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Bronchopulmonary dysplasia (BPD) is a complex, multifactorial lung disease
affecting preterm neonates that can result in long-term pulmonary and non-
pulmonary complications. Current therapies mainly focus on symptom
management after the development of BPD, indicating a need for innovative
approaches to predict and identify neonates who would benefit most from
targeted or earlier interventions. Clinical informatics, a subfield of biomedical
informatics, is transforming healthcare by integrating computational methods
with patient data to improve patient outcomes. The application of clinical
informatics to develop and enhance clinical therapies for BPD presents
opportunities by leveraging electronic health record data, applying machine
learning algorithms, and implementing clinical decision support systems. This
review highlights the current barriers and the future potential of clinical
informatics in identifying clinically relevant BPD phenotypes and developing
clinical decision support tools to improve the management of extremely
preterm neonates developing or with established BPD. However, the full
potential of clinical informatics in advancing our understanding of BPD with
the goal of improving patient outcomes cannot be achieved unless we
address current challenges such as data collection, storage, privacy, and
inherent data bias.
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1 Incidence/prevalence of BPD and why it is a
priority for improvement in neonatal care and
outcomes

Bronchopulmonary dysplasia (BPD) is a chronic lung disease affecting extremely

preterm neonates, characterized by disruptions in the development of the alveolar and

vascular compartments leading to long-term pulmonary complications (1–3). Despite

significant progress in neonatal care, the incidence of BPD has remained relatively
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unchanged, particularly with the increasing survival rates of

extremely preterm neonates. To put this problem into perspective,

it is essential to note that BPD represents a substantial burden on

both healthcare systems (e.g., up to $442,468 per neonate in the

first year of life) and affected families (4). The financial healthcare

costs associated with managing BPD, coupled with the emotional

and physical toll it takes on families, underscore the urgency of

addressing this condition.

Interestingly, some studies have suggested that the incidence of

BPD may be decreasing among moderately preterm infants,

possibly due to improved respiratory support techniques, antenatal

steroids, and surfactant replacement therapy (5). However, this

positive trend might not hold true for extremely preterm infants.

This evolving scenario underscores the importance of innovative

approaches as current therapies (e.g., oxygen, bronchodilators, and

glucocorticoids) have limited benefits apart from symptom

management. There is a critical need not only for newer, more

effective therapies for BPD but also for approaches that may

predict and potentially identify neonates who would benefit most

from targeted or earlier interventions (6–8). By diligently tracking

these trends and facilitating personalized care strategies for infants

at risk of BPD, we can better navigate the complex dynamics of

BPD incidence and improve both the prevention and management

of this challenging condition.

Clinical informatics, a rapidly expanding field in biomedical

informatics, is transforming healthcare by integrating

computational methods with patient data to improve outcomes

[(9–11), Figure 1]. This approach has demonstrated significant

success in various areas of healthcare. For instance, clinical

informatics has played a pivotal role in advancing cancer care,
FIGURE 1

Schematic demonstrating disciplines and applications of clinical informatics
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where it facilitates precision medicine by tailoring treatments

based on genetic and clinical data, ultimately leading to more

effective therapies and improved patient outcomes (12–14). In

the realm of critical care medicine, clinical informatics has led to

enhanced patient monitoring systems, predictive analytics for the

early detection of deteriorating conditions, and streamlined

communication among healthcare teams, resulting in better

patient management and reduced mortality rates (15–17).

Within neonatal care, clinical informatics has made substantial

contributions as well. Two notable examples include retinopathy of

prematurity (ROP) screening and neonatal intensive care unit

(NICU) workflow optimization. Clinical informatics has been

instrumental in developing algorithms that analyze retinal images

to identify preterm infants at risk of ROP. By automating this

process, clinicians can make quicker and more accurate decisions

about when to initiate treatment, preventing vision loss in

vulnerable neonates (18–20). Clinical informatics tools have also

been employed to optimize workflows in the NICU. These tools

assist in managing patient data, monitoring vital signs, and

coordinating care among healthcare professionals. Such

optimization not only improves the quality of care but also

reduces the burden on healthcare providers (21–24). These

examples illustrate how clinical informatics is revolutionizing

healthcare by harnessing data-driven approaches to enhance

patient outcomes across a wide range of medical specialties.

In terms of BPD, clinical informatics presents new and exciting

opportunities to enhance clinical therapy. For example, leveraging

electronic health records (EHRs) or continuous vital sign data to

capture nuanced ventilator or physiologic data can aid in

identifying patients for targeted approaches. Machine learning
.
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algorithms can also analyze EHRs to identify complex patterns that

may predict or subclassify BPD or provide prognostic measures for

long-term respiratory outcomes [e.g., need for home oxygen,

tracheostomy (25–28)]. Beyond EHRs, mobile health and clinical

decision support systems are additional clinical informatics tools

that can benefit neonates with BPD.

This review highlights the innovative potential of clinical

informatics in improving the management of BPD, specifically in

predicting extubation success, identifying clinically relevant

phenotypes, and developing clinical decision support tools. While

these informatics tools offer a promising avenue to provide clinicians

with more accurate and timely information, several challenges need

to be addressed. It is important to note that one significant hurdle is

the collection of data from multiple institutions. Collaborative efforts

to aggregate data from various healthcare facilities can enhance the

generalizability of clinical and research findings, enabling a broader

understanding of BPD. Additionally, the need for ethical and secure

storage of data generated by EHRs poses a critical challenge.

Ensuring patient privacy and data security is paramount in clinical

informatics, especially when dealing with sensitive neonatal

information. By proactively addressing these challenges, clinical

informatics can play a pivotal role in advancing our understanding

of BPD in neonates and improving patient outcomes. The

collaboration among institutions and the implementation of robust

data security measures are crucial steps toward harnessing the full

potential of informatics tools in enhancing neonatal care for BPD.
2 The lack of advances in the
therapeutic management of BPD or its
prevention

The limited advances in the treatment and prevention of BPD can

be attributed to several interconnected factors within the field of

neonatal care. Firstly, the multifactorial nature of BPD, which

involves genetic predisposition, developmental lung immaturity, and

various environmental factors, makes it a complex and challenging

condition to address comprehensively (29–31). These intricate

interactions have hindered the development of targeted therapies, as

the underlying mechanisms of BPD remain incompletely understood.

