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Pediatric Crohn’s disease
diagnosis aid via genomic analysis
and machine learning
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Introduction: Determination of pediatric Crohn’s disease (CD) remains a major
diagnostic challenge. However, the rapidly emerging field of artificial intelligence
has demonstrated promise in developing diagnostic models for intractable diseases.
Methods: We propose an artificial neural network model of 8 gene markers
identified by 4 classification algorithms based on Gene Expression Omnibus
database for diagnostic of pediatric CD.
Results: The model achieved over 85% accuracy and area under ROC curve value in
both training set and testing set for diagnosing pediatric CD. Additionally, immune
infiltration analysis was performed to address why these markers can be integrated
to develop a diagnostic model.
Conclusion: This study supports further clinical facilitation of precise disease diagnosis
by integrating genomics and machine learning algorithms in open-access database.
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Introduction

Increasing incidence rates of pediatric Crohn’s disease (CD) over the past decades have

been reported in relevant studies (1, 2). Pediatric CD present heterogeneous threat to the

health of children, with growth retardation, metabolic bone disorders, bone density

reduction and pubertal delay (3–5). Beyond clinical manifestation, endoscopic and

histological examination are considered the most reliable technique for diagnosing CD.

However, large inter- and intra-observer variability may exist in the subjective

interpretation of endoscopic and histopathologic appearance. Mislabeling occurs

frequently, and a fraction of pediatric CD is deemed ulcerative colitis incorrectly (6). The

onset of pediatric CD is insidious, and strictures or penetrating disease have already

occurred at diagnosis in some children (7). Additionally, up to 50% of pediatric CD

require intestinal resection within 10 years after diagnosis (8). Hence, accurate diagnosis

during the initial stage of pediatric CD is crucial but challenging for rapid intervention

and better prognosis.

Recent advancements made in machine learning and extensive use of RNA sequencing

have enabled the construction of automated diagnostic model for knotty diseases. It has been

confirmed that deep learning algorithms assisted doppler improved the classification of

ovarian tumors (9). Ultrasound and machine learning approaches have been used for the

differential diagnosis on melanocytic lesions patients (10). Moreover, using random forest

(RF), weighted gene correlation network analysis (WGCNA), least absolute shrinkage and

selector operation (LASSO) and support vector machine-recursive feature elimination
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TABLE 1 Gene expression datasets from GEO database.

Database Samples Platforms Contributor
GSE57945 218 pediatric CD

vs. 42 non-IBD
GPL11154 Illumina HiSeq
2000

Yael Haberman
(24, 25)

GSE93624 210 pediatric CD
vs. 35 non-IBD

GPL11154 Illumina HiSeq
2000

Urko
M Marigorta (26)

GSE101794 254 pediatric CD
vs. 50 non-IBD

GPL6365 DKFZ Homo
sapiens 8k BAC-array
version 2

D E Stange (27)

GSE117875 6 pediatric CD vs.
7 non-IBD

GPL16791 Illumina HiSeq
2500

Daniel Kelly (28)

GSE62207 259 pediatric CD
vs. 51 non-IBD

GPL11154 Illumina HiSeq
2000

Yael Haberman
(29)
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(SVM-RFE), gene expression profile can be used to identify

biomarkers associated with classification tasks such as cancer

detection, recurrence prediction, prognosis prediction, and severe

sepsis detection (11–13). Though enormous novel biomarkers

heretofore have not been recognized as disease-associated, they

may be extracted to build diagnostic model by deep-learning

supervision based on diagnostic label in recent work (14, 15).

Though like adults, currently the diagnosis of pediatric CD is

mainly based on clinical manifestations and digestive endoscopy,

in the broader context, childhood- onset CD may have more

complex pathogenesis that is driven by gene defects (16). With

the advent of next-generation sequencing and application of

molecular biomarkers, diagnosis for many genetically related

diseases have become increasingly accurate and timely (17, 18).

