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Background: Familial hemophagocytic lymphohistiocytosis (FHLH) is an
inherited life-threatening disease. Five types are identified, with the addition of
congenital immunodeficiency syndromes in which HLH is a typical
manifestation. The literature on this disease is very scarce in the Middle East,
with only a few scattered reports.
Methods: We report detailed demographic, clinical, and genomic data from 28
patients diagnosed with primary and familial HLH over the last decade in
Qatar. An evaluation was performed of allele frequencies of deleterious
variants from 12 primary and familial HLH causative genes on the Qatar
Genome Programme (QGP) cohort of 14,669 Qatari individuals.
Results: The genetic diagnosis was obtained in 15 patients, and four novel
mutations in Perforin 1 (PRF1), UNC13D, LYST, and RAB27A genes were
found. We identified 22,945 low/high/moderate/modifier impact variants
significantly enriched in the QGP in those 12 genes. The variants rs1271079313
in PRF1 and rs753966933 in RAB27A found in our patient cohort were
significantly more prevalent in the QGP compared to the Genome
Aggregation Database (gnomAD) database, with a high carrier frequency in the
Qatari population.
Conclusions: We established the first primary and familial HLH Registry in the
Gulf Region and identified novel possibly pathogenic variants present at higher
frequency in the Qatari population, which could be used for screening
purposes. Raising awareness about primary and familial HLH and implementing
screening activities in the Qatari highly inbred population could stem into more
comprehensive premarital and prenatal evaluations and faster diagnosis.

KEYWORDS
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Abbreviations

CI, confidence interval; CNS, central nervous system; FDR, false discovery rate; FHLH, familial
hemophagocytic lymphohistiocytosis; GATK, the Genome Analysis Toolkit; gnomAD, Genome
Aggregation Database; GRCh38, genome reference consortium human build 38 patch; GS2, Griscelli
syndrome type 2; IBS, identity by state; IRB, institutional review board; QBB, Qatar Biobank; 1KG, 1000
Genomes Project; pLi, loss of function intolerance score; NK, natural killer; OMIM, Online Mendelian
Inheritance in Man; QC, quality control; QGP, Qatar Genome Programme; RVIS, residual variation
intolerance score; PRF1, Perforin 1; STXBP2, syntaxin-binding protein-2.
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Introduction

Hemophagocytic lymphohistiocytosis (HLH) represents a

hyperinflammatory syndrome characterized by reduced cytotoxic

T-cell and natural killer (NK)-cell activity and uncontrolled

aggressive proliferation of cytotoxic lymphocytes, leading to

increasing levels of activated macrophages and inflammatory

cytokines, which target multiple organs including the spleen,

liver, bone marrow, and brain (1).

HLH is classified into primary, familial (FHLH), and secondary

HLH. FHLH is an autosomal recessive rare immunodeficiency with

onset in early childhood defined by mutations in FHL-causing loci,

which render the cytotoxicity pathway ineffective in eradicating

immune stimuli. Five types are identified, with four of the gene

mutations described and discussed in the literature. Locus

9q21.3–22 has been associated with FHLH type 1 [Online

Mendelian Inheritance in Man (OMIM) #267700]; however, the

corresponding gene defect and protein have not been recognized

so far. FHLH types 2–5 are caused by mutations in the perforin

(PRF1, OMIM #603553), UNC13D (OMIM #608898), Syntaxin

11 (STX11, OMIM #603552), and syntaxin-binding protein-2

(STXBP2, OMIM #613101) genes (2, 3).

Additional genetic diseases in which HLH is a typical and

common manifestation (primary HLH) include congenital

immunodeficiency syndromes, such as Griscelli syndrome type

2 (GS2), caused by mutations of RAB27A, Chédiak–Higashi

syndrome, X-linked lymphoproliferative disease, X-linked

immunodeficiency with magnesium defect, interleukin-2-

inducible T-cell kinase deficiency, and Hermansky–Pudlak

syndrome. Acquired or secondary HLH can be triggered by

infections, neoplasia, and autoimmune inflammatory syndromes,

or can be found in the context of metabolic disorders and

immune deficiencies, such as CD27 deficiency, lysinuric protein

intolerance, chronic granulomatous disease, and so on (4).