Secondly, the lack of effective interventions to modify the

natural course of BPD in its early stages has contributed to the

stagnation in therapeutic progress (32). Current treatment

options primarily focus on managing symptoms and providing

respiratory support, but there is a significant gap in therapies

that can halt or reverse the disease progression. This limitation is

compounded by the vulnerability of extremely preterm neonates,

who often face multiple health challenges beyond BPD, making it

challenging to prioritize research efforts in this specific area.

Moreover, conducting clinical trials and research involving

neonates, especially extremely preterm infants, presents ethical and

logistical challenges (33). The need to balance the potential

benefits of experimental treatments with the vulnerability of this

patient population has led to cautious and conservative approaches

in clinical research. As a result, the development and testing of

novel therapeutic strategies for BPD have been slow-paced.
Frontiers in Pediatrics 03
The financial burden associated with neonatal care, particularly the

management of BPD, has also played a role in the limited advances in

this field (34). Healthcare systems are often strained by the high costs

of caring for extremely preterm infants, diverting resources away from

research and innovation. This financial constraint has hindered the

pursuit of new therapeutic avenues for BPD.

In summary, the relatively slow progress in treating and preventing

BPD can be attributed to the complexity of the condition, the lack of

effective interventions, ethical considerations in neonatal research,

and financial constraints on healthcare systems. Addressing these

challenges will be crucial in advancing our understanding of BPD

and developing more effective therapies for affected neonates.
3 The role of clinical informatics in
other healthcare fields

Clinical informatics plays a pivotal role in healthcare by

integrating advanced computational methods with patient data to

improve patient outcomes and enhance the overall quality of care.

This rapidly evolving field harnesses the power of data analysis,

EHRs, machine learning, and artificial intelligence (AI) to

transform healthcare delivery across various medical specialties.

This paradigm shift toward data-driven decision-making has

proven particularly effective in oncology, where precision medicine

and personalized treatment plans are revolutionizing cancer care.

In cancer treatment, clinical informatics has emerged as a

game-changer. By analyzing vast datasets encompassing genetic,

genomic, and clinical information, healthcare providers can tailor

treatments to the specific genetic and molecular characteristics of

a patient’s cancer. This approach, known as precision oncology,

has led to the development of targeted therapies that are more

effective and less toxic than traditional chemotherapy. For

example, drugs like Herceptin (trastuzumab) have been successful

in treating breast cancer patients with HER2-positive tumors (35).

Furthermore, clinical informatics aids in the identification of

novel therapeutic targets and the prediction of treatment responses.

Through the analysis of genomic data, researchers can pinpoint

genetic mutations that drive cancer growth and progression. This

knowledge enables the development of new drugs and treatment

strategies that directly target these mutations, such as the use of

tyrosine kinase inhibitors in the treatment of chronic myeloid

leukemia (CML) (36).

Additionally, clinical informatics facilitates the management of

large patient data within oncology departments and research

institutions. EHRs help streamline the recording and retrieval of

patient information, ensuring that healthcare providers have access

to up-to-date and comprehensive data and protocols to make

informed decisions. This not only improves patient care but also aids

in research by providing a wealth of structured data for retrospective

analyses and future clinical trials (37). In summary, clinical

informatics is reshaping the landscape of healthcare, with cancer

treatment serving as a prime example of its transformative potential.

By leveraging data-driven insights, precision medicine, and

streamlined data management, clinical informatics is improving

patient outcomes and transforming the way healthcare is delivered.
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4 Some examples of clinical
informatics used in neonatology

Neonatal nutrition is a critical aspect of the care of

premature infants, who often require specialized feeding plans.

Clinical informatics has helped optimize the nutritional

support provided to these vulnerable neonates. EHRs enable

healthcare providers to monitor and track the nutritional

intake of neonates accurately. These systems allow for the

precise recording of feeding volumes, nutritional supplements,

growth curves, and caloric intake. By analyzing this data,

healthcare teams can tailor nutrition plans to meet the specific

needs of each neonate, ensuring they receive adequate

nourishment to support growth and development (38).

Through data analysis, informatics tools can identify trends in

neonatal growth and nutritional status. If a neonate’s

growth trajectory deviates from the expected, the system

can generate alerts, prompting healthcare providers to assess

and adjust the nutrition plan accordingly. This proactive

approach helps prevent undernutrition and its associated

complications in neonates (39, 40).

Another practical example of clinical informatics in

neonatology involves neonatal infection control, a significant

concern when caring for premature infants. EHRs play a

central role in tracking and monitoring neonatal infections.

These systems allow healthcare providers to record and analyze

data related to infection risk factors, microbiology results,

antibiotic usage, and infection outcomes (41). Informatics tools

can automatically generate alerts when certain infection risk

factors are identified, such as prolonged antibiotic use or

central line-associated bloodstream infections (CLABSIs). These

alerts prompt healthcare teams to take real-time action, such as

adjusting antibiotic regimens or implementing infection control

measures. Additionally, informatics systems facilitate the timely

retrieval of microbiology results, aiding clinicians in diagnosing

and treating infections promptly (42).

Furthermore, clinical informatics supports the surveillance and

reporting of neonatal infection rates. By aggregating and analyzing

infection data from multiple NICUs, informatics tools enable

healthcare professionals to identify trends, outbreaks, and areas

for improvement in infection control practices. This data-driven

approach helps NICUs implement evidence-based strategies to

reduce infection rates and improve neonatal outcomes (43).

The Kaiser Permanente sepsis calculator, which has now been

implemented in some EHRs, has also helped clinicians

calculate risk (44).
5 Exploring the role of clinical
informatics in the prevention and
treatment of BPD is a logical and
forward-thinking endeavor

Clinical informatics has demonstrated its transformative

potential in various healthcare domains, making it prudent to

explore its role in BPD prevention and treatment.
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5.1 The data-driven imperative

Clinical informatics is fundamentally data-driven, harnessing

the power of EHRs, computational methods, and artificial

intelligence to derive meaningful insights from a vast array of

data. In the case of BPD, the substantial amount of data available

in neonatal care can be leveraged to gain a deeper understanding

of the condition. This method can elucidate hidden patterns,

identify risk factors, and inform evidence-based interventions,

potentially modernizing our approach to BPD (45).
5.2 Personalized care for neonates

