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Hyperoxia exposure promotes
endothelial–mesenchymal
transition and inhibits regulatory
T cell function in human
pulmonary microvascular
endothelial cells
Yifan Sun, Chongbing Yan, Yibo Liu, Yating Lin, Bowen Weng,
Xiaohui Gong and Cheng Cai*

Department of Neonatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai, China
Objective: This study aims to investigate the effects of hyperoxia exposure on
TGF-β1-induced endothelial-mesenchymal transition (EndoMT) and regulatory
T cell (Treg)—mediated immunomodulation in human pulmonary microvascular
endothelial cells (HPMECs), which could provide a theoretical basis for further
studies of the pathogenesis of bronchopulmonary dysplasia (BPD).
Methods: A BPD cell model was established by exposing HPMECs to hyperoxia.
Flow cytometry was used to isolate CD4+CD3+CD25+CD127- Tregs from the
peripheral blood samples of preterm infants. HPMECs were divided into four
groups based on whether they were exposed to hyperoxia and/or co-cultured
with Tregs. Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to test
the expression levels of TGF-β1, α-SMA, Foxp3, IL-10, and reactive oxygen
species (ROS).
Results: The results showed that the expression levels of TGF-β1 and α-SMA in
HPMECs increased at 24 h, 48 h, and 72 h of hyperoxia exposure. In the
co-culture group of HPMECs and Tregs, Foxp3 and IL-10 expressions
decreased at 48 h and 72 h of hyperoxia exposure. ROS expression increased in
the hyperoxia group of HPMECs at 24 h, 48 h, and 72 h of hyperoxia exposure,
which were higher than those in the hyperoxia group of HPMECs and Tregs.
Conclusion: These findings suggest that hyperoxia exposure promotes EndoMT
in HMPECs and inhibits the immunosuppressive effect of Tregs. Despite this,
Tregs still seem could protect HPMECs from oxidative stress injury.
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1 Introduction

Bronchopulmonary dysplasia (BPD) is a chronic lung disease (CLD) characterized by

alveolar simplification and abnormal vascular growth following impaired lung

development. It is proven to be associated with morbidity and mortality in preterm

infants and significantly impacts the long-term quality of life in survivors (1).

Hyperoxia exposure is one of the most important risk factors for BPD (2). Although a
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large number of studies have been conducted to investigate the

pathogenesis of BPD, it is not yet fully understood.

Mesenchymal transition plays an important role in tissue

fibrosis. It can promote a significant increase in fibroblasts and a

significant decrease in microvascular density, leading to an

accelerated fibrosis process (3, 4). TGF-β1 is a major driver of

endothelial-to-mesenchymal transition (EndoMT) and epithelial-

mesenchymal transition (EMT) and plays a crucial part in

chronic obstructive pulmonary disease (COPD) and pulmonary

fibrosis (4, 5). It was found that hyperoxia exposure in the BPD

rat model induced EMT of alveolar epithelial cells (6, 7).

However, the mechanism of EndoMT in the pathogenesis of

BPD under hyperoxia exposure is unclear.

Moreover, it has been reported that the numbers of regulatory

cells (Tregs) in the cord blood of BPD neonates and non-BPD

neonates were significantly different, and the numbers of Tregs

in the peripheral blood of BPD neonates changed dynamically

during the disease process (8, 9). Treg is a subpopulation of

CD4+ T cells with significant immunosuppressive effects that can

suppress inflammation and autoimmune responses through the

release of anti-inflammatory cytokines such as IL-10 (10).

FOXP3 is one of the key transcription factors of Treg and is

crucial for the immunosuppressive function of Treg (10, 11). The

imbalance between anti-inflammatory and pro-inflammatory

immune responses mediated by Tregs and Th17 has been

reported to be related to the progression of COPD (10, 12).

Based on these findings, we hypothesized that the effects of

hyperoxia exposure on EndoMT and Treg—mediated

immunomodulation play important roles in the development of

BPD. In this study, the human pulmonary microvascular

endothelial cells (HPMECs) model exposed to hyperoxia was

established to explore the function of EndoMT and Tregs in BPD,

which could provide a theoretical basis for further studies of the

molecular mechanism of BPD induced by hyperoxia exposure.
TABLE 1 Groups distribution.
2 Methods

2.1 Participants and sample collection

The clinical data of preterm infants who were admitted to the

Neonatology Department of Shanghai Children’s Hospital in

October 2022 was collected. Inclusion criteria: (1) Gestational

age (GA) at birth less than 32 weeks; (2) Hospital admission

within 7 days after birth. Exclusion criteria: (1) Diagnosis of

immunodeficiency disease; (2) Diagnosis of severe congenital

malformations. The peripheral blood samples were collected around

7 days after birth for Treg isolation. The study was approved by the

ethics committee of Shanghai Children’s Hospital (2022RY003) and

informed consent was obtained from all the guardians.