The onset of the clinical manifestation of primary and familial

HLH usually occurs in the first year of life, with the disease

developing between 1 and 6 months of age or even in utero and

manifesting at birth, and it is invariably fatal if left untreated. The

common clinical findings include fever, hepatosplenomegaly, and

bicytopenia (affecting at least two of three lineages in the

peripheral blood: erythrocytes, leukocytes, and thrombocytes).

Neurologic abnormalities can be isolated or indicate advanced

primary and familial HLH. The diagnosis of primary and familial

HLH is made by either fulfilling the HLH-2004 protocol’s clinical

and laboratory diagnostic criteria, or genetic testing that reveals an

HLH-causing mutation (5). Early diagnosis and prompt and

aggressive initiation of therapy can be life-saving (5).

To our knowledge, the literature on primary and familial

HLH is very scarce in the Middle East and North Africa.

Reports from Israel (6) and Oman (7) have described the

clinical presentation and outcome of 11 and 13 children

diagnosed with FHLH, respectively. The largest case series was

recently published and reported 87 Saudi patients diagnosed

with both familial and secondary HLH between 1995 and 2014:

36% of FHLH patients were found to have a STXBP2 mutation
Frontiers in Pediatrics 02
(8). In another case series, five patients with STX11 mutation

and two patients with PRF1 mutation were described in a

highly consanguineous setting (9).

GS2 (OMIM: 607624), caused by pathogenic variants in the

RAB27A gene, is characterized by partial albinism, variable T

lymphocyte and NK-cell deficiencies, and neurological

impairment, i.e., seizures, strabismus, hemiparesis, ataxia, and

cognitive disorders (10–12).

Al-Sulaiman et al. recently described a founder RAB27A variant

(NM_183235.3:c.244C>T) causing GS2 in highly consanguineous

Qatari families (10). HLH was diagnosed in 33% of the patients

and suspected in an additional 33% of patients who died. Overall,

a relevant phenotypic heterogeneity was found, ranging from

asymptomatic individuals to patients with isolated skin

manifestations or neurological complications and/or HLH (10).

The aims of the present study were as follows: (1) to report on

primary and familial HLH cases in Qatar in the last decade, while

establishing the first Registry in the Gulf Region; and (2) to

investigate the genetic background of the primary and familial

HLH spectrum in the Qatari population, exploring the allele

frequency of the variants in known HLH causative genes in the

context of the Qatar Genome Programme (QGP), which is a

population genome project aiming to sequence the genomes of

the local population (13).
Methods

Detailed demographic, clinical, and genomic data were

retrospectively collected from 28 patients diagnosed with primary

and familial HLH between 2010 and 2022 at the Pediatric

Oncology and Hematology, and Immunology Departments of

Hamad General Hospital and Sidra Medicine (Doha), which is the

only tertiary pediatric care hospital in Qatar. The clinical diagnosis

was made in the presence of molecular confirmation or meeting

five of the following eight criteria: fever; splenomegaly; cytopenia

affecting at least two out of three peripheral blood lineages;

hypertriglyceridemia and/or hypofibrinogenemia; hemophagocytosis

in bone marrow, spleen, or lymph nodes; low or absent NK-cell

activity; hyperferritinemia; or high soluble CD25/interleukin-2

receptor levels.

A total of 15 patients affected by GS2 were previously partially

reported (10).

Clinical exome sequencing was performed on 24 patients at

GeneDx, USA, as previously described (10). Four patients

(patients 3, 4, 6, and 10) received diagnoses based solely on

clinical criteria and did not undergo subsequent genetic testing

confirmation, as detailed in Table 1.

This Registry study was conducted under the ethical

approval of Sidra Medicine Institutional Review Board (IRB)

(protocol no. 1760852).