BPD is not a uniform condition, and neonates exhibit considerable

variability in their response to treatments and outcomes. Clinical

informatics offers the promise of personalized medicine tailored to

the unique needs of each neonate. By analyzing patient-specific data,

including genetic markers, clinical history, and physiological

parameters, informatics tools can help clinicians predict which

neonates are at the highest risk of developing severe BPD and tailor

interventions accordingly. This personalized approach aligns with the

growing trend in medicine toward precision care and could lead to

more effective treatments for BPD (46, 47).
5.3 Tracking trends and outcomes

Clinical informatics enables the systematic monitoring of

trends and outcomes over time. This capability is invaluable in

the context of BPD, where understanding the evolving landscape

of the condition is critical. By analyzing large-scale data from

multiple neonatal care units, informatics tools can help

researchers and clinicians identify shifts in BPD incidence,

potentially pinpoint areas with rising prevalence, and assess the

effectiveness of various interventions. Such insights can guide

healthcare policies and resource allocation, ultimately improving

BPD prevention and management strategies (48–50).
5.4 Clinical decision support

In neonatal care, where rapid interventions can be life-saving,

informatics tools can provide clinicians with timely information and

decision-support algorithms. For example, predictive models

integrated into EHRs can help identify neonates at a high risk of

developing severe BPD, prompting clinicians to implement

preventive measures or consider alternative treatment strategies.

This proactive approach can potentially reduce the severity of BPD,

improve long-term outcomes for affected neonates, and reduce

healthcare costs (51, 52).

In conclusion, exploring the role of clinical informatics in BPD

prevention and treatment is a promising avenue that aligns with the

evolving landscape of healthcare. Leveraging data-driven insights,

personalizing care, tracking trends, and providing clinical decision

support can improve how we approach BPD (Figure 2). The
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FIGURE 2

Application of clinical informatics for BPD.
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subsequent sections of this review paper will delve deeper into the

specific applications and advancements in clinical informatics for

BPD, including definitions, phenotyping, prediction models, and

interventions, contributing to the ongoing goal of mitigating the

impact of BPD on premature infants.
6 BPD redefined: A focus on
phenotypic characteristics

BPD is a heterogeneous condition in terms of its

pathophysiology, clinical presentation, and treatment response.

Hence, there is a compelling rationale for categorizing BPD

patients into distinct subgroups or phenotypes based on their

unique clinical and molecular profiles. Phenotypes are artificial

constructs consisting of observable characteristics or traits of

disease (53). Traditionally, BPD severity has been classified based

on the requirement for oxygen therapy or positive pressure

ventilation at 28 days and/or 36 weeks postmenstrual age (3, 54).

However, these approaches fail to capture the heterogeneity of the

disease and its underlying mechanisms.

Clinical phenotyping offers an alternative strategy for optimizing

therapeutic interventions and refining risk stratification, mirroring

the successful subcategorization of conditions like asthma based

on clinical presentation. This approach enables more precise

guidance for tailored therapies (55). The intricate interplay of

prenatal risk factors, including but not limited to pregnancy-

induced maternal hypertension, intrauterine growth restriction,

genetic predisposition, chorioamnionitis, and other causes of fetal

systemic inflammation, creates a dynamic landscape that

influences the future clinical phenotype of a neonate (56, 57).

These factors, combined with postnatal influences such as

prematurity, birth weight, oxidative stress, mechanical ventilation,

sepsis, the presence of a clinically significant patent ductus

arteriosus, and respiratory microbial dysbiosis, contribute not only

to the development of BPD but also shape the challenges
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clinicians must address. This interplay informs the need for

tailored interventions to meet the unique needs of each neonate (58).

An approach to classifying BPD based on phenotypes holds

considerable clinical implications, such as clinical trial recruitment,

retrospective cohort analysis, outcome studies, and cost analyses (5,

6). Recent studies have applied clustering techniques to describe

BPD phenotypes based on various clinical and molecular features. In

a study of 76 neonates with severe BPD, Wu et al. stratified

phenotypic presentations according to 1) moderate-severe

parenchymal lung disease, 2) pulmonary hypertension, and 3) large

airway disease (59). The authors defined parenchymal lung disease

by scoring severity via chest tomography with angiography.

Specifically, the criteria assessed the existence and intensity of ten

distinct lung radiographic attributes, employing a scale that spans

from 0 to 2. The attributes include hyper-expansion, mosaic

attenuation pattern, intercostal bulging, air cysts, bullae, blebs, cyst

size, triangular subpleural opacities, distortion and thickening of

bronchovascular bundle, consolidation, and a subjective assessment

of overall lung disease severity. Pulmonary hypertension was defined

by having one or more of the following: a systolic pulmonary artery

pressure ≥40 mm Hg, a bidirectional or right-to-left shunt through a

patent ductus arteriosus, or a flattened or bowing interventricular

septum at the end of systole. Large airway disease included

tracheomalacia and/or bronchomalacia documented on

bronchoscopy and/or tracheoscopy by a pediatric otolaryngologist or

pulmonologist. Outcomes were then described according to the three

prespecified phenotypes. Neonates with pulmonary hypertension or

large airway disease phenotypes had higher odds of mortality,

tracheostomy, or pulmonary vasodilator use at discharge when

compared to those classified with parenchymal lung disease (OR 5.4

vs. 5.1 vs. 0.59, respectively).

bpd phenotyping plays a crucial role in not only enhancing the

precision of BPD definition but also in improving clinical care and

guiding future intervention studies. By employing unsupervised

machine learning algorithms, we can achieve a finer stratification of

BPD severity, allowing for more tailored and effective therapeutic
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approaches. Additionally, it is imperative that future models consider

the dynamic shifts in clinical phenotypes that occur as interventions

are administered or discontinued during the course of hospitalization.