Name Definitions
H1 HPMECs incubated under conditions of 37°C, 5% CO2 and 21% O2

H2 HPMECs incubated under conditions of 37°C, 5% CO2 and 95% O2

HT1 HPMECs and Tregs co-cultured under conditions of 37°C, 5% CO2
and 21% O2

HT2 HPMECs and Tregs co-cultured under conditions of 37°C, 5% CO2
and 95% O2
2.2 Isolation of Tregs

Peripheral blood lymphocytes were isolated using the

MACSprepTMPBMC isolation kit (MiltenyiBiotec, Germany).
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Anti-human CD3 antibody (317318, BioLegend, USA), anti-

human CD4 antibody (300508, BioLegend, USA), anti-human

CD25 antibody (302626, BioLegend, USA) and anti-human

CD127 antibody (351312, BioLegend, USA) were used. The

single-cell suspension was placed in tubes. 1 × 106 cells were

taken from each tube to make a blank tube, a CD3 single-

staining tube, a CD4 single-staining tube, a CD25 single-staining

tube, and a CD127 single-staining tube by adding different

antibodies respectively. Meanwhile, 3 × 107 cells were taken and

all of the antibodies were added to prepare a whole staining tube.

Each tube was centrifuged at 1,500 rpm for 5 min after adding

1 ml PBS. The supernatant was discarded and the 100–200 ul

liquid was left for flow staining. In addition to the Blank tube,

1 ul anti-human CD16/32 antibody (130-059-901, Miltenyi,

Germany) per tube was used to close the non-specific antigen

binding sites on the cell surface. Flow-through antibodies were

added based on the instructions. PBS was used to wash off

unbound antibodies. CD3 + CD4 + CD25 + CD127- Treg

population was sorted by a flow Cytometer (BD Biosciences

FACSCalibur, USA). Tregs were then cultured at appropriate

density in RPMI medium.
2.3 Establish of cell model

HPMECs (ScienCell, USA) were inoculated in six-well plates

and cultured to an amount of approximately 8 × 106 cells. The

concentration of Tregs was adjusted to 1 × 106/ml. HPMECs

were co-cultured with Tregs for two days with a ratio of 10:1.

The incubation conditions were 37°C and 5% CO2. The oxygen

concentration of the hyperoxia groups was set to 95% and the

oxygen concentration of the air groups was set to 21%. HPMECs

were divided into four groups (H1, H2, HT1, and HT2) based on

whether they were exposed to hyperoxia and/or co-cultured with

Tregs (Table 1). The expression of each index was detected at

different time points (24 h, 48 h and 72 h) of hyperoxia exposure.
2.4 Research methods

RNA extraction and quantitative reverse transcription-

polymerase chain reaction (qRT-PCR) was performed to detect

the expressions of genes on the mRNA level. TRIzol reagent

(Invitrogen 15596-026, USA) was used for the extraction of

RNA. The RNA quantity and quality were detected by

NanoDrop 2,000 Spectrophotometer (Thermo Fisher Scientific,
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USA). Reverse transcription reactions were performed by referring

to the instructions of the Reverse Transcription Kit (TaKaRa

RR036B, Japan) to obtain cDNA samples. An ABI 7,500 thermal

cycler (Applied Biosystems, Thermo Fisher Scientific, USA) using

the following 2-step cycling program was performed for PCR:

95°C for 5 min, 40 cycles at 95°C for 15 s, 60°C for 20 s, and

72°C for 40 s. The PCR primers were provided by KeyGEN

BioTECH company (China) (Table 2). GAPDH was used for

normalization. The relative expression levels were analyzed by

the 2−ΔΔCt method.