The QGP study population consisted of 14,669 apparently

healthy adult Qatari individuals who gave consent and were

recruited by the Qatar Biobank (QBB) (13), and who underwent

whole-genome sequencing at Sidra Medicine.
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In the QGP study, only anonymized datasets were accessed and

used for the analysis after obtaining approval from the QBB IRB

(QF-QBB-RES-ACC-00052).
Whole-genome sequencing data

The evaluation of allele frequency of primary and familial HLH

causative genes (PRF1, UNC13D, STX11, STXBP2, SH2D1A, XIAP,

RAB27A, LYST, AP3B1, ITK, MAGT1, and NLRC4) was performed

on the QGP cohort: raw data generated from those samples were

mapped to the human reference genome (genome reference

consortium human build 38 patch, GRCh38) using a Burrow-

Wheeler Aligner (BWA). Joint variant calling was performed using

the Genome Analysis Toolkit (GATK). Quality control (QC) was

performed at different stages of the pipeline to ensure data quality

and consistency. Poor quality samples were removed based on the

low call rate due to poor DNA quality, outlying heterozygosity due

to sample contamination or inbreeding, duplication or relatedness of

samples based on identity by state (IBS), mismatches with external

information, and outlying population ancestry due to population

structure. Variant quality control was performed as previously

described (54). The specific set of variants encompassing primary and

familial HLH causative genes was extracted from the multi-sample

vcf file using bcftools (55) for interrogation of their pathogenic effects

in our population. Genetic variations from those genes were extracted

from the sequencing data and annotated using SnpEff/SnpSift (v4.3t)

(https://pcingola.github.io/SnpEff/), categorizing their impact on gene

function as “high,” “moderate,” “low,” and “modifier.”
Statistical analysis

Fisher’s exact test was applied to identify variants in the 12

known primary and familial HLH causative genes that showed a

statistically different enrichment of the alternate allele frequency

between QGP and the Genome Aggregation Database (gnomAD)

release 3.0.

We corrected for multiple testing using the Benjamini–

Hochberg method for controlling the false discovery rate (FDR).

All variants with an adjusted p-value (adjusted) <0.05 were

considered to have differential enrichment.

Analyses were run using R software version 4.0.4.

In addition, we analyzed the level of genic constraints for each

primary and familial HLH gene using two metrics: (1) the loss of

function intolerance score (pLi) (56), measuring from gnomAD

how much a gene is prone to accumulate loss of function

variants; and (2) the residual variation intolerance score (RVIS)

(57), indicating whether a gene has more or less common

functional genetic variation compared to the genome-wide

expectation. A relatively essential or fundamental gene should

have a high intolerance of both loss of function and functional

variation (high pLi, low RVIS). Finally, we explored the

possible protein–protein interactions (PPIs) between primary

and familial HLH genes using the data obtained from the

BioGRID database (https://thebiogrid.org/) (58).
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Results

Based on HLH-2004 criteria, a total of 19 out of 28 (67.8%)

patients were diagnosed with primary and familial HLH, 6

(21.4%) of them in the context of GS2. The detailed clinical data

of the patients are reported in Table 1.

The patients (63.2% female; 36.8% male) had a mean age at the

time of diagnosis of 31.3 and 89.7 months, respectively for isolated

FHLH and primary HLH with underlying GS2. Different

ethnicities were represented: Qatari (n = 5, 26.3%), other non-

Qatari Arabs (n = 7, 36.8%), Asian (n = 6, 31.7%), and Caucasian

(n = 1, 5.2%).

Primary and familial HLH were localized only to the central

nervous system (CNS) in five (26.3%) patients (four in the GS2

group). Overall, CNS involvement (clinical symptoms and/or

radiological findings and/or cerebrospinal fluid pleocytosis/

hemophagocytosis) was identified in eight (44.4%) patients.

Other clinical diagnostic criteria were fever (83.3%);

splenomegaly (74%; spleen >3 cm below costal margin); cytopenia

>2 lineages (72.2%; hemoglobin <9 g/dl, absolute neutrophil

count <100/µl, platelets < 100,000/µl); hypertriglyceridemia and/or

hypofibrinogenemia (68.7%); hemophagocytosis in bone marrow,

spleen, or lymph nodes (43.7%); hyperferritinemia (68.7%;

>500 mg/L); and high soluble CD25/interleukin-2 receptor levels

(100%; available only for eight patients). An NK cytotoxicity test

was not performed due to the lack of testing availability in Qatar.