This adaptive approach ensures that the therapeutic strategies remain

aligned with the evolving needs of the neonate.
7 BPD predictive models and support
tools

7.1 Predicting extubation success in
non-BPD patients

Minimizing the number of mechanical ventilation days and the

need for multiple courses of mechanical ventilation is one of the

major initiatives aimed at preventing the development of BPD

and/or decreasing its severity (60). However, early extubation to

prevent BPD must be balanced with the risks of failed extubation

and increased morbidity and mortality in extremely preterm

infants (61, 62). This is especially challenging for the highest-risk

group of 22–24-week gestational-age infants. In the Swedish

national quality registry, which has over 50% survival for 22-

week gestational age infants, the median duration of mechanical

ventilation was 54 days for 22-week GA infants, 32 days for 23-

week infants, and 22 days for 24-week infants (63). While several

prediction models using logistic regression or ML methods have

been developed to aid clinicians in determining the appropriate

timing for extubation in extremely preterm infants, the models

do not include many patients in the high-risk category of 22–24

weeks GA and none have been routinely adopted into clinical

practice (64–68). Moreover, it is worth noting that the extubation

prediction models available have been developed for patients who

are at risk of developing BPD and not for patients who have

already been diagnosed with the condition (69). Therefore, the

development of extubation prediction models for neonates with

BPD could prove to be even more valuable.
7.2 Predicting extubation success in BPD
patients

The timeline for diagnosing BPD and its impact on the

development of extubation prediction models is indeed a crucial

aspect to consider. Currently, the diagnosis of BPD is typically

made based on clinical criteria, often at 28 days or 36 weeks

postmenstrual age. In the context of developing extubation

prediction models, this timeline poses challenges. Timing of

extubation models should take into consideration how the diagnosis

of BPD impacts their utility. To address this gap, it is essential for

these models to take into account the dynamic shifts in clinical

phenotypes that occur during the course of hospitalization. Several

strategies for achieving this include:

7.2.1 Data collection
Comprehensive data collection, including clinical, physiological,

and treatment-related variables, from neonates with diagnosed BPD
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is essential. This data should encompass the entire hospitalization

period and should be routinely updated to reflect changes in the

patient’s condition.

7.2.2 Machine learning algorithms
Machine learning algorithms, particularly those with

adaptability and the ability to handle dynamic data, should be

employed. These algorithms can be trained on the collected data

to make real-time predictions about the optimal timing for

extubation for individual patients.

7.2.3 Continuous monitoring
An important aspect of these models is continuous monitoring

of the patient’s clinical status. As interventions are administered or

discontinued, the models should adapt and refine their predictions

based on their clinical changes.

7.2.4 Collaboration
Collaboration among healthcare institutions is crucial. By

aggregating data from a larger cohort of neonates with BPD, we

can enhance the generalizability and accuracy of these models.

Additionally, it is worth noting that as of now, no randomized

control trials have investigated extubation practices for neonates

with BPD. Consensus guidelines recommend ventilator practices

that include a slow rate, high tidal volume (7–12 ml/kg), and

prolonged inspiratory times (>0.6 s) to account for the varying

levels of airway resistance and altered distal lung compliance,

which leads to diverse and different time constants (7).

Furthermore, extubation should be considered once infants are

on a stable low oxygen requirement, which indicates adequate

lung growth and healing rather than relying on data such as

carbon dioxide or end-tidal carbon dioxide (7).

Some centers have a standardized approach for deciding when to

attempt extubation or consider tracheostomy for patients with severe

BPD. In the Bronchopulmonary Dysplasia collaborative, only five of

the 15 institutions (33%) have a ventilator weaning protocol or

extubation protocol (70). Artificial intelligence-based algorithms,

such as ML models, may assist in suggesting ventilator weaning

strategies, predicting extubation success, or the probability of long-

term mechanical ventilation. Advanced deep learning ML

algorithms may be necessary to process all the complex data

required for prediction, such as dynamic ventilator settings, pulse

oximeter saturation and stability, blood gas results, growth

velocity, chest x-ray image analysis, and other relevant factors.
7.3 Clinical decision support tools for BPD
management

There has been a recent emphasis on developing clinical decision

support (CDS) tools to predict and prevent BPD. While many

prediction models have been developed, no single tool has been

universally adopted. A recent systematic review and meta-analysis

identified 64 studies that developed or validated 53 BPD prediction

models, which incorporated perinatal factors such as gestational age

and birth weight, along with specific clinical features evaluated at
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different timepoints (5). However, the determination of significant

predictors and BPD definitions varies across regions and patient

cohorts, underscoring the importance of developing and validating

prediction tools in neonatal networks worldwide (71–73).

There are several advantages to the shift toward using

informatics to build models to predict BPD and its outcomes. In

the 2021 study by Jasseem-Bobowicz et al, a prediction model was

created using clinical factors including gestational age, number of

RBC transfusions, number of surfactant administrations, and

patent ductus arteriosus data. These factors were determined by

machine learning tools including regression coefficients to

establish a categorical risk scoring system that was then used to

create risk categories for this model (74). The advantage of this

study was its performance (AUC 0.932) and its simplicity and ease

of use in clinical practice. However, drawbacks include a single-

center was used to build the model, limiting generalizability. In a

more recent 2023 study by Gao et al, multivariate logistic

regression analysis using a stepwise fashion was performed for risk

factor selection, and the least absolute shrinkage and selection

operator (LASSO) was carried out for factor selection. A

nomogram model was developed using a R Package “rms” to

predict BPD outcomes. This model also did well with an AUC of

0.910 in the training and 0.9051 in the validation cohort. The

strengths of this study were the comparison of two predictor

selection methods and external validation of the risk factors, while

a limitation included a small sample size from one institution

(75). Another recent 2023 study by Ou et al. also used the LASSO

method by 5-fold cross-validation to select the most useful

predictive proteins for BPD prediction. The protein model yielded

an AUC of 0.96 in the test cohort (76). The advantages of this

approach included a computational and molecular integration to

predict BPD. Overall, there have been more than 100 prediction

models that have been developed to predict BPD, as summarized

in a systemic review by Romjin et al. (77).

While numerous prediction models for BPD have been

developed, their full potential remains underutilized due to several

key challenges. One of the primary limitations is the lack of

external validation (6). For a CDS tool to be truly effective, it must

not only provide accurate predictions but also demonstrate its

generalizability and reliability in real-world clinical settings.

External validation, often referred to as replication, plays a pivotal

role in this process, as it involves testing prediction models with

data generated independently from the dataset used for model

creation. One promising example in the field is the National

Institutes of Childhood and Health Development (NICHD)

Neonatal Research Network BPD Outcome Estimator, which

employs a series of multinomial logistic regressions incorporating

six critical risk factors to predict the severity of BPD or mortality

(78–80). The model was internally and externally validated;

however, it is still associated with racial and regional bias. To

enhance its clinical translation and overcome these biases, efforts

have been made to create the online “BPD Estimator” and update

it in 2022 with a more recent dataset and refined BPD definition (80).