For instance, mutations in TNFRSF13B, NFKB1, NFKB2, CTLA4

and STAT3 are indications for the early molecular diagnosis of

patients with predominantly antibody deficiency such as

predominantly antibody deficiencies (19). Genetic aberrations

such as PMP22, GJB1, MFN2, MPZ, SH3TC2 and GDAP1

mutations identified by targeted next-generation sequencing

panels are able to perform effective diagnosis in previously

undiagnosed and rare subtypes of Charcot-Marie-Tooth disease

(20). Using machine learning, large amounts of biomedical data

such as genome, transcriptome and proteome have been

investigated to identify underlying causative factors and relative

biomarkers behind complex illnesses (21). Recent studies

performed on high-throughput data from GEO and TCGA

datasets have developed various diagnostic models via

investigating candidate genes, which can assist in discovering

biomarkers and diagnosing for different kinds of diseases (22, 23).
Materials and methods

Collection of GEO datasets

Publicly available data from the Gene Expression Omnibus

(GEO) databases (https://www.ncbi.nlm.nih.gov/geo/) was

collected with the following key terms: “Crohn’s disease”,

“inflammatory bowel diseases (IBD)” and “child or children or

pediatric”. Result of data retrieval was filtered by “expression

profiling by high throughput sequencing” in “Homo sapiens”. All

relevant reference lists were reviewed manually for further

identification. Only datasets that met the following conditions

were included: (1) All cases were pathologically diagnosed as

Crohn’s disease and the controls were normal intestinal tissues.

(2) The minimum sample size of cases and controls was 10. And

Exclusion criteria were: ulcerative colitis, miRNA analyses,

duplicate. Eventually, the raw and series matrix data of available

datasets were downloaded and summarized in Table 1.
Study design and data processing

The flow diagram is shown in Figure 1. Each probe expression

matrix was extracted and then converted into a gene expression
Frontiers in Pediatrics 02
matrix from corresponding series matrix data using Perl 5.36

(https://www.perl.org/). Raw data of datasets were extracted with

affy package in R 4.1.1(https://www.r-project.org/). Extracted

expression data were normalized and converted to log2-based

logarithms using the rma tool of affy package in R 4.1.1. Datasets

GSE57945, GSE93624, GSE101794 and GSE117875 were merged

into a metadata cohort and served as training subset. ComBat

function of sva package in R 4.1.1 was run to remove batch

effects from expression matrixes (30). In addition, dataset

GSE62207 was served as testing subset.
Identification of differentially expressed
genes

Differentially expressed genes (DEGs) in pediatric CD vs. non-

IBD were identified with empirical Bayesian method of limma R-

package. Benjamini and Hochberg false discovery rate (FDR) and

cut-off of log2 fold change (log2FC) were applied to balance

both discovery of statistically significant genes and limitations of

false-positives. The threshold for DEGs were set to log2FC > 1

and FDR <0.05. All DEGs were uploaded to the STRING

database (https://www.string-db.org/). The minimum required

interaction score was set to 0.900. The interactive relationship

between DEGs was screened from the protein level, and the

protein–protein interaction (PPI) data of DEGs were downloaded

for construction of a PPI network in Gephi software (version 0.9.6).
Functional enrichment analyses and
annotation

Gene names of DEGs were converted to gene ID by

org.Hs.eg.db R-package. Enrichment analyses were carried out in

clusterProfiler R-package to explore the functions and pathways

enriched by DEGs (31). Gene Ontology (GO) biological

processes and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis were considered. Biological processes

and signal pathways with a p-value <0.05 were considered

significant. In order to clarify the gene expression level of

significantly enriched functional pathways more intuitively, Gene

set enrichment analysis (GSEA) was performed with GSEA tool
frontiersin.org
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FIGURE 1

Workflow diagram. The flow diagram of whole process of data analysis.
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of clusterProfiler R-package. Disease Ontology (DO) analysis was

performed to annotate potential similarities among DEGs in

disease context using DOSE R-package. The above results were

visualized by enrichplot and ggplot2 R-package. Metascape

analysis was performed on the Metascape web platform (https://

metascape.org) to further verify the function enrichment of

DEGs, and p-value <0.05 was set as the cutoff value.
Identification of diagnostic markers