Genetic studies were performed in 15 patients and the

following genes were identified: PRF1 (33.3%), UNC13D (20%),

and RAB27A (40%). LYST was detected in only one (6.6%)

patient. We found four novel mutations not previously described

in PRF1, UNC13D, LYST, and RAB27A (Table 1).

Two patients (patients 8 and 18) presented with isolated CNS

HLH, exhibiting suggestive radiological findings alongside a

positive molecular diagnosis. Isolated CNS HLH is increasingly

recognized as a distinct clinical entity, characterized by chronic

inflammation confined to the CNS and germline mutations in

known primary HLH-associated genes (59).

We also report on 15 GS2 patients: 6 developed primary HLH,

2 of them are alive after hematopoietic stem cell transplantation

(HSCT), and 1 is awaiting the transplant procedure. A total of 11

children carried the founder mutation (NM_183235.3:c.244C > T)

described by Al-Sulaiman et al. (10). Three patients with different

RAB27A mutations died before having access to HSCT. Out of

the 11 GS2 patients with RAB27A Qatari founder mutation,

2 were pre-emptively transplanted before developing any signs

or symptoms of HLH while the others are currently being

closely followed.

The patients were mostly treated with HLH protocols 1994 and

2004, and 7 out of 17 underwent HSCT.

The mortality rate was 42% (one patient was lost to follow-up).

Seven out of eight patients died early after the onset of the disease,

while one died from HSCT-related complications. The mortality

rate for GS2 patients with primary HLH was 50%.

In the QGP cohort, only three variants (rs147035858,

rs1271079313, and rs753966933), all identified in Qatari patients,

were found. The variants rs1271079313 and rs753966933 were
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significantly more frequent in QGP when compared to the gnomAD

database. A total of 19 heterozygous carriers for rs1271079313, and

145 heterozygous carriers and 7 homozygous individuals for

rs753966933 were identified in the QGP cohort (Table 2).

When restricting the analysis to unrelated samples (individuals

not sharing a first- or second-degree relationship with any other

individual in the QGP cohort), 18 primary and familial HLH

gene variants were found at a higher frequency in QGP samples

than in gnomAD samples (OR >1; 95% confidence interval (CI);

adj-p-value <0.05); none of these variants was identified in our

patient cohort (Supplementary Table 1).

The low/high/moderate impact variants significantly enriched

in the QGP vs. gnomAD (adj-p-value <0.05) were 22,945, with

higher values for STXBP2 and LYST (Figure 1).

In addition, we observed that three out of four genes (PRF1,

LYST, and RAB27A) present in our cohort harbored a high level
TABLE 2 Allele frequencies of patients’ variants in Qatar Genome Programm

Gene Variant ID Region gnomA

PRF1 NM_001083116.1:c.50de rs147035858 Qatari C = 0.0002

PRF1 NM_001083116.3:c.893A>G rs1271079313 Qatari C = 0.0000

PRF1 NM_001083116.3:c.658G>A rs776571416 Arab non-Qatari T = 0.0000

PRF1 NM_001083116.3.c.673C>T rs28933973 Arab non-Qatari A = 0.0000

UNC13D NM_199242.3:c.2955-5C>T rs201791093 Asian A = 0.0000
(deletion n
only 1 SN
position)

UNC13D NM_199242.3:c.2346_2349de rs764196809 Caucasian delCCCT =

LYST NM_000081.4:c.281C>T rs777389303 Arab non-Qatari A = 0.0002

RAB27A NM_183235.3:c.400A>G NA Arab non-Qatari not presen
only)

RAB27A NM_183235.3:c.550C>T rs200956636 Arab non-Qatari A = 0.0000

RAB27A NM_183235.3:c.244C>T rs753966933 Qatari A = 0.0000

Freq, frequency; Het, heterozygous; Hom, homozygous.

FIGURE 1

The number of variants with low (green bars), moderate (blue bars) and high
database. Fisher’s exact test was carried out for comparisons between QG
causative genes. Adj-p-value <0.05.
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of genic intolerance (low RVIS, <25%), whereas none of them

showed evidence of pLi (Table 3).