To address the current limitations and promote wider adoption

of such prediction tools, a multifaceted approach is needed. This

should include:
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7.3.1 Ongoing external validation
To ensure the reliability and generalizability of prediction

models for BPD, it is imperative to conduct ongoing external

validation. This process involves testing the models using diverse

patient populations and across various healthcare settings,

including different regions and institutions. By doing so, we can

assess how well these models perform in real-world scenarios,

which may vary in terms of patient demographics, clinical

practices, and environmental factors. This continuous validation

process not only enhances the models’ accuracy but also builds

trust among healthcare providers, making them more likely to

integrate these tools into their clinical decision-making processes.

7.3.2 Continuous evaluation of model
performance

The development of prediction models should not be a one-

time effort. Instead, it should be an iterative process that involves

continuous evaluation and refinement. Regularly assessing model

performance is crucial to identifying changes in accuracy over

time, potential biases that may emerge, or changes in the patient

population that the model serves. This evaluation should be data-

driven and should lead to updates and improvements in the

models as new data become available. In essence, it is about

ensuring that the prediction tools remain relevant and effective.

7.3.3 Mitigating biases and disparities
Recognizing and addressing biases within prediction models is

important. Models should be carefully scrutinized to identify any

biases related to race, ethnicity, socioeconomic status, or

geographic location. These biases can lead to disparities in

healthcare outcomes. Mitigating biases involves refining the

algorithms, diversifying the training datasets, and incorporating

fairness and equity considerations into model development. By

actively working to reduce biases, we can ensure that these

prediction tools provide equitable care to all neonates, irrespective

of their background or location.

7.3.4 Promoting awareness and education
One significant barrier to the adoption of prediction tools is a

lack of awareness and understanding among healthcare providers.

Efforts should be made to educate neonatal care teams about the

availability, benefits, and utility of these tools. This can involve

publishing in reputable journals and presenting data in

conferences or workshops, with the eventual goal of integrating

into EHRs. When healthcare providers are well-informed about

the potential of these tools to enhance patient care, they are

more likely to incorporate them into their clinical workflows,

ultimately benefiting neonates at risk of BPD.

While a single intervention to prevent BPD has been elusive,

there are likely adaptable strategies across fetal, neonatal, infant,

and childhood stages that can have a tangible summative effect

(81). The strategies could target crucial developmental windows

that our current research/QI methodologies might overlook.

Leveraging artificial intelligence/machine learning/deep learning

techniques can enhance our understanding by discerning
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patterns from pertinent and complex clinical and biological data

and provide CDS tools to clinicians over a care continuum.

An illustrative example of clinical informatics’ impact can be

observed in the field of oncology. In cancer care, clinical

informatics has enabled the integration of genetic and clinical

data tools to facilitate the identification of specific cancer

subtypes and the tailoring of treatments to individual patients.

For instance, the Molecular Analysis for Therapy Choice

(MATCH) trial, conducted by the National Cancer Institute

(NCI), employs informatics-driven genomic profiling to match

cancer patients with targeted therapies, resulting in more

effective treatments and improved patient outcomes (82).

In the field of critical care medicine, clinical informatics has

revolutionized patient monitoring and early condition detection.

For instance, the implementation of predictive analytics and

clinical decision support systems has significantly improved

patient management in ICUs. The eICU Collaborative Research

Database, a notable example, collects data from thousands of

ICU patients across the United States and employs informatics-

driven algorithms to predict adverse events, allowing healthcare

teams to intervene proactively and reduce mortality rates (83).

Translating this success to neonatology, clinical informatics

holds the potential to develop predictive models and clinical

decision support tools that assist neonatal care teams in

optimizing care strategies for infants at risk of BPD. By analyzing

complex data from NICUs, these tools can provide early

warnings of deteriorating conditions, helping clinicians take

timely actions to prevent or mitigate the severity of BPD.

At present, available CDS tools for BPD still have several

limitations. Often, these models were created with data from a

single center, have a small sample size, lack good quality external

validation, and may only apply to specific high-risk infants such as

those on ventilators, limiting their generalizability. Moreover, over

half of the published models use data from infants born over a

decade ago, which may not reflect present-day clinical practice (6).

Additionally, existing models do not account for the infant’s

clinical trajectory over time, which could provide a dynamic

approach for better personalized preventive treatment and targeted

trial recruitment. Nonetheless, a recent machine learning (ML)-

based prediction model demonstrated the predictive power of

postnatal respiratory support for 14 consecutive days (84). While

this model was developed at a single center without validation, it

demonstrates how prediction models and tools are evolving to

better meet clinical needs.

To address the limitations of current CDS tools for BPD, there are

several potential solutions that can be considered. First, efforts should

be made to collect and integrate data from multiple centers to create

more robust and generalizable models. Collaborative initiatives can

help gather a larger and more diverse dataset, ensuring that the

models are applicable across different clinical settings. Furthermore,

it is crucial to validate these models externally to confirm their

accuracy and reliability in various populations. Additionally,

updating the datasets with recent clinical data is essential to reflect

the current clinical practice, as BPD management and patient

characteristics evolve over time. To provide a more dynamic

approach, future models can incorporate the infant’s clinical
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trajectory over time, enabling personalized preventive treatment

strategies and more targeted recruitment for clinical trials. While

the recent ML-based prediction model for postnatal respiratory

support is a step in the right direction, future research should focus

on refining and validating such models to ensure their clinical

utility and effectiveness across multiple healthcare systems. This

collaborative and evolving approach to CDS tools can significantly

enhance their effectiveness in managing BPD.
8 Use for prevention of BPD or
decreasing its severity

Clinical informatics has the potential to make significant strides

in the prevention and reduction of the severity of BPD among

neonates. One of the key applications is early risk prediction.

Informatics tools can analyze a multitude of data points, including

gestational age, birth weight, respiratory parameters, and maternal

health records, to identify neonates at high risk of developing BPD.

By flagging these high-risk cases, healthcare teams can implement

preventive measures promptly, such as optimizing respiratory

support strategies or initiating lung-protective ventilation strategies.

In addition to early risk prediction, clinical informatics can also

play a crucial role in improving communication and coordination

among healthcare providers involved in the care of neonates with

BPD. Informatics tools can facilitate seamless sharing of patient

data, treatment plans, and progress updates among neonatologists,

pulmonologists, nurses, and other healthcare professionals. This

enhanced collaboration can lead to more effective and timely

interventions, ultimately reducing the severity of BPD (4).