LASSO, RF and SVM-RFE algorithms were used to filter

diagnostic markers base on training subset with R-package

glmnet, randomForest and e1071, respectively. The optimal

diagnostic markers were selected by the LASSO algorithm with

ten-fold cross validation, and the weight of the LASSO penalty

was represented by λ. Herein, the λ = 0.0009077964 was selected

as optimal value via minimum criteria (32). RF classification

initialized with 500 trees was used to classify the diagnostic result

of each sample (33, 34). The importance of markers was

calculated by the Gini impurity values. The top-ranked 100 genes
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were then selected as the diagnostic markers. SVM-RFE

algorithms was conducted based on radial basis function and 10-

fold cross-validation (CV). According to the minimum CV error

(minimum CV error = 0.2270997), 28 diagnostic markers were

selected (35). WGCNA is a method to screen co-expressed gene

modules. A co-expression network of DEGs was constructed to

extract diagnostic markers in disease-related modules using

WGCNA R-package (36, 37). A scale-free network was built by a

β-power operation. we chose the soft power β = 6. The similar

gene expression was divided into several gene co-expression

modules. There are at least 100 genes in each module.

Subsequently, the module-trait correlation between modules and

diagnosis was calculated. Then we chose the method of dynamic

tree cutting to recognize co-expression gene modules. The

module eigengene (ME) was calculated to quantify overall

expression level of each module, and the Z-summary was

calculated to estimate the conserved modules. Finally, the genes

contained in module with high correlation coefficient were

defined as the candidate markers. The intersection markers

among LASSO, RF, SVM-RFE and WGCNA algorithms were

defined as final diagnostic markers and exhibited in a Venn
frontiersin.org
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diagram generated by venn R-package. The clusters separability of

diagnostic markers was observed in a heatmap drawn by pheatmap

R-package.
Development of artificial neural network
diagnostic model

The training subset and testing subset were filtered and

normalized by min-max normalization. An Artificial Neural

Network (ANN) model of diagnostic markers was constructed by

neuralnet R-package. Five hidden layers were set as the model

parameter. The disease classification score is defined as the sum

of the product of weight score multiplied by expression levels of

the diagnostic markers. The architecture and connection between

layers that mediate variable importance of the ANN model was

visualized by the NeuralNetTools R-package.
Evaluation of diagnostic efficacy

Both training subset and testing subset were used to measure

the ability of each diagnostic marker to classify the pediatric CD

samples. A five-fold cross-validation of the ANN model was

performed by the confusion matrix function of Caret R-package

in training subset. And classification of ANN model for pediatric

CD samples was tested on the testing subset for further

verification of effectiveness. All classification performance were

drawn into ROC curves by pROC R-package and the areas under

the curves (AUC) were compared.
Immune analysis algorithm and correlation
between immune cells and diagnostic
markers

CIBERSORT is one of deconvolution algorithms that combine

the labeled genomes of different immune cell subpopulations to

calculate the proportion of LM22 leukocyte in tissues. LM22

gene signature matrix was downloaded from CIBERSORT

website (https://cibersortx.stanford.edu/download.php). All

datasets were merged into a metadata cohort and batch effects of

all datasets were removed. CIBERSORT R script v1.04 (https://

rdrr.io/github/zy26/SSMD/src/R/CIBERSORT modified.R) was

run to calculate the score of each immune cell base on the

merged dataset. Non-parametric correlations were used to

determine the correlation between diagnostic markers and

immune cells.
Results

Screening of DEGs in training datasets

Datasets GSE57945, GSE93624, GSE101794 and GSE117875,

including 688 pediatric CD and 134 non-IBD samples, were
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merged into training subset. The training subset before (A) and

after (B) batch correction was presented in Figure 2, which

indicated that the batch effect in the training dataset was

removed successfully. As shown in Figures 2C,D, 120 DEGs

including 59 up-regulated and 61 down-regulated genes were

identified (All up-regulated and down-regulated genes were listed

in Supplementary Table S1).
Functional enrichment analysis and
classification of hub proteins