All primary and familial HLH genes found in our cohort did

not display any evidence of physical interaction (PPI) between

each other except for RAB27A with UNC13D (data not shown).
Discussion

The present study reports all cases of primary and familial

HLH diagnosed in Qatar over the last decade and establishes the

first HLH Registry in the Gulf Region.

We found that the majority (72%) of the patients had been

diagnosed in the last 3 years, indicating both increased awareness

of the clinical team and meaningful use of next-generation

sequencing techniques for the routine diagnostic workup. Signs
e and gnomAD.

D Freq QGP Freq Hom.
individuals
in QGP

Het.
Individuals
in QGP

adj-p-
value

371 C = 0.000238598 — — 1

0795 C = 0.000647624 — 19 1.13E-16

07 Not present — — NA

12 Not present — — NA

13
ot found,
P in this

Not present — — NA

0.000108 Not present — — NA

40 Not present — — NA

t (literature Not present — — NA

68 Not present — — NA

16 A = 0.00541959 7 145 2.89E-148

(red bars) impact significantly enriched in the QGP cohort vs. gnomAD
P and gnomAD to identify variants in the 12 known primary and FHLH
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TABLE 3 Genic intolerance scores of the 12 primary and FHLH causative
genes.

Gene pLi RVIS RVIS (%)
PRF1 0 −0.62 17.45

UNC13D 0 0.08 59.44

STX11 0 0.64 83.98

STXBP2 0 0.43 77.29

SH2D1A 0.39 0.06 58

XIAP 0.92 0.02 55.22

RAB27A 0 −0.56 19.31

LYST 0.02 −3.04 0.5

AP3B1 0.62 0.43 77.29

ITK 0 −0.22 37.43

MAGT1 0.96 0.1 61.49

NLRC4 0 −0.6 18.21

Elgaali et al. 10.3389/fped.2024.1326489
and symptoms often appear sequentially or late during the disease

course, rendering the diagnosis difficult; molecular testing has the

advantage of allowing early diagnosis in suspected cases where

not all required clinical criteria are yet fulfilled.

Managing isolated CNS HLH presents significant challenges

due to its elevated mortality and morbidity rates. This may be

due to distinct neuroinflammatory processes triggering isolated

disease manifestation without systemic activation, potentially

influenced by specific genetic factors (60). The patients listed in

Table 1 who had only one diagnostic criterion or exhibited CNS

involvement were the ones who benefited the most from the

early molecular workup. This enabled a timely diagnosis before

the clinical presentation could manifest in its full severity.

In our cohort of mostly Arabic and Asian patients, we described

four novel mutations, previously categorized as of uncertain

significance, in PRF1 (NM_001083116.3:c.893A >G), UNC13D

(NM_199242.3:c2955-20_2955-1del), LYST (NM_000081.4.c281C>T),

and RAB27A (NM_183235.3:c.400A > G), whose recognition

as disease causative will surely help to drive faster diagnosis

and treatment.

In our study, we observed that certain genes related to primary

and familial HLH within our patient cohort showed lower scores in

a measurement called RVIS compared to other genes linked to the

same disease. This suggests a high level of purifying selection

among these genes, except for UNC13D, and explains why the

deleterious variants were found mainly in RAB27A, PRF1, and

LYST. Our findings indicate that three distinct genes within the

studied cohort, namely PRF1, LYST, and RAB27A, manifest a

heightened degree of genic intolerance (the degree to which a gene

can tolerate genetic variation without adversely affecting its

function), as denoted by their low RVIS (which falls under the 25th

percentile of the genomic distribution of all RVIS). This should be

interpreted as a reduced tolerance to genetic variations. However,

noteworthy is the absence of discernible evidence denoting

pronounced intolerance to loss-of-function mutations, as reflected

by the lack of pLi values higher than 0.9 (61) in these three genes.