Enzyme-linked immunosorbent assay (ELISA) was performed

to detect the expressions of genes on protein level. The TGF-β1

assay kit (mlbio: ml022522, China), α-SMA assay kit (mlbio:

ml027532, China), ROS assay kit (KeyGEN BioTECH: KGT010-1,

China), Foxp3 ELISA kit (mlbio: ml027353, China) and IL-10

ELISA kit (mlbio: ml064299, China) were used to test the

expression of each index respectively. Standard wells, blank wells,

and sample wells were set up respectively according to the

instructions. 50 ul samples and 50 ul assay reagent were added to

each well. The liquid in the wells was discarded after incubation

for 30 min at 37°C. The chromogenic agent was added according

to the instructions. Finally, optical density (OD) was measured

sequentially at 450 nm using a Microplate reader (Rayto

RT-6100, USA).
2.5 Statistical analysis

The results are presented as the mean ± standard deviation. All

experiments were repeated 3 times. T-test was used to analyze data

with the GraphPad Prism software (GraphPad, USA). P < 0.05 was

considered statistically significant.
3 Results

3.1 General clinical information

A total of 14 preterm infants were involved in this study,

including 6 male and 8 female infants with a GA of 29.2 ± 1.4

weeks and a Birth weight (BW) of 1,309.3 ± 246.6 g. Five of the

14 preterm infants developed BPD at 36 weeks postmenstrual age.
TABLE 2 Primers for polymerase chain reaction.

Variables Sequence (5′–3′)
TGF-β1 F: CACCCGCGTGCTAATGG

R: ATGCTGTGTGTACTCTGCTTGAACT

α-SMA F: CGTGGCTACTCCTTCGTG

R: TGATGACCTGCCCGTCT

Foxp3 F: CAGAGAAGCAGCGGACACTCAATG

R: AGACTCAGGTTGTGGCGGATGG

IL-10 F: GAGAACCAAGACCCAGACATCAAGG

R: AAGGCATTCTTCACCTGCTCCAC

GAPDH F: AGATCATCAGCAATGCCTCCT

R: TGAGTCCTTCCACGATACCAA
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Peripheral blood samples were collected randomly from 5 of

the 14 preterm infants with a GA of 30.2 ± 1.2 weeks and a BW

of 1,570.0 ± 177.1 g. The 5 infants included 1 male and 4

females. One of the 5 preterm infants developed BPD at 36

weeks postmenstrual age.
3.2 Hyperoxia exposure increases
expressions of TGF-β1 and α-SMA

Compared with those in the H1 group, TGF-β1 and α-SMA

expressions at mRNA and protein levels in the H2 group

increased significantly at 24 h, 48 h, and 72 h of hyperoxia

exposure (Figure 1).
3.3 Isolation of Tregs from peripheral
blood samples

The results of flow cytometry showed that the purity of

monocytes in peripheral blood cells reached 90.5%–98.7%.

CD4 + CD3+ T cells accounted for 40.9%–53.4% of the isolated

monocytes, and CD25 + CD127- Treg accounted for 6.91%–

11.9% of the total CD4 + CD3+ T cells isolated. Some of the

results are shown in Figure 2.
3.4 Hyperoxia exposure decreases
expressions of Foxp3 and Il-10

No significant difference in the expressions of Foxp3 and IL-10

was detected between HT1 group and HT2 group at 24 h of

hyperoxia exposure (Figure 3). However, at 48 h of hyperoxia

exposure, the expressions of Foxp3 and IL-10 were significantly

decreased in the HT2 group compared with those in the HT1

group (Figure 3). At 72 h of hyperoxia exposure, expressions of

Foxp3 in the HT2 group were lower than those in the HT1

group (Figures 3A–C). Compared with that in HT1 group at

72 h of hyperoxia exposure, IL-10 expression at mRNA level in

HT2 group decreased significantly, but its expression at the

protein level showed a decreasing trend which is not statistically

significant (Figures 3C,D).
3.5 Co-culture of HPMEC and Treg inhibits
the increase of ROS expression under
hyperoxia exposure

The results of ELISA showed that at 24 h, 48 h, and 72 h of

hyperoxia exposure, ROS expressions of HPMECs in the H2

group were significantly higher than those in the H1 group

(Figure 4). It was also observed that ROS expressions in HT2

group were significantly lower than that in H2 group at 24 h,

48 h and 72 h of hyperoxia exposure (Figure 4).
frontiersin.org

https://doi.org/10.3389/fped.2024.1295868
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 1