GO and KEGG functional enrichment analyses were performed

to investigate the biological features of the 120 DEGs. GO

functional enrichment result revealed 220 terms of up-regulated

DEGs and 105 terms of down-regulated DEGs respectively across

BP, CC and MF categories (Supplementary Table S2). All DEGs

were enriched in the cellular zinc ion homeostasis, zinc ion

homeostasis and response to the toxic substance in BP category,

markedly (Figure 3A). Enriched CC terms included brush

border, brush border membrane and apical plasma membrane

(Figure 3B). In the MF category, genes were mainly enriched in

solute cation symporter activity, symporter activity and

metallopeptidase activity (Figure 3C). The top 20 ranked GO

enrichment terms were displayed in Figure 3D. Moreover,

pathways terms of KEGG pathway analysis are depicted in

Figure 3E. The DEGs were chiefly enriched in Complement and

coagulation cascades (hsa04610), IL-17 signaling pathway

(hsa04657), Pertussis (hsa05133), Ovarian steroidogenesis

(hsa04913) and Hematopoietic cell lineage (hsa04640). Top-

ranked DO terms were listed in Figure 3F. Periodontal disease,

periodontitis, tooth disease, lung disease and chronic obstructive

pulmonary disease were all strongly enriched with respect to the

DEGs. Finally, we performed a GSEA analysis on the 120 DEGs

(Figures 3G). 5 pathways were enriched in pediatric CD,

including complement and coagulation cascades, pathways in

cancer and cytokine receptor interaction. To explore interactions

and association pathways of DEGs, a PPI network was we

constructed. PTGS2, MMP2, MMP3, VWF, NCF2, ACE, MMP1,

FCER1G and MNDA were identified as the top 10 hub genes by

the degree value (Figure 3H). Metascape analysis suggested that

DEGs were mainly enriched in terms of innate immune

response, response to bacterium, neutrophil degranulation,

response to xenobiotic stimulus, Naba matrisome associated and

immune effector process (Figure 3I).
Identification of diagnostic markers

RF Algorithm uncovered 100 prognostic targets of pediatric

CD. The top-ranked 30 genes were displayed. And S100A8 was

identified as the most important marker in terms of diagnostic

(Figures 4A,B and Supplementary Table S3). The DEGs were

applied to a LASSO regression analysis, and finally a machine

learning model for the diagnosis of pediatric CD consisting of 56

gene markers was constructed (Figures 4C,D and
frontiersin.org
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FIGURE 2

Identification of DEGs. Principal component analyses (PCA) performed to remove batch effect and in training subset. Before batch correction (A) and after
batch correction (B). Identification of DEGs in training subset. Hellman (C) and Volcano plot (D).
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Supplementary Table S3). A total of 28 genes were identified as

diagnostic biomarkers based on SVM-RFE algorithm (Figure 4E

and Supplementary Table S3). WGCNA was used to construct a

co-expression network based on the average linkage method, and

5 modules were generated (Figures 4F,G). Among them, blue

modules contained a total of 3,310 genes and showed the strong

correlation with the diagnosis of pediatric CD (Supplementary

Table S3). There are 8 overlapping genes including CRIP1,

PDZK1IP1, FOLH1, RGS13, SLC27A2, SLC17A8, PTGS2 and

HMGCS2 among RF, LASSO, SVM-RFE and WGCNA. The

results of hierarchical clustering produced by 8 diagnostic

markers were shown in the heatmap of unsupervised clustering

(Figure 4I).
Construction of the diagnostic model of
artificial neural network

The weight of 8 diagnostic markers was calculated by ANN

analysis based on training subset to construct a diagnostic model

furtherly. The ANN model for classifying the markers expression

data between non-IBD and CD included an input layer with 8

neurons, a hidden layer with 5 neurons, and an output layer with

2 neurons (Figure 5A). It is obvious that the prediction error of

ANN model decline to a stable level quickly, with the increase in

the training iterations (Figure 5B). The weight of each diagnostic

marker in ANN model was detailed in Supplementary Table S4.
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A ROC curve was generated to show the validation results based

on training subset, which displays the model classification

performance initially (Figure 5C). The ROC curves were used to

show the classification efficiency of 8 diagnostic markers, and

each AUC was compared (Figures 5D–K).
Validation of ANN model based on testing
subset