Clinical informatics can offer a valuable tool in the form of

automated weekly reminders and graphical representation of

ventilator parameters to assess respiratory progress in neonates with

BPD. These reminders can prompt healthcare providers to

systematically evaluate the infant’s respiratory status on a regular

basis, ensuring that no critical changes or deteriorations go

unnoticed. Furthermore, informatics systems can generate graphical

displays of ventilator parameters over the past few weeks, allowing

clinicians to visualize trends and deviations in respiratory support.

Such visualizations can highlight improvements or declines in a

neonate’s lung function, enabling healthcare teams to make

informed decisions regarding adjustments to ventilation strategies or

other therapeutic interventions. This proactive approach not only

supports timely interventions but also aids in fine-tuning treatment

plans to optimize respiratory care and minimize the severity of BPD.

Informatics systems enable continuous monitoring and data

analysis of neonatal patients in real-time. By tracking

physiological parameters, like oxygen saturation levels and

respiratory rates, clinical informatics can detect subtle changes

that may indicate evolving BPD (85). When these early warning

signs are identified, healthcare providers can adjust treatment

plans and interventions, potentially preventing or mitigating the

progression of the disease (86). Another critical aspect is the

personalization of care plans. Clinical informatics can assist in

tailoring therapeutic approaches based on individual patient data.

For instance, informatics tools can analyze a neonate’s response
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to specific treatments and medications, enabling the adjustment of

therapy to maximize effectiveness while minimizing potential side

effects. This personalized approach can optimize outcomes and

decrease the overall severity of BPD (47).
9 Use in those with already established
BPD

Clinical informatics can also contribute to the care of neonates

with established BPD by streamlining medication management,

integrating clinical data, enabling remote consultations,

supporting quality assurance efforts, and engaging patients and

their families.
9.1 Enhanced medication management

Clinical informatics provides a platform for the management

of medications in neonates with established BPD. It assists

clinicians in maintaining accurate and up-to-date medication

records, tracking dosages, and monitoring adverse effects. This

ensures that infants receive their prescribed medications

consistently and safely. Moreover, informatics systems can

generate alerts for potential drug interactions or dosage

adjustments, helping clinicians make informed decisions

regarding pharmacological interventions (87).
9.2 Efficient data integration

Managing the care of neonates with established BPD often

involves a multitude of clinical data sources, including laboratory

results, imaging reports, and patient histories. Clinical

informatics excels at integrating these data sets into a unified and

accessible format. It allows clinicians to access a comprehensive

view of each patient’s health status, and prior response to

medications/treatments, streamlining decision-making and

reducing the risk of oversight (88).
9.3 Remote consultation and telehealth

In situations where neonates with established BPD require

specialized care or consultations from experts, clinical informatics

facilitates remote consultations and telehealth services. Clinicians

can securely share patient data and images with specialists,

enabling timely expert opinions and guidance without the need

for physical presence. This extends access to expertise and can be

particularly valuable in managing complex cases (89).
9.4 Quality assurance and benchmarking

Clinical informatics offers tools for quality assurance and

benchmarking in the care of neonates with BPD. Clinicians can
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compare their treatment outcomes and practices with national or

international standards and benchmarks. This data-driven

approach allows for continuous improvement in care protocols,

ensuring that the latest evidence-based practices are adopted to

enhance patient outcomes (90).
9.5 Patient and family engagement

Informatics systems also have a role in engaging patients and

their families in the care process. Neonates with established BPD

often require extended hospital stays, and informatics can

provide a means for families to stay informed about their infant’s

progress. It offers patient portals and educational resources to

empower families with information and facilitate communication

with clinicians, promoting a collaborative approach to care (91).
10 BPD registries with full integration
with EHR

Current data collection and storage methods supporting BPD

research are varied. Some databases aim to collect general

demographic, clinical, and outcomes data on very low-

birthweight infants, while others are dedicated to sponsored

multi-site trials investigating BPD as a primary or secondary

outcome. Additionally, some databases focus on more granular

data derived from a single-site center. Large databases targeting

VLBW infants exist both in the US and internationally, and most

data is entered manually by principal investigators or trained

data abstractors at participating sites (92–96). However, the

United Kingdom’s National Neonatal Database stands out as an

exception due to its use of a common EHR shared among

participating sites, allowing data to flow automatically into the

database on a quarterly basis. Quality assessment of the extracted

data is then published for participants to review (95). A

preliminary search conducted on PubMed on January 8, 2024,

using the keywords “National Neonatal Research Database

(NNRD)” returned 26 publications, primarily centered around

neonatal nutrition. Surprisingly, none of the studies identified in

this initial search were specifically focused on BPD. We believe

future research questions will delve into the utilization of the

NNRD to investigate BPD’s epidemiology, risk factors, outcomes,

and potential interventions.

Despite the existence of these databases, challenges remain in

data collection, including the labor-intensive nature of manual

data entry, incomplete data, evolving definitions of disease,

inability to capture longitudinal data, inherent data bias, data

governance, and privacy concerns. These challenges highlight the

need for continued work on improving data collection and

storage methods to support BPD research (refer to Table 1).

Moreover, without consensus on a minimum standard dataset,

comparing and combining data across databases becomes

challenging. In addition, the lack of standardized definitions and

terminologies hinders cross-site analysis and increases the risk of

errors in data interpretation. To address this, initiatives such as
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TABLE 1 Table of select existing national registries of neonates with or at risk for BPD.

Database name What works What does not work What needs to happen to
enhance utility

Generic Database of VLBW infants Comprehensive data collection
Demographics, medical outcomes data
Wide participant base (NICHD Neonatal
Network
Long-term data collection (1987–2030)

Limited integration with EHRs
Concerns about prediction
accuracy

Improved EHR integration
Enhanced prediction accuracy
Further data sharing and collaboration

NICHD DASH (Data and Specimen Hub) Data sharing platform for completed studies
Availability of biospecimens
Control and experimental arms in some
studies

Sample size limitations
Convenience sampling

Expansion of studies and sample sizes
Inclusion of more diverse study designs
Greater diversity in participant
recruitment

Vermont Oxford Network (VON) Data collection from NICUs worldwide
Benchmarking and comparative analysis
Identifying variations in care and outcomes

Limited granularity
Data definitions are strict
Challenges in standardization of
terms

Enhanced data granularity and specificity

International Network for Evaluation of
Outcomes (iNEO) of Neonates

International collaboration in research
Data-informed practice changes in NICUs
Uniform definition database