The expressions of TGF-β1 and α-SMA at different time points of hyperoxia exposure. (A,B) At 24 h, 48 h, and 72 h of hyperoxia exposure, TGF-β1
expressions at mRNA levels and protein levels in the H2 group (n= 3) were significantly higher than those in the H1 group (n= 3). (C,D) Compared
with the H1 group (n= 3), α-SMA expressions in the H2 group (n= 3) were increased significantly at mRNA levels and protein levels at 24 h, 48 h,
and 72 h of hyperoxia exposure. Three independent experimental repeats were performed. *P < 0.05, ***P < 0.001. H1, HPMECs incubated under
conditions of 37°C, 5% CO2 and 21% O2; H2, HPMECs incubated under conditions of 37°C, 5% CO2 and 95% O2.
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4 Discussion

In this study, we found that the expressions of EndoMT-related

indicators (TGF-β1 and α-SMA) were significantly increased in the

hyperoxia-exposed HPMEC model. To further explore the

interaction between Tregs and HPMECs under hyperoxia

exposure, HPMECs were co-cultured with CD4 + CD3 + CD25 +

CD127- Tregs which were isolated from the peripheral blood of

preterm infants less than 32 weeks of GA. The findings showed

that the expressions of Foxp3, a key transcription factor of Treg,

and IL-10, an anti-inflammatory cytokine secreted by Treg, were

both decreased after hyperoxia exposure, but Tregs still had a

significant immunosuppressive effect on the increase of ROS

expression induced by hyperoxia exposure.

The pathological feature of the new “BPD” is the retardation of

lung development leading to simplification of alveolar structure

and abnormities of pulmonary vascular development (1).

HPMEC is crucial for the induction of pulmonary

microangiogenesis and has important physiological functions

such as constituting the endothelial barrier and secretion

(13, 14). Pulmonary microvasculature actively promotes alveolar

growth during lung development and helps maintain normal

alveolar structure (13, 14). Our study found that TGF-β1 and

α-SMA expressions increased significantly in the hyperoxia-

exposed HPMEC cell model, confirming that hyperoxia exposure

induces EndoMT in HPMECs. EndoMT can be triggered by

different mechanisms in different cell types and cellular
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physiological or pathological states and involves different

signaling pathways (15). EndoMT is also vital for embryonic

development, malignancy, angiogenesis, inflammation, and

fibrotic diseases (15). It has been reported that the EndoMT in

HPMECs mediated by the TGF-β1/Smad3 pathway, and the

EMT in lung epithelial cells can contribute to the development

of COPD and pulmonary fibrosis (4, 5). It has also been found

that EndoMT promotes pulmonary vascular remodeling in

pulmonary arterial hypertension (15, 16). Therefore, EndoMT in

HPMECs induced by hyperoxia exposure may contribute to the

development of BPD.

T-cell counts and function have been reported to be involved in

the development of BPD-associated lung injury (17–19). In our

study, Tregs co-cultured with HPMECs were isolated from the

peripheral blood of preterm infants with GA less than 32 weeks.

A significant decrease in Foxp3 and IL-10 expressions under

hyperoxia exposure was found, suggesting that hyperoxia

exposure may inhibit the immunomodulatory function of Tregs.

Treg is an important subpopulation of Th cells and is central to

the maintenance of immune homeostasis (20). Foxp3 is a nuclear

transcription factor of Treg, which is essential for Treg to exert

immunosuppressive function (21, 22). Treg secretes

immunosuppressive factors such as IL-10 and TGF-β, which are

involved in a variety of chronic inflammation-mediated lung

diseases (9, 23). Treg has the potential to shift from the anti-

inflammatory phenotype to the pro-inflammatory phenotype

under specific conditions (24). Treg of preterm infants exhibits
frontiersin.org
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FIGURE 2

Isolation of Tregs in peripheral blood of preterm infants using flow cytometry (partial results). (A) Peripheral blood cells accounted for 6.48% of all
peripheral blood components. (B) The proportion of monocytes in peripheral blood cells was 92.2%. (C) The proportion of CD4 +CD3+ T cells in
monocytes was 40.9%. (D) CD25 + CD127- Treg accounted for 6.91% of CD4 +CD3+ T cells.