The testing subset was used to assess the ability of the ANN

model and 8 diagnostic markers for diagnostic. The accuracy of

diagnosis prediction in testing subset is 86.7%. The performance

of ANN model for diagnostic in testing subset was examined

using ROC curves (Figure 6A). And ROC curves for each

diagnostic marker were also produced. The AUC values

(Figures 6B–I) and estimated expression level difference

(Figure 7) of 8 diagnostic markers between CD and non-IBD

controls in testing subset were calculated and compared. P-value

<0.05 was considered significant.
Immune infiltration analysis

The immune landscape between pediatric CD and non-IBD

was explored using CIBERSORT algorithm based on the merged

dataset (Figure 8A). The correlation analysis between immune
frontiersin.org
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FIGURE 3

Functional Enrichment Analysis of DEGs. The top 10 ranked GO enrichment terms of BP (A), CC (B) and MF (C). Chord diagram of the top 20 ranked GO
enrichment terms (D). Bubble chart of KEGG pathway analysis (E). Bar plot of Disease Ontology analysis (F). GSEA plot of the pathways enriched in
pediatric-CD (G). The PPI network of DEGs. The purple nodes represent up-regulated DEGs and the orange nodes represent down-regulated DEGs.
The size of nodes indicates the degree value of the DEGs. (H). Network of enriching terms in Metascape analysis of DEGs, colored by cluster ID. The
nodes that share the same cluster ID are typically close to each other (I).
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cells showed that the negative correlation between memory B cells

and M1 Macrophages (correlation coefficient =−0.42), activate

Mast cells and resting Mast cells (correlation coefficient =−0.42),
resting NK cells and activated NK cells (correlation coefficient =

−0.42), M1 Macrophages and CD8 T cells (correlation

coefficient =−0.41) was relatively strong. On the other hand, the

positive correlation coefficient between CD8 T cells and

regulatory T cells, which was 0.45, was the strongest (Figure 8B).

According to the results, the proportion of activated Dendritic

cells, resting Dendritic cells, M0 Macrophages, M1 Macrophages,

activated Mast cells, resting Mast cells, Monocytes, Neutrophils,
Frontiers in Pediatrics 06
resting NK cells, Plasma cells and memory activated CD4 T cells

were higher in pediatric CD, while the proportion of memory B

cells, naive B cells, M2 Macrophages, CD8 T cells, follicular

helper T cells and regulatory T cells were lower (Figure 8C). The

correlation analyses between immune cells and diagnostic

markers demonstrated that three types of immune cells (activated

NK cells, CD8 T cells and gamma delta T cells) had a significant

positive correlation with 5 markers. There was a significant

positive correlation between activated NK cells and CRIP1,

PDZK1IP1, FOLH1, SLC17A8 and HMGCS2. Gamma delta T

cells had a significant positive correlation with CRIP1, RGS13,
frontiersin.org
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FIGURE 4

Identification of diagnostic markers. RF results of the relative importance of prognostic targets (A,B). LASSO regression analysis identified 56 markers to
construct a diagnostic model (C,D). SVM-RFE algorithm screened 28 diagnostic markers in training datasets (E). WGCNA identified cluster dendrogram
and co-expression modules. Each color represents one module (F). Correlation analysis between the gene module and the diagnosis of CD (G). 8
intersections of diagnostic markers of RF, LASSO, SVM-RFE and WGCNA (H). Heatmap of identification of 8 diagnostic markers in training subset (I).
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HMGCS2, SLC27A2 and SLC17A8. And CD8 T cells was positively

correlated with CRIP1, RGS13, SLC27A2, SLC17A8 and HMGCS2.

