia

tron microscopy.
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types of cilia, leading to syndromic manifestation with overlapping

features of motile and non-motile ciliopathies. This is also the case

of the RPGR gene associated with X-linked RP, but several cases of

RPGR mutations leading to RP with respiratory symptoms have

been published (3, 12, 14–17, 29, 30). This complex interplay

between RPGR mutations, RP, and PCD underscores the

importance of understanding the underlying molecular

mechanisms and potential therapeutic approaches.

PCD is typically inherited in an autosomal recessive manner,

but rare cases with autosomal dominant (31) or X-linked

inheritance have also been described (3, 32, 33). We report the

cases of two brothers with X-linked PCD associated with RP as a

result of a novel frameshift mutation in the RPGR gene. Both

patients were diagnosed with RP and were monitored because of

the early onset of rhinosinusitis, recurrent respiratory infections,

and bronchiectasis in the older brother. None of the boys

suffered from neonatal respiratory distress, congenital heart

defects, or laterality defects. For suspected PCD, they were

examined for nNO measurement, ciliary ultrastructure, CBF, and

PICADAR score. Lastly, genetic testing revealed mutation

c.309_310insA (p.Glu104Argfs*12) located in exon 4 of the

RPGR gene, which has not been found in databases or reported

in the literature so far. The insertion of nucleotide A into the

coding sequence results in a frameshift and premature

termination of translation and subsequently presumably leads to

nonsense-mediated decay. The character of this mutation was

determined to be deleterious and disease-causing, which was also

predicted by in silico analysis. Based on these diagnostic tests, we

were able to confirm PCD diagnosis with X-linked inheritance.

The RPGR gene located on the X chromosome encodes more

than 20 various isoforms resulting from alternative splicing and

post-translational modifications that are tissue-specific (9, 10, 34).

This explains the different levels of these isoforms in different

tissues. There are two major widely expressed isoforms, RPGR1

−19 and RPGRORF, that share exons 1–14 but differ in the C-

terminus. In humans, the RPGRORF isoform is expressed

predominantly in the outer segment of photoreceptors in the

retina and harbours the majority of mutations leading to XLRP

(35). The constitutive RPGR1−19 isoform is encoded by 19 exons

and contains an isoprenylation signal in the C-terminus for its

membrane trafficking and ciliary localisation (36–38). This

isoform was detected, among others, in motile cilia of the

respiratory tract, where it is localised in the transitional zone at

the base of the cilium (10). The presence of defective RPGR

protein in the respiratory cilia explains respiratory symptoms in

RP patients with an RPGR mutation. The function of RPGR

protein is not completely understood, but it is proposed that

together with its interacting partners, it plays an important role

in intraflagellar transport, ensuring protein trafficking in cilia,

thereby maintaining their viability and proper function (39–41).

Therefore, it can be assumed that mutations in the RPGR gene

disrupt ciliary transport and signalling pathways, contributing to

the development of both conditions. Nevertheless, it should be

noted that not all RPGR mutations result in the PCD phenotype,

and the clinical manifestation may vary between individuals.
Frontiers in Pediatrics 06
All examined boys in the family had similar clinical

manifestations of PCD: repeated rhinosinusitis and otitis,

which started in early childhood in some of them. Eye

symptoms such as decreased night vision and the worsening of

the mid-peripheral visual field appeared at a young school age.

In all patients, we observed normal ultrastructure of

respiratory cilia, reduced or even aciliary epithelium, and

shorter cilia. The HSVMA showed beat frequency at the lower

limit of the normal range but an uncoordinated pattern of

movement. McCray et al. reported normal ultrastructure of

respiratory cilia but abnormal ciliary orientation associated

with defects in the CBP in patients with XLRP without PCD

symptoms (42). No abnormalities in ultrastructure were

observed in PCD patients with RPGR mutations either, but in

the case of the c.154G>A mutation, impaired ciliary

orientation and uncoordinated beating of cilia were revealed

(12). Normal ciliary beating and orientation are determined

during ciliogenesis by the correct anchoring and orientation of

the basal body in the plasma membrane, which is controlled

through planar cell polarity (PCP) signalling (43, 44). It is

suggested that RPGR protein is involved in cilia orientation by

interacting with the components of the PCP pathway. Patnaik

et al. demonstrated the role of RPGR and its interacting

proteins (RPGRIP1 and RPGRIP2l) in actin cytoskeleton

arrangement by regulating the stability of components in the

PCP pathway (45). This can be one of the mechanisms

contributing to the ciliopathies caused by RPGR mutations

because the organisation of the actin cytoskeleton is important

for proper ciliogenesis and ciliary orientation of the primary

retinal cilia (40) as well as motile cilia (46).

The segregation analysis showed that the mother of our

patients is a heterozygous carrier of the RPGR mutation

consistent with X-linked inheritance. She suffers from myopia

but has no respiratory symptoms, and PCD tests were negative,

without abnormalities of HSVMA. The manifestation of retinal

dystrophy was also recorded in the maternal grandmother as

well as in other heterozygous carriers in the family. In the

literature, a wide spectrum of visual dysfunction and

abnormalities in the function and structure of photoreceptors

were observed in female carriers, which is probably caused

by mosaicism of inactivated X chromosomes (47, 48).

Theoretically, epigenetic silencing of the X chromosome in the

early stages of embryonic development is random, and the ratio

of inactivated X chromosomes of maternal and paternal origin

is 50:50. However, pathogenic mutations in X-linked genes can

cause skewing of X-inactivation, leading to disproportionality in

the distribution of X chromosomes with mutant alleles (49).

The presence of RP symptoms, but not respiratory symptoms

in the heterozygous mother, can be explained by two

hypotheses. The first one assumes skewing of X chromosome

inactivation in the respiratory cells of females as the result of

preferential selection of wild-type gene alleles in respiratory

cells. Another hypothesis proposes that a small amount of

normal RPGR protein is sufficient for the function of

respiratory cilia (3).
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4 Conclusion

This case report contributes to the assumption that RPGR

mutations disrupt the function of cilia in multiple tissues,

including the retina and respiratory tract, highlighting the

essential role of RPGR protein in ciliary biology. Understanding

the underlying molecular mechanisms can help in the

development of targeted therapies and also improve therapeutic

approaches and genetic counselling. Moreover, the identification

of RPGR mutations in patients with RP and PCD and described

genotype–phenotype correlations have important implications for

clinical practice to recognise a broader spectrum of PCD

phenotypes as well as for future research focused on the genetic

basis of PCD, gene interactions, the pathways implicated in PCD

pathogenesis, and the role of RPGR protein for the proper

functioning of cilia in various tissues throughout the body.
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