Sun et al. 10.3389/fped.2024.1295868
distinct phenotypes and quantitative dynamics in the early

postnatal period compared with that of term infants and

adults (9). Lee and his collogues found that an imbalance

between pro-inflammatory and anti-inflammatory immune

responses due to a decrease in Treg numbers is associated with

the development of COPD (25). Misra et al. collected cord blood

samples from newborns at birth and found that Treg expression

was significantly higher in the cord blood of preterm infants

compared with that of term infants. They also found that the

absolute number of Tregs in the cord blood of neonates with

moderate BPD was significantly lower than that of patients with

no or mild BPD (8). The results of Pagel et al. demonstrated that

the number and immunosuppressive function of Tregs were
Frontiers in Pediatrics 05
significantly higher in preterm infants compared with that in

term infants and adults. Their findings also showed that preterm

infants with BPD had a significant increase in Treg frequency

in the early postnatal period, with a peak at 4–10 days

postnatal (9). The above results suggest that Treg plays an

important role in the pathogenesis of BPD in preterm infants,

but the dynamics and molecular mechanisms of Tregs in BPD

are not yet clear, and more studies are needed.

In addition, hyperoxia exposure can lead to the release of ROS,

causing severe lung injury (2, 23, 26). Previous studies have found

that hyperoxia exposure induces oxidative stress in HPMECs,

leading to increased cell edema, dysfunction, impaired survival,

and abnormal growth (27, 28). Preterm infants are poorly tolerant
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FIGURE 3

The expression of Foxp3 and IL-10 at different time points of hyperoxia exposure. (A,B): Foxp3 expressions showed no difference between the HT1
group (n= 3) and HT2 gourp (n= 3) at 24 h of hyperoxia exposure. However, at 48 h and 72 h of hyperoxia exposure, Foxp3 expressions decreased
significantly in the HT2 group (n= 3) compared with those in the HT1 group (n= 3). (C) Although no significant difference was observed between the
HT1 group (n= 3) and HT2 group (n= 3) after hyperoxia exposure for 24 h, IL-10 expressions at mRNA levels decreased significantly in the HT2 group
(n= 3) compared with those in the HT1 group (n= 3) after hyperoxia exposure for 48 h and 72 h. (D) The results of ELISA showed that there was no
difference in IL-10 expressions between the HT1 group (n= 3) and HT2 group (n= 3) at 24 h of hyperoxia exposure. Compared with that in the HT1
group (n= 3), a significant decrease was detected in the HT2 group (n= 3) at 48 h of hyperoxia exposure. The results also showed that compared with
that in the HT1 group, the IL-10 expression in the HT2 group had no significant difference, but a downward trend at 72 h of hyperoxia exposure. Three
independent experimental repeats were performed. *P < 0.05, ***P < 0.001. HT1, HPMECs and Tregs co-cultured under conditions of 37°C, 5% CO2
and 21% O2; HT2, HPMECs and Tregs co-cultured under conditions of 37°C, 5% CO2 and 95% O2.

FIGURE 4

The expression of ROS detected by ELISA at different time points of hyperoxia exposure. (A–C) After hyperoxia exposure for 24 h, 48 h, and 72 h, the
ROS expressions in the H2 group (n= 3) were significantly higher than those in the H1 group (n= 3) and HT2 group (n= 3). Three independent
experimental repeats were performed. ***P < 0.001. H1, HPMECs incubated under conditions of 37°C, 5% CO2 and 21% O2; H2, HPMECs
incubated under conditions of 37°C, 5% CO2 and 95% O2; HT2, HPMECs and Tregs co-cultured under conditions of 37°C, 5% CO2 and 95% O2.
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to hyperoxia and more susceptible to ROS-mediated oxidative stress

damage, which can cause lung injury and developmental impairment

(29). Our findings demonstrated that hyperoxia exposure caused a

significant increase in ROS expression in HPMECs, which was

significantly decreased when HPMECs were co-cultured with
Frontiers in Pediatrics 06
Tregs. These findings indicated that Tregs had a protective effect

on HPMECs under hyperoxia exposure.

In conclusion, these results indicate that hyperoxia exposure

promotes the development of EndoMT in HPMEC and

attenuates the immunosuppressive effect of Tregs, but Tregs
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still seem to have a protective effect against oxidative stress

injury in HPMECs. Therefore, EndoMT and Tregs may play

important roles in hyperoxia-induced lung injury in preterm

infants with BPD. However, the molecular mechanism still

needs further exploration.
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