On the other hand, Eosinophils was negative correlated with 7

markers, including CRIP1, FOLH1, SLC17A8, PDZK1IP1,

RGS13, SLC27A2 and HMGCS2 (Figure 9). The specific

correlation between each diagnostic marker and immune cells is

represented in detail (Supplementary Figure S1–S8).
Discussion

Advances in machine learning and next-generation sequencing

have enabled molecular diagnostic for complex diseases such as

CD. Venkatapurapu SP et al. developed a hybrid mechanistic-

statistical platform to predict outcomes and patient progress in
Frontiers in Pediatrics 07
Crohn’s disease (38). Li L et al. analyzed biomarkers and

constructed a classifier in prediction of Infliximab primary non-

response for CD therapy (39).Though above models may assist

therapy selection in clinical practice, they are limit for reliable

and swift determination of diagnosis. Ostrowski J et al. identified

the moderate discriminative power of transcriptional biomarkers

for prediction of IBD clinical activity in pediatric populations (40).

The major aim of the present study consists in the setup of an

ANN model for the diagnosis of pediatric CD based on gene

expression profiling obtained from public GEO database. At first,

a DEGs analysis between the CD and non-IBD groups was

performed to identify 120 genes as pediatric CD related DEGs.

The functional annotation indicated that DEGs were mainly

enriched in some terms associated with immunity and

inflammation, such as leukocyte mediated immunity,
frontiersin.org
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FIGURE 5

Neural network topology of the training subset, and performance evaluation of the diagnostic model and 8 diagnostic markers. Neural network topology
of training subset with included an input layer with 8 neurons, a hidden layer with 5 neurons, and an output layer with 2 neurons (A). The cumulative error
curves of the ANN model (B). Performance evaluation of the ANN model (C) and 8 diagnostic markers (D-K) by ROC curves and their AUC values.

Zheng et al. 10.3389/fped.2023.991247
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FIGURE 6

Performance evaluation of ANN Model and 8 diagnostic markers in testing subset. ROC curve showed diagnostic efficiency of ANN model in testing
subset (A). ROC curve of diagnostic efficiency of 8 diagnostic markers in testing subset (B–I).
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Complement and coagulation cascades, IL-17 signaling pathway,

complement and coagulation cascades and cytokine receptor

interaction. The results demonstrated that DEGs may involve in

the inflammation and immune response of CD. Furthermore, 8

genes were identified as potential diagnostic biomarkers using

machine learning algorithms including RF, LASSO, SVM-RFE

and WGCNA. PDZK1IP1 is involved in the regulation of

intestinal ion transport in IBD (41, 42). HMGCS2 contribute to

increased ketogenesis and attenuates apoptosis and inflammation

in intestinal pathology (43). PTGS2 is involved in the process of

healing bowel wounds by regulating the production of

prostaglandins (44). Above 3 biomarkers were all detected by 4

machine learning algorithms here. However, very little is known
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about the role of the other 5 identified genes in CD at present. It

is reported that the expression levels of RGS13 in colon tissues

associate with endoscopic remission after vedolizumab in IBD

patients (45). FOLH1 can increase folic acid levels, which may

promote proliferation of inflammatory cells (46). PTGS2 (AUC =

0.883) and CRIP1 (AUC = 0.852) showed moderate

discriminative power in training and testing subsets, respectively.

Furthermore, an ANN diagnostic model was built based on 8

aforementioned biomarkers. The diagnostic performance of ANN

diagnostic model and 8 diagnostic biomarkers were systematically

evaluated. The model was able to provide an overall reliable

accuracy when predicting diagnosis of pediatric CD in testing

subset (86.8%). Compared with each diagnostic biomarker, the
frontiersin.org
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FIGURE 7

Expression level difference. Expression level difference of CRIP1 (A), FOLH1 (B), HMGCS2 (C), PDZK1IP1 (D), PTGS2 (E), RGS13 (F), SLC17A8 (G) and
SLC27A2 (H) between CD and non-IBD controls.