We can summarize that these genes, classified as highly

sensitive to mutations and genetic changes or “mutation and/or

genic intolerant” by these measures, should be enriched for

variants that lead to genetic diseases compared to genes that are

more tolerant to mutations and classified as “ mutation and
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genic tolerant” (62, 63). More precisely, these genes show

evidence of intolerance to functional variation (RVIS); however,

they appear to be tolerant to putative loss of function variants.

An interpretation is that there are few deleterious effects if these

genes are not expressed due to the presence of loss of function

variants, but the presence of missense variants that alter the

function of these genes is less tolerated in the population due to

their possible pathogenic effects.

Although all the genes are required for the assembly,

exocytosis, and function of cytotoxic granules (64), the majority

of them act independently at different steps of the cytotoxic

degranulation pathway, as indicated by the absence of evident

protein–protein interactions in our data. The lack of interactions

should rule out any hypothesis of epistatic interplay between

these genes. The only exception is represented by RAB27A with

UNC13D, which in fact are both involved in the docking and

priming of the cytotoxic granules (64, 65).

We performed a comprehensive analysis of the variants annotated

that were significantly different between the Qatari population (14,669

whole genomes) and other world populations represented in the

gnomAD v3 dataset (76,156 whole genomes): 22,945 variants

predicted as low/high/moderate impact in the 12 known primary and

familial HLH causative genes had higher allele frequencies in the

Qatari population (Figure 1), confirming recent publications showing

that several rare deleterious variants are more common in the Qatari

population, in line with the high consanguinity rate (54).

Two of our variants of interest (rs1271079313 and rs753966933)

were found to be considerably enriched in the Qatari population.

The RAB27A variant (rs753966933) has already been described as

a founder mutation for Qatar in a recent publication (10), while

the PRF1 variant (rs1271079313) has not reported before and can

be considered a population-enriched variant that drifted to an

elevated allele frequency in Qatar.

The RAB27A variant (rs753966933) was identified in 7

homozygous Qatari individuals and 145 carriers. This possibly

pathogenic variant is considered highly deleterious according to

its combined annotation-dependent depletion (CADD) score

(CADD= 33) (66); to our knowledge, no homozygous individuals

were found in other databases, such as gnomAD and the 1000

Genomes Project (1KG). This observation, coupled with the level

of constraint found in this gene, could highlight a possible

increased burden of deleterious variants, due to endogamy and

founder effects, which are common characteristics of the Qatar

population in RAB27A (54), which ultimately could lead to an

increased prevalence of primary HLH in this population.

No homozygous individuals were identified for the PRF1 variant

(rs1271079313) in the QGP, while 19 carriers were observed.

Our data suggest that these inherited possibly pathogenic variants

should be taken into consideration for premarital or early diagnostic

screenings, which are currently limited in Qatar. They might be

included in the newly developed “QChip1,” a genotyping microarray

including the most common single gene disease pathogenic variants

identified in Qatar that could become a valuable screening tool for

newborns, premarital couples, and patients (67).

We corroborated recently published data describing additional

patients affected by GS2 and characterized by an extremely wide
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spectrum of clinical manifestations, ranging from asymptomatic

individuals to life-threatening HLH (10). The penetrance of the

RAB27A mutation (NM_183235.3:c.244C>T) remains unclear,

especially considering the identification of seven homozygous,

apparently healthy, individuals in the QGP. There is increasing

evidence that partial and combined genetic defects of the

degranulation pathway can predispose to HLH together with

environmental stimulus and/or genetic modifiers (64) and that

several digenic combinations for HLH are also present at some

frequency in healthy populations (68). Further studies are needed to

identify those individuals at high risk of developing HLH, hence

benefitting from preventative treatment. The use of whole exome/

genome sequencing instead of targeted sequencing/genotyping

could help to better understand the combined role of different

genes involved in the granulation pathway and their clinical impact.

We believe that raising awareness about this disease as well as

early consideration of signs and symptoms could lead to a faster

diagnosis, shorten the diagnostic odyssey, prevent fatal outcomes,

and facilitate a rational therapeutic approach, especially with the

advent of gene therapy and gene editing methods. It will also

lead to the identification of new variants, enabling the offering of

various preventative measures and genetic counseling in the

premarital, preconceptional, or prenatal period.
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