Limited to specific weight and
gestational age
Mapping to ICD-10 and
SNOMED-CT

Expansion of eligible neonates
Continued impact assessment in
participating networks
Further data linkage and mapping to
enhance interoperability

Canadian Neonatal Network Insights into neonatal care practices in Canada
Benchmarking reports for NICUs

Site-specific eligibility criteria Broadening site eligibility and inclusivity
Uniform definition across the database

United Kingdom National Neonatal Research
Database

Extracts data from electronic patient records
High completeness of patient characteristics
Data mapped to ICD-10 codes

Data extraction is not real-time
Limited geographical coverage
Quarterly data extraction

Real-time data extraction for more
current insights
Expanded coverage to other regions
Automated data extraction for efficiency

Swedish Neonatal Quality Register (SNQ) Extensive data collection in Swedish neonatal
units
Covers a wide range of variables
Includes key performance indicators

Data completeness variation
Data collection for several years

Consistent and complete data collection

Korean Neonatal Network Prospective web-based registry for VLBW
neonates
Unique systems for data display and
monitoring

Data quality surveillance limited
to site visits

Enhanced real-time data quality
surveillance
Continued emphasis on data quality and
completeness

Chinese Neonatal Network Uniform definition database
Mapping terms to ICD-10 and SNOMED-CT
Comprehensive data collection

Manual data extraction and data
checks
Sample-specific eligibility
criteria

Streamlined data entry and automated
checks
Feedback loop for site-specific data
quality improvement
Inclusion of data elements

VLBW, very low birth weight; NICU, neonatal intensive care unit.
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the Neonatal Research Network (NRN) have developed

standardized definitions for outcomes and clinical variables,

which have been adopted by many large databases. Despite these

initiatives, there is still a need for more widespread adoption of

standardized definitions and terminologies to improve

interoperability and facilitate collaboration across different

databases and research groups. The use of common data models,

such as the OMOP CDM, may help in achieving this goal by

providing a standardized structure for data collection and storage

that can be shared across different institutions and studies.

Improving the collection and storage of BPD data is crucial for

advancing our knowledge of the disease and enhancing patient

outcomes. To achieve this goal, it is necessary to leverage

automated data extraction and mapping of a minimum dataset to

standard definitions and terms. The lack of BPD-specific data

granularity in current VLBW databases limits their research

potential in answering questions about candidate treatments or

management approaches. Standardization of data elements has

been recognized by some registries, but many remain unmapped

to accepted standard dictionaries such as International Statistical

Classification of Diseases and Related Health Problems-10
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(ICD-10) or Systematized Nomenclature of Medicine-Clinical

Terms (SNOMED-CT), which limits collaboration and

interoperability (96, 97). The UK model demonstrates the

potential for automated data extraction with high fidelity and

provides a roadmap for streamlining epidemiologic data

collection (98, 99). By better capturing demographic, clinical, and

outcome data, we can perform retrospective investigations and

explore disease incidence and risk factors. Ultimately, this can

inform the development of improved management approaches

and more effective treatments for patients with BPD.
11 Multi-Center collaborations in BPD
research

Due to center-specific variations in patient care and outcomes,

multi-center collaborations are necessary to advance our

understanding of the disease, identify best practices, and improve

patient outcomes (1, 70, 100). Multi-center collaborations offer

numerous benefits in BPD research, including a better

understanding of disease mechanisms, lung repair, and
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regeneration. Through these collaborations, disease phenotypes can

be better classified and novel therapeutic targets can be better

explored. Multi-center collaborations can identify variations in

neonatal outcomes between centers, leading to national and

international benchmarking, quality improvement activities, and

implementation of “best practice” strategies (1, 7, 100).

Multi-center collaborations, exemplified by initiatives like the

BPD Collaborative encompassing 27 centers across the USA and

one in Sweden, have undeniably propelled BPD research forward

and have improved patient care outcomes (7, 58, 100, 101). Within

these collaborations, clinical informatics has emerged as a critical

component, serving to enhance the efficiency and effectiveness of

research endeavors. Clinical informatics systems provide a secure

and standardized platform for the exchange of patient data and

research findings among participating centers. This data sharing

facilitates the aggregation of extensive datasets from diverse clinical

settings, empowering researchers to conduct comprehensive

analyses spanning multiple institutions. By harnessing the power of

data integration, clinical informatics enables the identification of

trends and insights that might otherwise remain elusive when

working solely with isolated datasets. Furthermore, informatics tools

play a central role in harmonizing clinical practices and

standardizing data collection protocols across collaborating

institutions, ensuring consistent data collection and adhering to

predefined standards (58). This standardization minimizes

variations in data quality and enhances the reliability of research

outcomes. In the context of the BPD Collaborative, clinical

informatics has been instrumental in facilitating the implementation

of essential strategies, such as optimizing ventilator management

and nutritional practices. By tracking patient responses and

outcomes using informatics tools, the collaborative has identified

best practices and areas for improvement, contributing to the

enhanced quality of care and improved patient outcomes (100, 101).

In the study by Guaman et al, clinical informatics played a key

role in understanding neonates with severe BPD. For instance,

clinical informatics facilitated the uniform collection of clinical

data across the eight NICUs. A standardized clinical data form

was designed and implemented, ensuring that essential patient

information, including gestational age, respiratory support

requirements, and medication usage, was consistently recorded for

all inpatients born at <32 weeks. The study defined severe BPD

based on specific criteria, including the need for ≥30%
supplemental oxygen and/or positive pressure ventilation at 36

weeks postmenstrual age. Clinical informatics played a key role in

applying these criteria uniformly across participating NICUs.

Clinical informatics also facilitated the analysis of management

practices across the participating NICUs. The study examined

differences in the use of interventions such as mechanical

ventilation, diuretics, inhaled corticosteroids, and inhaled β-

agonists. By collecting and analyzing these data using informatics

tools, the researchers identified variations in the management of

infants with severe BPD among different centers (102).

In addressing the significant challenges that persist in multi-

center collaborations for BPD research, it is essential to recognize

the multifaceted nature of this condition. The complex and

multifactorial etiology of BPD, encompassing factors such as
Frontiers in Pediatrics 11
prematurity, inflammation, and genetic predisposition, contributes

to the intricate clinical landscape (58, 100). Furthermore, BPD is

not a one-size-fits-all condition. It presents a wide spectrum of

patient characteristics, including variations in gestational age, birth

weight, and comorbidities, necessitating diverse and tailored

management approaches that can evolve over the course of a

patient’s hospitalization and even throughout their lifetime (103).