FIGURE 8

Analysis of immune-related cells. Bar chart of immune-related cells infiltration in each sample (A). Display of the correlation between immune-related
cells (B). Violin diagram for difference analysis of 22 types of immune-related cells between pediatric CD and non-IBD (C).
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FIGURE 9

Association of immunity with diagnostic markers. Correlation between various immune cells and CRIP1 (A), FOLH1 (B), HMGCS2 (C), PDZK1IP1 (D), PTGS2
(E), RGS13 (F), SLC17A8 (G) and SLC27A2 (H).
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ANN diagnostic model had the best performance for diagnosis of

pediatric CD. The ROC curve analysis performed subsequently

could support this result. The ANN diagnostic model exhibited

high sensitivity and specificity for diagnosis in both of training

(AUC = 0.954) and testing subsets (AUC = 0.889).

Several studies demonstrated the essential role of intestinal

immunity in both of gut defense and inflammatory mucosa

damage (47–49). Immunosuppression and biologicals are the

crucial therapies of CD. Immune cell infiltration analysis in our

study showed that activated Dendritic cells, resting Dendritic

cells, M0 Macrophages, M1 Macrophages, activated Mast cells,

resting Mast cells, Monocytes, Neutrophils, resting NK cells,

Plasma cells and memory activated CD4 T cells were enriched in

CD. Previous research has demonstrated the augmented

proportion of Neutrophils in mucosa of CD is positively

correlated with disease severity (50). Memory activated CD4 T

cells contribute to the pathogenesis of organ damage in

autoimmune diseases, such as lupus nephritis, lupus encephalitis

and neuropsychiatric lupus (51). Dendritic cells can initiate

immune responses, control intestinal inflammation, and maintain

tolerance. Defects in the regulation of Dendritic cells may lead to

Crohn’s disease (52).

Similarly, Monocytes also play essential roles in healthy and

inflamed intestine (53). The macrophages can be distinguished

by 3 subtypes, including inactivated M0 macrophages, classically

activated M1 macrophages and alternatively activated M2

macrophages. They are all responsible for the early promotion

and resolution of intestinal inflammation. M1 macrophages can

stimulate inflammation, while M2 macrophages can antagonize

inflammation and promote tissue repair (54). In present study,

M0 Macrophages and M1 Macrophages are all enriched in CD.

Hence, we speculated that intestinal macrophages may be
Frontiers in Pediatrics 11
associated with intestinal chronic inflammatory and finally

structuring complications of CD. However, the proportion of

memory B cells, naive B cells, M2 Macrophages, CD8 T cells,

follicular helper T cells and regulatory T cells decrease in CD,

which reflects the complexity of infiltration of immune cells. We

found that resting Eosinophils had a significant negative

correlation with 7 biomarkers. It may imply that resting

Eosinophils and 7 biomarkers have antagonistic effects in the

pathogenesis of CD. However, the potential meaning of the

relationship between biomarkers and immune cells is not well

elucidated. The expression of biomarkers may lead to intestinal

inflammation by mediating immune cell infiltration in CD,

which provides novel ideas and strategies for the study of

treatment.

In the present study, LASSO, RF, SVM-RFE, WGCNA

algorithms and ANN model were combined innovatively to

develop a diagnostic model for pediatric CD. The model showed

excellent diagnostic performance in a large text cohort. In

addition, we explored the association of immunity with

diagnostic markers and tried to demonstrate the rationality of

diagnostic markers selection. The combination of biometric big-

data and machine learning is ideal for accurate and early

diagnosis in CD.

However, the present study has some drawbacks and

limitations. First, there may be some bias in the research results

because of the small sample size of pediatric CD in the GEO

database. Secondly, due to the limitations of retrospective studies,

prospective studies are needed to further elaborate the

mechanism of some conclusions in our study. And finally, the

conclusions of this study have not been verified by external data,

which is needed to ensure the extrapolation and application of

the conclusion.
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Conclusion

In conclusion, our study has constructed the diagnostic model

of pediatric CD based on machine learning and explored the

relation between pediatric CD and infiltration of immune cells.

After identifying 8 diagnostic markers and constructing the

diagnostic model of artificial neural network, we further explore

the infiltration of immune cells in pediatric CD, and the

association between diagnostic markers and immune-related cells.

The results of our study can be expected to provide a basis for

improving the early diagnosis and treatment of pediatric CD.

However, for the clinical application of the results, further

researches will be required in the future.
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