The challenges extend to data collection and management

practices. Current data collection methods are labor-intensive

and often fraught with incompleteness, preventing a

comprehensive and real-world representation of the clinical

phenotype of BPD (1, 79). Moreover, the evolving definitions of

disease pose an ongoing challenge. The field continuously refines

diagnostic criteria and treatment strategies, making it critical to

capture longitudinal data to track changes in patient care and

outcomes over time. However, this longitudinal perspective

remains elusive due to existing data limitations.

Data governance and privacy concerns also loom large,

impeding the seamless sharing of critical information among

institutions. Protecting patient privacy while facilitating data

sharing demands sophisticated solutions and adherence to

stringent regulations (1, 79). Additionally, BPD lacks a universally

accepted “single” therapy, further complicating research efforts.

Tailoring treatments to individual patients requires nuanced real-

world data to inform decision-making and optimize care.

Efforts such as the OHDSI (Observational Health Data Sciences

and Informatics) OMOP CDM (Common Data Model) present a

promising avenue to overcome the substantial challenges in multi-

center collaborations for bronchopulmonary dysplasia (BPD)

research (104). The OHDSI initiative is at the forefront of

harnessing clinical informatics to standardize and streamline data

collection and analysis. The OMOP CDM, an integral component

of OHDSI, serves as a standardized clinical data framework that

allows the extraction, ingestion, and collation of pertinent variables

from diverse sources, enabling the creation of disease-specific

observational research registries like a BPD registry (105, 106).

Central to the success of these initiatives are widely recognized

clinical terminologies, such as SNOMED CT (Systematized

Nomenclature of Medicine Clinical Terms) and LOINC (Logical

Observation Identifiers Names and Codes) (107, 108). SNOMED

CT provides a comprehensive and standardized clinical vocabulary

that enhances interoperability and consistency in healthcare data,

while LOINC facilitates the uniform identification of medical

laboratory observations, ensuring data accuracy and comparability

across institutions.

These standardized clinical data frameworks empower

researchers to securely store data, conduct rigorous analyses, and

efficiently share information among participating sites, thereby

reducing the barriers to collaboration and facilitating data-driven

research efforts. The concept of a “living BPD registry,” driven by

OHDSI OMOP CDM and bolstered by SNOMED CT and LOINC,

holds the potential to revolutionize BPD research and collaborative

endeavors. It offers the opportunity for reproducible research in

phenotype definitions and comparative analyses, leveraging a

wealth of standardized real-world data across institutions.

Ultimately, these initiatives not only lower the activation energy
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required for collaboration but also hold the promise of driving

meaningful advancements in BPD care and research outcomes.
12 Challenges and future directions in
BPD research and clinical informatics

BPD research and the integration of clinical informatics have

undoubtedly made significant progress, yet several formidable

challenges persist (106). The current definition of BPD, based on

respiratory support at 36 weeks postmenstrual age, represents a

crucial step forward in standardizing diagnostic criteria and

understanding long-term patient-centered outcomes (79). However,

it remains an oversimplified representation of the intricate clinical

reality and heterogeneity that exists within the BPD spectrum.

To address these challenges effectively, it is imperative to delve

into the nuances that distinguish children with varying degrees of

BPD severity. A more granular understanding can guide the

development of interventions tailored to specific subgroups of

patients while minimizing potential harm. This nuanced

approach acknowledges the multifaceted nature of BPD and

recognizes that each neonate’s clinical phenotype is unique.

Despite the existence of risk stratification tools for BPD, their full

potential has not been realized due to limited integration with EHRs

and concerns regarding prediction accuracy. This stands in stark

contrast to the robust adoption of other neonatal tools, such as

those used for predicting early-onset sepsis or guiding

phototherapy recommendations (52, 78). To comprehensively

address the complexities of defining, preventing, and treating BPD,

CDS tools must not only seamlessly integrate with EHRs but also

offer comprehensive treatment guidance. Achieving this requires a

strategic approach focused on tailored care rather than advocating

for a one-size-fits-all reduction in care.

Our proposed clinical informatics approach aims to empower

clinicians with timely, individualized information for optimized

decision-making. By harnessing data-driven insights and predictive

models, we provide care providers with the tools to make

informed decisions that align with each neonate’s specific risk

profile. This approach takes into account both clinical severity and

individual risk factors. While some moderate-risk neonates may

indeed benefit from escalated care, applying the same approach

universally could lead to overutilization of resources and

unnecessary interventions. Clinical informatics enables the

identification of moderate-risk neonates most likely to benefit

from escalated care, thereby maximizing the utility of interventions

while minimizing potential harm or resource inefficiency.

Collaborative efforts involving multiple centers are imperative

for advancing our understanding of BPD. Such collaborations

bring together larger sample sizes, diverse patient populations,

and a broader range of expertise. Nevertheless, challenges related

to data collection, storage, and the lack of standardization of

terms and definitions persist. To facilitate seamless collaboration

and interoperability, the standardization of data elements and

mapping to recognized clinical terminologies such as ICD-10 and

SNOMED-CT is essential. Additionally, the establishment of a

“living BPD registry” is crucial, capable of efficiently collecting
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and storing data while incorporating more granular information

such as clinical biomarkers, echocardiography/radiographic data,

and high-resolution vital signs and ventilator data. This approach

enables more accurate clinical phenotyping, thereby advancing

our understanding of BPD and facilitating tailored care.
13 Conclusion

In conclusion, BPD is a complex disease that affects premature

infants and is responsible for significant morbidity and healthcare

costs. While clinical informatics holds promise in improving BPD

prevention, management, and outcomes through the use of clinical

decision support tools, we are still in the very early stages of using

these applications effectively. Research efforts utilizing multi-center

collaborations and state-of-the-art analysis techniques may help

identify clinical phenotypes of BPD. However, many challenges

remain in BPD research and clinical informatics, including the

need for standardized data collection and definitions, full

integration with EMR, the development of precise and

personalized treatments for different BPD subtypes, and the

logistics and governance issues with data storage, utilization, and

collaboration. Overall, while there is promise in the integration of

clinical informatics into BPD management and research, much

work remains to be done to fully realize its potential in

improving outcomes for these vulnerable patients.
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